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On Iteration Procedures for Equations of the First 
Kind, Ax = y, and Picard's Criterion for the 

Existence of a Solution* 

By J. B. Diaz and F. T. Metcalf 

Abstract. Suppose that the (not identically zero) linear operator A, on a real Hilbert space 
H to itself, is compact, selfadjoint, and positive semidefinite; that y is a vector of H which 
is perpendicular to the null space of A; and that u is a real number such that 0 < , < 2/1 JAI 1. 
Then, the "iteration scheme" x+, = x. + u(y - Ax.), n = 0, 1, 2, * * *, yields a strongly 
convergent sequence of vectors {xnl} .0 if and only if "Picard's criterion" for the existence 
of a solution of Ax = y holds (i.e., if and only if y is perpendicular to the null space of A, 
and LIb (y, uk),/X2 < c, where the uk and the XL are the orthonormalized eigenvectors, 
and the corresponding eigenvalues, of A, respectively). An analogous result holds when A 
is only required to be compact. 

Introduction. The purpose of this paper is to show that various iteration pro- 
cedures for solving linear Fredholm integral equations of the first kind, 

(1) y(t)- f K(s, t)x(s) ds, 

are equivalent to Picard's [1] fundamental necessary and sufficient condition for the 
existence of a solution (for a relevant discussion of equations of the first kind, see 
Smithies [2, pp. 164-166]). Iteration procedures for the solution of Fredholm integral 
equations of the first kind have been given by Landweber [3] and Fridman [4]. 

Instead of employing the language of integral equations, the following discussion 
will be phrased in the terminology of Hilbert space. In this context, (1) may be viewed 
as 

(2) y = Ax, 

where y is a given vector in a real infinite-dimensional Hilbert space H, and A is 
a linear operator (that is, additive and homogeneous) on H to itself. In Section 1, 
A ($0) will be supposed to be compact (that is, A maps bounded sets into compact 
sets, in the sense of strong convergence), selfadjoint (that is, A coincides with its 
adjoint A*), and positive semidefinite (that is, (Au, u) > 0 for all u E H). 

The "family" of iterative procedures, under consideration in Section 1, is described 
by Eq. (10) of Section 1 (see subsection (cl) of that section). Given the vector y, 
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which is perpendicular to the null space of A, and a number ,u (which is suitably 
restricted, that is to say, specifically, such that one has 0 < IA < 2/X1, where Xi = 

IIA I), one is asked to construct, by recurrence, the sequence of vectors {x }n-o, 
where x += x. + g(y - Ax,), for n = 0, 1. In Section 2, A (p0) is only 
assumed to be compact. The "family" of iterative procedures, under consideration 
in Section 2, is described in subsection (c2) of Section 2. Given the vector y, which 
is perpendicular to the null space of A*, and a number ,u (such that 0 < IA < 2/X1, 
where 'X = I IA*A 11), one is asked to construct, by recurrence, the sequence of vectors 
Ix.1'.0, where x,+, = xn + ,IA*(y - Ax,), for n = 0, 1, . In each instance, 
it is shown that the convergence of the iteration scheme is equivalent to Picard's 
fundamental necessary and sufficient condition for the existence of a solution (see 
subsection (d,) of Section 1, and subsection (d2) of Section 2, for a statement of 
"Picard's criterion"). It is solely the proof of the equivalence which is the purpose 
of the paper; the related question of the numerical instability of the solution (the 
variation of the solution with y) is not considered, although, admittedly, it is of 
paramount importance in numerical applications; consequently, no numerical appli- 
cations have been carried out. 

Essential use is made, in Section 2, of the fact that the operators A*A and AA* 
are compact, selfadjoint, and positive semidefinite (that is, they satisfy the hypotheses 
required of the operator A in Section 1). For this reason, it will be supposed, through- 
out the remainder of this introduction, that A (0O) is compact, selfadjoint, and 
positive semidefinite. 

In these circumstances, A is known to possess a countable set of eigenvalues, 
X1 2 3 ... > 0, with 'X > 0, together with corresponding eigenvectors 
U1, u2, U3, ... in H, such that Au, = Xiui and 

(ui, u;) = 0, i p j, 

=1, i=j, 

for i, j = 1, 2, 3. Then, Picard's necessary and sufficient condition for the 
existence of a solution of (2) may be phrased as follows: given a vector y E H. 
there is a vector x such that Ax = y if and only if 

(3) x2 ' <c 

and (y, u) = 0 for all u such that Au = 0. It should be noticed that a typical difficulty, 
occurring throughout the discussion, is first encountered here. Namely, if the number 
of nonzero eigenvalues is finite, then the sum in (3) is to be understood to be only 
a finite sum, taken only over the nonzero eigenvalues. For simplicity, in order to 
avoid this difficulty, it will be assumed throughout that the number of nonzero eigen- 
values is infinite, so that every X, > 0 (k = 1, 2, *-.). However, all the arguments 
can be readily modified to take into account the case when the number of nonzero 
eigenvalues is finite. 

As customary, R(A) and 71(A) will denote the range of A and the null space of A, 
respectively i.e., 

R(A) = {z'E H I z = Au for some u E H} 

and q(A) = {z E H I. Az O}. It is known that (see, e.g., Taylor [5, p. 332, Theorem 
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6.2-GD the entire space H is the direct sum of the closure of R(A) and the null space of 
A; that is, for every x E H, there exist unique vectors xh E cl (R(A)) and XN E q(A) 
such that x = XA + XN and (xh, XN) = 0. In symbols, 

(4) H = cl (R(A)) (s )(A). 

In the terminology just introduced, Picard's condition, which consists of two parts, 
may be interpreted as follows. Suppose that y E H satisfies the second part of Picard's 
condition, which states that (y, u) = 0 for all u such that Au = 0; or, in other words 
y ? q(A). Then, according to (4), this already means that y E cl (R(A)). If y also 
satisfies (3), which is the first part of Picard's condition, then, by Picard's theorem, 
y must belong to R(A). Therefore, the net effect of requiring (3), over and beyond 
requiring the second part of Picard's 'condition, is to "transfer" y from cl (R(A)) 
to R(A). Thus, according to Picard, the sum (3) is divergent only when both y E 
cI (R(A)) and y Et R(A)-if y = yR + YN, then 

(Y 9 Uk)2 (YR s Uk) 
i- 2 - - 2 

Lt-1 Lk kee 

In Section 1, frequent appeal will be made to the following two (essentially known) 
lemmas, in the precise form in which they are stated below. In order to make the 
paper as self-contained as possible, and to simplify the reading of the later arguments, 
the proofs will be given in full here, for the convenience of the reader. 

LEMMA 1. Suppose x E H. Then there exist uniquely determined real numbers 
c,}I_, and a unique vector XN GE 7(A), such that 

EC 2 < co 

k-1 

and 

X = XN + E CtUk. 
k=1 

Proof. First, from (4), there exist unique vectors xR E ce (R(A)) and XN E7(A), 
such that 

X = XN + Xj7. 

Thus, it only remains to show that 

XR - i, (Xj, Uk)uk. 
k=1 

Since, by Bessel's inequality, 

E(XR, UA ok< (XR, ~R ) < xC) 
k-1 

the vector 
co n 

W = e (X.9, Uk)U& = uM E (Xj,9 UO)Uk 
k=1 n-ec k=I 

belongs to H; and, in particular, w E cl (R(A)), because w is the strong limit of the 
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sequence of vectors 

{ X (xR, Uk)Uk} 
k-1 7- 

in R(A). For positive integers m and n, in view of the orthogonality of the eigenvectors, 
one has 

n ~~~~~~~n 
(XR, Uk)Uk, Ur)= E (X2, Uk)(Uk, Urn), 

kohl keel 

- 0, n < in, 

(XA, Ur), m _ ni. 

Upon taking the strong limit, as n -+ c, and using the continuity of the scalar product, 
it follows that 

(W, Ur) = (XR, Urn); 

that is, 

(5) (W - XA, U.m) = 

for every m = 1, 2 **. Therefore w -X C cl (R(A)). 
Recall that 

(Av, v) 
(6) max _ v) 

for i = 2, 3, **. From (5) and (6) it follows that 0 < (A(w - xR), w - XA) 9 
Xi(w -xr, w - xR) for i = 2, 3, ... Since Xi -+0 as i-> co, this gives that 
(A(w - xg), w - xR) = 0. Thus, using the "generalized Schwarz inequality" (see 
F. Riesz-B. Sz.-Nagy [6, p. 262]), for any z C H, one has 

I(A(w - xR), z) 12 < (A(w - xT), w - x )(Az, z) = 0; 

so that 

A(w - xR) = 0. 

In other words, w -xr E 7C(A). But, as was seen earlier, from (5), both w and xA 

belong to cl (R(A)); and hence, also w - xR C cl (R(A)). Consequently, (4) gives 
that w - xg = 0, the desired conclusion. 

LEMMA 2. Suppose that { rk1Ik}c 
' is a sequence of nonnegative real numbers satisfying 

am 

a < O ; 
k-1 

and that {'y,.} n is a double sequence of real numbers satisfying the two conditions 

lim'Y,n = 0 fork= 1, 2, ... 

and 

'Yknl 7< rk fork, n = 1, 2, 



ITERATION PROCEDURES FOR EQUATIONS 927 

Then, for each n = 1, 2, , the sum 

Xn = d >Yk,flUk 
k-1 

is a vector in H, and the sequence { xn } , converges strongly to zero. 
Proof. That xn E H follows from the inequality 

E 
^ 2,n < E 2r < Co. 

k-1 k-1 

Then, for any positive integer m, 

(Xn Xn)= k{ >+ Yk,n 
(7) k-1 kim+1 

<- E y2, n + E rk 

2 

k-i k-m+l 

Let e > 0. Choose a positive integer m, so large that 
co 2 

>2r;2< E rk < - 
km.e+i 2 

There exists a positive integer Nf such that, for all n > N_, one has 
2 

'Yk, <2 , I k = 1, 2, *,mIe 

Together with (7), the last two inequalities yield (xn, xn) < E, for all n > Ne, as 
desired. 

1. A 0 0, Compact,. Selfadjoint, and Positive Semidefinite. The relationship 
between the various theorems concerning the equation Ax = y, and the procedures 
for solving this same equation, are illustrated schematically by means of the following 
diagram. 

Existence of (al) Formula for the Inverse, 
a Solution 4 plus y I -(A) 

(di) (b1) 
Picard's (cl) Iteration Scheme Converges, 
Condition > plus y I -(A) 

Throughout this section, the operator A 0 0 will be assumed to be compact, 
selfadjoint, and positive semidefinite. The real number 4 will be supposed to be 
such that 0 < i < 2/X1. The equivalence of some of the various items in the diagram 
will now be explained in detail. 

(a,) Existence of a Solution i? Formula for the Inverse, plus y 1 77(A). 
THEOREM a,. Let y E H. Then there exists an x E H, with Ax = y, if and only if 
(a) the sequence of partial sums 

{I (I - Aa)kY 

converges strongly; 
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(p) (y, u) = 0 for every u such that Au = 0 (in other words, y I rO(A)). 
Proof. The following identity, which actually holds for any real number A and 

any operator A, is the basis for this equivalence: 
n 

(8)~~~~ ,A , (I-_ A)k = I-_ (I-yrl 
k-O 

where I is the identity operator and n is any nonnegative integer. This identity follows 
at once from 

n n+l 

(I - AA)n+1 = I - E (I _ AA)k + >2 (I- _ A)k 
k-O k-1 

= I- >2 (I -_ A)k + (I- _AA) >2 (I-_A)k 
k=O k-O 

n 

= I -A > (I -A) . 
k=O 

First, suppose that a solution of Ax-y exists, that is, there is an x C H such 
that Ax = y. Then (j3) holds, because y C R(A) and H = cl (R(A)) q w(A). Also, by (8), 

n 

AA E (I - AA)k = x (I - A An+'x; 
k=O 

but, 
nn 

>A 2 (I- = >2 (I - AA)k Ax 
k-O k-O 

2(I -AA)y; 
k-O 

hence, 

, > (I - = x - (I -,A)f+'x. 
k=O 

(If it were true that II-A - < 1, then it would follow at once that j>k 0 (I - A)k y 
converges strongly, as n -- + co. However, it may be verified that III - 1A = I.) 

By Lemma 1, one has 
co 

X = XNr + >2 CkUk, 
k=1 

where Ax, = 0 and co I Cb < o. Hence, 

(I - Arx = (I - AA)+i(XN + ? CkUk) 

= XN + (I - IAA)n~1 > CkUk 
k-1 

= XN + >2 Ck(l - U)Ak)Uk, 
k-1 
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which, by Lemma 2 (putting -yn = Ck(l - IAk)n and rk = jCkI for k = 1, 2, . ; 
and using 0 < A < 2/X1), implies that the strong limit of (I- AA)n+ x, as n + o 

is XN. Thus, in the sense of strong convergence, 
n co 

A lim rn (I - A A)k y = A (I - AA) y 
n-- o k 0 k-0 

0o 

= X - XN = ? Ck Uk 
k-XX 

so that (a) also holds. This equation is, in a sense, "a formula for finding an inverse 
to A at the vector y". Actually, this is a formula for the "principal part" of the inverse 
of A at y. Formally, this formula for the inverse follows from 

I 
~~~~~~~co 

AA Y= I-(I--A) 
A y 

Secondly, suppose that 

(I - A)hy 
k-O 

converges strongly, and that also YN = 0. Then, from (8), one has 

MA A (I - AA)Y = y - (I - AA)+'y. 
k-0 

The right-hand side in the last equation tends strongly, as n -> + a, to y - = y. 
On the other hand, the left-hand side tends strongly, as n - + co, to 

co\ 

A A (I - IA)Y) 
k-0 

so that, finally, 

A : (I - A)Y) =y. 
k-0 

(b1) Formula for the Inverse, plus y I q(A) T? Iteration Scheme Converges, plus 
y I n(A). 

THEOREM b,. Let y E H be such that (y, u) = 0 for every u such that Au = 0 
(in other words, y I Xq(A)). Then the sequence of partial sums 

2: (I - AA)Y} 

converges strongly if and only if the sequence {xnl } M converges strongly, for every 
CO E H, where 

Xn+I = Xn + A(y - Axn) = (I - I A)xn + AY, n = 0, 1, 

Proof. The following formula, which gives xn explicitly in terms of x0 and y, is 
the basis for this equivalence: 

n-1 

(9) xm = (I - A)nx0 
+ 

M (I - MA)hy n = 1, 2, 
k-0 
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This identity may be proved by mathematical induction. As in part (aj), one also 
has that (I - MA)' x0 converges strongly to XON, the component of xO in the null 
space of A. Using this information, one then sees from the identity (9) that the sequence 

xn } converges strongly if and only if the sequence of partial sums 

n-1 coX 

{ tU E (I - I.A)Y} 
k-O nil 

converges strongly, that is, if and only if the infinite series 

A E (I - ,IA)ky 
k-O 

converges strongly. 
(c1) Iteration Scheme Converges, plus y ? 1(A) >? Picard's Condition. 
THEOREM c1. Let y E H be such that (y, u) = 0 for every u such that Au = 0 

(in other words, y I q(A)). Then, the sequence { x,, }" ' converges strongly, for every 
xO C H, where 

(10) xn+l = x. + y(y - Axn) = (I - g A)x. + gy, n = 0, 1, *** 

if and only if 
O 

( Uk) 
(1 1 ) ? x2 < C. 

kill k 

Proof. Let xO E H. Then, from Lemma 1, one has 
0o 

XO =E Co,k Uk + XON, 
k-i 

where AxON = 0. Hence, one has that (XON, Uk) = 0 for k = 1, 2, * , since 

(XON, Uk) = (XON, ;- AUk) =- (AXON, Uk) = 0, 

for k = 1, 2, * (this last may be seen, without computation, from (4), since XON E 

,(A), while uk C R(A)). Likewise, xn may be written as 

Xn = BCnkUUk + XnN, n = 1, 2, 
k-i 

where (x,,N, uk) = 0 for k = 1, 2, * *, and AXn, = 0. By the hypothesis that y 1 n(A), 
one has that 

Y = E (y, Uk)Uk. 
k-i 

Use of (9), from part (bj), now gives 
co 

n-(I-(y 
Xn = (I - AA) ON + Z] CO,kUk) + A a, I -AA)' (y, uk)uk 

k=1 it-O ke=e 

XON + E CO, k(I - A ) Uk + E B A E (I - /U A)' uk. 
k-1 ki1 x Jo 

But, the identity (8) of part (a,), and the fact that Auk = Xkuk, allows one to rewrite 
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this in the form 

X= XON + E CO',k(l 1-Xk) Uk 
k-i 

(12) + E (y, k) [I- (I - A)]uk 
k-1 Xk 

XON 

+ E 

L 

Z 

+ 

(1 - 

.X) (CO, 

k 

(y u Uk) 

Hence, equating coefficients of 

uk, 
(13) Cm*k = + (1 - Akm) Co, k - x ) k = 1,2, 

and, equating components in 71(A), 

XNX = xON, for n = 1, 2,*''. 

These preliminaries over, the proof proceeds as follows. Suppose, in the first 
place, that (11) holds. Then, by (11), the sum 

E Uk 

is an element of H (that is, the sequence of partial sums, 

|(y , Uk) U l 
UkI 

I k-1Ak J ms-i 

converges strongly in H). Hence, from (12), 

Xn= ( k Uk - XON = (1 - X/A)'cO k - ( ) Uk, 
k-i Xk k- k 

which by Lemma 2 (jutting 

'Yk,n = ( Akr(COk - (Yuk) 

and 

rk= CO.k = (Y, Uk) 

for k = 1, 2, **; and using 0 < , < 2/X1), implies that the strong limit of X, 

as n + + , is 

XON + E (y, U)U 
k-i XkUk 

Suppose, in the second place, that, for every x0 C H, the sequence {x,, I' con- 
verges strongly. Since 

X,= E CnkUk + XnN, 
k-i 
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where (xN,, k) = 0 for k = 1, 2, * * * (from (4), since XON E X(A), while Up R(A)), 
it follows that both of the sequences 

co AX 

{ , Cn Uk} and IxnAln-l 
k- nIl 

also converge strongly. Let 
co 

Z = E (Z, Uk)Uk 
k=1 

denote the strong limit of the sequence 

A Cn, A;UkS 

K{ 

This implies that 

lim C",* = (Z, UOk) 

for each k 1, 2, But, from (13), one has also 

y, U(k) 
lim-Cn,k = 

for each k 1, 2, . Consequently, 

coX 
,U 

2 co 

('U;2< 
C 

E x2 
* M) E(Z k ' 

Karl k k-1 

which is (11). 
(d1) Picard's Condition :? Existence of a Solution. 
THEOREM dl. Let y C H. Then 

(y, U)2 
E 

- x2 < ?) 

and (y, u) = 0 for every u such that Au = 0 (in other words, y L rO(A)), if and only if 
there exists an x C: H, with Ax = y. 

This is a classical result of Picard [1] (see also Smithies [2, p. 164]) who deals 
with integral equations; and a detailed proof need not be reproduced here. However, 
if desired, a proof follows (see the diagram) merely by combining the proofs of 
Theorems a,, bl, and cl, just by "following the implication arrows in the diagram 
in the right direction", although this may not be the most direct way of arriving 
at the result. 

2. A p 0 and Compact. The considerations of Section 1 may be extended to 
the equation Ax = y, where A (0O) is now a compact operator. As a matter of 
fact, all that one needs to suppose about A is that both AA* and A*A are compact. 
(However, as kindly pointed out to us by Professor Jerry Eisenfeld, this already 
implies that A itself is compact, by Exercise 18, p. 1260 of N. Dunford and J. T. 
Schwartz, Linear Operators, Part II, Interscience, New York, 1963.) The following 
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diagram is applicable here. This diagram, of course, reduces to that of Section 1 when 
the operator is also selfadjoint and positive semidefinite. 

Existence of (a2) Formula for the Inverse, 
a Solution plus y 1 n(A*) 

(d2) (b2) 

Picard's (c2) Iteration Scheme Converges, 
Condition plus y ? q(A*) 

Throughout this section, the operator A 0 0 will be assumed to be compact. 
The real number /u will be assumed to be such that 0 < IL < 2/X1, where X 2 denotes 
the largest eigenvalue of the compact, selfadjoint, and positive semidefinite operator 
A*A (that is, XA = I A*A11). The equivalence of the various items in the diagram 
will now be explained in detail for this case. The basic idea behind all the proofs 
of the present section is to reduce all arguments relative to the compact operator A 
to arguments involving the operator A*A, to which the results of Section 1 are then 
directly applicable. 

(a,) Existence of Solution z Formula for the Inverse, plus y I '4(A*). 
THEOREM a,. Let y E H. Then there exists an x E H, with Ax = y, if and only if 
(a) the sequence of partial sums 

{ (I - hiA*A)kA*y} = {* A (I- 1AA*);Y} 

converges strongly; 
(i3) (y, u) = 0 for every u such that A*u = 0 (in other words, y I '4(A*)). 
Proof. It is to be noticed that the equality of the two sequences of partial sums 

which appear in (a) follows from 

(A*A)kA* = A*(AA*)k, k = O, 1, 

which may be verified by mathematical induction. 
Suppose, first, that there exists an x C H such that Ax = y. Then A*Ax = A*y. 

From this equation, as a result of applying Theorem a, to the operator A*A and 
the vector A*y, one has that the sequence of partial sums 

(n co 

{ E (I - , A*A)kA*y} 

converges strongly, which is condition (a). Also (y, u) = (Ax, u) = (x, A*u) = 0, 
whenever A*u = 0, which is condition (i3). 

Suppose, now, that conditions (a) and (3) of the present theorem hold. From 
this it follows that conditions (at) and (j3) of Theorem a, are valid for the operator 
A*A and the vector A*y, namely: 

(a') the sequence of partial sums 
n co 

{ (I - IA*A)*AA*y} 

converges strongly; 
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(i') (A*y, u) = 0 for every u such that A*Au = 0. Notice that (j') follows from 
(A*y, u) = (y, Au) and the fact that if A*Au = 0, then the vector Au, being both 
in the range of A and in the null space of A*, must be zero (since H = cl (R(A)) 0 
,q(A*), which is to be compared with (4). Hence, Theorem a, yields the existence 
of an x in H such that 

A*Ax = A*y, 

i.e., such that A*(Ax - y) = 0; that is, Ax - y is in the null space of A*. But, Ax 
is in the range of A; while y, in view of hypothesis (I) of the present theorem, is in 
the closure of the range of A. Thus, the vector Ax - y, besides being in the null space 
of A*, is also in the closure of the range of A. Hence, Ax - y must be zero; in other 
words, Ax = y. 

(b2) Formula for the Inverse, plus y ? q(A*) z Iteration Scheme Converges, 
plus y I q(A*). 

THEOREM b2. Let y E H be such that (y, u) = 0 for every u such that A*u = 0 
(in other words, y I q(A*)). Then, the sequence of partial sums 

{ (I - AuA*A)CA*y} = {A* ai (I - AUAA*)kY} 

converges strongly if and only if the sequence { xn } '.. converges strongly, for every 
xo E H, where 

Xnl = Xn + IAA*(y - AXJ, n = 0, 1, 

Proof. This result follows immediately from Theorem b,, upon application of 
that result to the operator A*A and the vector A*y. 

(c2) Iteration Scheme Converges, plus y I n(A*) Z? Picard's Condition. 
THEOREM c2. Let y C H be such that (y, u) 0 for every u such that A*u =0 

(in other words, y I 7(A*)). Then, the sequence {xn} OI' converges strongly, for every 
x0 E H, where 

Xn+ = Xn + AA*(y - AXn), n = 0, 1, ... 

if and only if 

(Y, U )2< 

where X2 > X * *. are the eigenvalues of A*A and ul, u2, * are the eigenvectors 
of AA*. 

Proof. Theorem cl, applied to the operator A*A and the vector A*y, gives; 
}x.._O converges strongly, for every xo E H, if and only if 

(A~y, VA)2 <c 
E x4 

k-1 k 

where v1, v2, are eigenvectors of the operator A*A, with corresponding eigen- 
values X2, X2, *x2 (which are all positive). In particular, one can choose 

VA; = 
kAUk, k = 1,2,*** , 
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since 

A*AQ2X A*u) = A*(A A*uX) = i A k(X~uk) = xk(1 A*uk), 

and 

A ui, pi A*uk) - H (AA*ui, Uk) 

Xk 
X (Ui k) 

= 0, for j 5 k, 

= 1, forj = k, 

for j, k= 1, 2, **. With this particular choice of the vi, one has 

(A*y, vk)2 (Y. 
, 

AVk) _y x2 AA*uV) ( )2 
4 - - k 1, 2, 

which leads to the desired result. 
(ci) Picard's Condition T? Existence of a Solution. 
THEOREM d2. Let y E H. Then 

E (y, U)' X 

and (y, u) = 0 for every u such that A*u = 0 (in other words, y I q(A*)), if and only 
if there exists an x C H with Ax = y. (Here, X 2 > >, * ... are the eigenvalues of 
A*A and ul, u2, are the eigenvectors of AA*.) 

A proof follows (see the diagram) merely by combining the proofs of Theorems 
8s, b2, and c2, just by "following the implication arrows in the diagram in the right 
direction", although this may not be the most direct way of arriving at the result. 
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