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On the Error in the Numerical Integration of 
Chebyshev Polynomials 

By D. Nicholson, P. Rabinowitz, N. Richter and D. Zeilberger 

Abstract. A general method is described to compute the exact error in the numerical 
integration of a given polynomial by certain types of integration rules. This method is 
applied to get exact errors in the integration of certain Chebyshev polynomials of the first 
kind by Gauss and Lobatto rule and asymptotic errors in the integration of Chebyshev 
polynomials of both kinds by Gauss, Lobatto and Radau rules. 

1. Introduction. In this work, we consider the error in the numerical integra- 
tion of the Chebyshev polynomials of the first and second kind, Tn(x), U,(x) by 
Gauss, Lobatto and Radau integration rules. We first derive explicit expressions 
for the error in the numerical integration of T2n+2k(x) by an n-point Gaussian inte- 
gration rule and by an (n + 1) -point Lobatto rule, for k = 0, 1, 2. The method used 
for deriving these expressions can be applied for any k 2 0, although we only go 
up to k = 2 since the number of algebraic manipulations grows rapidly with k. It 
can also be applied to U2.n+2k(x) and in fact to any sequence of polynomials and in 
addition can be applied in connection with any numerical integration rule. We then 
derive asymptotic expressions as n tends to infinity for the error in the numerical 
integration of T2n+k(x) and U2n+k(x) for fixed k > 0, using the three integration 
rules mentioned above. Actually, for the Gauss and Lobatto rules which are sym- 
metric rules, the error in the numerical integration of Chebyshev polynomials of 
odd degree is identically zero so that we need consider only polynomials of even 
degree, T2fl+2k(x) and U2.+2k(x). 

2. The Error in Gauss and Lobatto Integration Using a Fixed Number of Points. 
The Gaussian rule of degree 2n - 1 with respect to the interval [- 1, 1] has the n 
roots of the Jacobi polynomial P.0'0)(x) (=Pn(x), the Legendre polynomial) as its 
n abscissas [1, p. 33]. Denoting the error committed by applying this rule to Tk(x) 
by En(Tk), we have the following relations: 

En(Tk) = O, k 2n- 1, 

En(T2m+i) = 0, m _ 0. 

The Lobatto rule of degree 2n - 1 with respect to the interval [-1, 1] consists of 
n + 1 abscissas, of which n - 1 are the roots of the Jacobi polynomial P'" '(x), 
and the other two are the endpoints of the interval [1, p. 37]. Denoting the error 
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committed by applying this rule to Tk(x) by Ena,(Tk), we have the following similar 
relations: 

E.+l(T,k) O, k 2n-, 

En+i(T2m+l) = 0 m _O 0 

In the Gaussian case let us now write 

(1) T2n+2k(x) = [Pn O'0(x)]2 E a x2i + Q2n-2(x), 
i=O 

where Q2n 2(X) iS the remainder in the division of T2n+2k(x) by [P, 0 0(x)]2. We then 
have the following expression for E,(T2n+2k): 

~~~~~~k 
En=(T2n+2k) / [Pn0'0)(x)]2 E a(kx2t d 

(2) -i i-O 

= k) f1[xiP'0 (x)]2 dX. ai PI, 
-1 

This is true since En(Q2n-2) = 0 and since [P,0I0) (x)]2 vanishes at the abscissas of 
the integration rule. The integrals in (2) can be evaluated explicitly as follows: By 
repeated use of the following recurrence formula [2, p. 83] 

(2n + I)xPn2'0(x) = (n + 1)P,(?'?)(x) + nP,??'A)(x), 

we can replace x'Pn' 0)(x) by E._ c iP+ -j")(x). By the orthogonality of the P,0 0)(x), 
we have that 

F 1 i2 ); F 
Jb E [ ~c(i)o )(x) dx = E c;i 

2 
[P(',)(x)]2 dx 

Cfii-i i=-i - 
+ 

and hence, using the formula [2, p. 82]: 

J [p(0,0)(X)]2 dx 2n+l' 

we have finally that: 
k i 1 

En(T2n = S a(*) E c(i)2 f [P(0?0)(X)]2 dX 
i=O i--i -1 

k i 

= 2 E a(*c) E ci)2/(2n + 2j + 1). 
i-O .o -i 

For the Lobatto case, we apply the same method, replacing [P(? 0'(X)]2 by 
(1 - x2)[P~L'>(x)]2 in (1). In this case, we use the corresponding recurrence formula 
[2, p. 83]: 

(2n + 3)xP,?"'(x) = (n + 1)Pl")(x) + (n + 2)P,"A ,(x) 

and the following formula for the evaluation of the integrals: 

(1 -_x2)[P,('l)(x)]2 dx = 2(n + 2)(n + 1)/2n + 3. 
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TABLE I 

Exact Error in the Integration of T2n+2k, k = 0, 1, 2, by n-Point Gauss 
and (n + 1)-Point Lobatto Ruiles 

k E.(T2,+2k) E.+l(T2n+2k) 

22n (n!)2 
2n 

1 2 (n!) 

n(n 

+ 1)= n + I E T ) 
(2n)! 2n 1 L (2n)! n(2n + 1) n 

2 2 44 4 2n.2n 
1 3 3 5 (2n - 1)(2n + 1) 2 

1' 2,i + 1 E'(T2n) [ 3(2n?+1) _____2, 

L[ 2n-1x2n? 3)1 (2n 1)(2n ? 3)1 _E (T ) 

2 413 - 48n2 _ 13n + 6 En(T2 ) 9(4n3 + 
16n2- 13n + 10) El(T2) 

(2n - 1)2(4n2- 9)(2n + 5) (2n - 1)2(4n2 -9)(2n + 5) 

The results in the Gauss and Lobatto cases for k = 0, 1, 2 are given in Table I. 
(For k = 0, the results can also be obtained from the standard error terms since in this 
case f(2n)(t) is a constant.) 

Remark. This method is applicable to the calculation of the error in the numerical 
integration of any polynomial Pn+,(x) by any integration rule of degree n - 1 with 
respect to an arbitrary weight function w(x). We just replace (1) by the following: 

n 

P.+k(x) = IW(x) E ak x + Qnl(x), k _ 0, 
i =o 

where Iln(x) = r(x)[s(x)]2 with r(x) _ f 1 (X - Xi), S(x)= Jn 1 (X - yi) and 
n, + 2n2 = n. The points xl, ... *, xn, Yi, , yn, are the abscissas of the integration 
rule with s(x) orthogonal to all polynomials of degree ? n2 -1, with respect to the 
weight function w(x)r(x). The case n1 = 0 corresponds to integration rules of Gaussian 
type while n2 = 0 corresponds to interpolatory rules. 

3. Asymptotic Expressions for the Error in Gauss and Lobatto Rules as n -+ o0. 
To get the asymptotic behavior as n -> o of the error in the numerical integration 
Of T2n+2k(X) and U2,+2k(x) where k is held fixed, we use the method of the previous 
section except that we replace PVa, a>(x) by its asymptotic formula due to Darboux 
[2, p. 194]: 
(3) Paa)(cos 0) = n" ,2k(0) cos (NO + 4) + O(n 312), 

where k(O) = i-" /2(sin 0/2)- a-1//2, N = n + a ? , = -(a + 2)r/2, and 0 < 
0 < ir. 

Since we are interested in the case where a is an integer, we derive the following 
formula from (3): 

[Pn ' (x)]= k k()[1 + cos (2N0 + 24)] + O(n2) 
2n 

=22,[1 ? (- 1)' sin (2n ? 2a ? 1)0][7r-n(sin o)2a+l]-l ? 0(n 2). 
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If we now define S'(x) = (1 - x2)a[P.,?>)(x)]2, we have that 

S' (cos 0) = 22a[ + (-l)a sin (2n + 1)01[7r(n - a)sin O]-1 + O(n-'). 

Rewriting (1) with x = cos 0 and with [Pn0'0o)(x)]2 replaced by Sn(x), we get the 
following asymptotic relation for T2n+2kc(x): 

T2n+2,k(cos 0) = cos (2n + 2k)O 

= 22a[1 + (- 1)a sin (2n + 1)0 + O(n-')][(n - a)r sin O]- 
(4) k 

Z ba? cOs 2j1 + Q2(n-coS 0), 
i-O 

where 
k k 

I b ?j cos 2j1 = E at,)i(cos 0)23 
i-O j-O 

For U2fn+2I(x), we get a similar relation: 

U2n +2k(cos 0) = sin (2n + 2k + 1)0/sin 0 

= 2 2a[l + (_l)a sin (2n + 1)0 + O(n-')][(n- a)r sin OF' 
(5) k 

* cos 2j0 + R,_2(cos 0). 
i-O 

Multiplying (4) and (5) respectively by sin 0, we get the following formulas: 

sin (2n + 2k + 1)0 - sin (2n + 2k - 1)0 

22a+1 k 

- 2~. Z b(k) [cos 2j0 + O(n-')] 
(4') 

(1)a 22a k 

+ J - b(ak[sin (2n + 2] + 1)0 + sin (2n - 2j + 1)Oft 
nXr i- 

+ Q2n 1(sin 0), 

22a k 

sin (2n + 2k + 1)0 = - EjC(c[cos 2j0 + O(n1)] 

(5') + (1)c2 , c")[sin (2n + 2] + 1)0 + sin (2n - 2j + 1)01 
n7r -O 

a 

+ 
RA1)I(sin 0), 

where (12',_,(sin 0) and Aa -,(sin 0) are odd polynomials of degree 2n - I in sin 6 
and are equal to certain linear combinations of sin (21 + 1)0, 1 = O, * , n- 1. 

Multiplying (4') and (5') respectively by sin (2n + 21 + 1)0, 1 = 0, * , k, and 
integrating both sides between 0 and 7r, we get: 

- (c-)] 22cc+1 
k k 4n+ 41 +2 Qf (6) j0ikl- 'L(k-l)l]-2 n7r r a)[(2n + 21 + 1)2 - 4j2 

I )a wa2a-1 k 
+ (1) [b + bao) a01], I = 0, --, k, n a a 
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22a k r 1 1 

(7) kr 2 n7r 0-o a' (2n 4+ 21 + 1)2 _ 4j2 + 

( 1 a2 
,2 a-2 

[()+C 0] + t-1) (c- [al +c o I = O , k 
n 

where 

6ik=O, i $ k, 

=1, i=k. 

Here we have used the following well-known results: 

jsinkfvsin vl d =2ukl, k > 1, 
o~~~~~ 

(8) fsin ko cos 10 do= 0, k = or k = 0, 

)2 + [I 
+ (_1)k+z+1], k 

> 
1, k,# 1. 

The asymptotic solutions of the linear systems of Eqs. (6) and (7) are as follows: 

)= (1)an2 -2a[kl - 8(k-1)1] + 0(1), k > 2, 1 = 0, *, 

(9) bpa= (-l)a+ln2 2alr + 0(1), 

b(al) = l)an2 2ar + 0(1), 

bao) - (-= )an2 2a-17r + 0(1), 

(10) Cal = (-1)an2 7r2kZ + 0(1), k _ 1, 1 0, g, 

(0) = 1)an2 -2a7r + O(1) 
ao- 

Returning now to the general form of (2), we get: 
1k\ 

E(T2n+2k) = i Sa(X) aakx2 ) dx 

- f S(cos )(n E b?ay cos 210) sin 0 dO 

and a similar expression for 
E(U2U12k) 

in which b (k) is replaced by C(k.) Inserting 
the asymptotic expressions for Scn(cos 0), b () and ca? derived above, we get the 
following expressions: 

En+a(T2n+2k) = f ( 1)' + sin (2n + 1)0][cos 2k0 - cos (2k - 2)0] dO 

+ 0(n), k _ 2, 

E.a(T2.+ 2) = j [-1)' + sin (2n + 1)0][cos 20 - 2] dO + 0(n '), 

En+a(T2n) = 2 f [(-1)' + sin (2n - 1)0] dO + 0(n1'), 
2 
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E,+a(U2n+2k) = f [(-1) + sin (2un + 1)012 cos 2kG dO + O(n'-), k 1, 

E.+ a( U2.)- [(-1)0 + sin (2n + 1)0] dO + O(n-'). 

Here the notation En+a refers to the error committed when using a rule whose 
general structure we shall describe in the forthcoming remark. If we now evaluate 
the above integrals using the formulas in (8), we get the final results: 

En+a(T2O+2k) =?(n 1), k > 2, 

En+a(T2n+2) = (1)a+l.r/2 + O(n-'), 

(11) En+a(T2n) = (1)ar/2 + O(n-'), 

E+a( U2n+2k) = O(n' ), k > 1, 

En+a(U2n) = (-1)ar + 0(n 1). 

Remark. Results (11) are valid for every nonnegative integer a and correspond 
to integration rules of degree 2n - 1. For a = 0, 1, the corresponding rules are the 
Gauss and Lobatto rules respectively while for a ? 2 the rules are those which 
incorporate values of the integrand and its first a - 1 derivatives at the endpoints 
d 1, namely: 

1 a-l ~~~~~~~~n-a 
f i(x) dx W wk[f(k-(_1) + flkl(+1)] + E A2f(xi) 
-1 k-0 j- 

where xi, *.., xn-a are the roots of the Jacobi polynomial PGa<W)(x). 
The results for a = 0, 1 are included in Table II. 

4. Asymptotic Expressions for the Error in Radau Rules as n -* Co. The Radau 
rule of degree 2n with respect to the interval [-1, 1] consists of n + 1 abscssas, of 
which n are the roots of the Jacobi polynomial P<1 '0)(x) and the additional abscissa 
is at the point xn+l = 1 [1, p. 37]. There is a second Radau rule symmetric to this 
one with respect to the origin but it suffices to discuss the first one. The error in 
the numerical integration of Tm(x) and Um(x) by such a rule is zero for m ? 2n. 
Hence we are concerned with En+1(T2n+7) and En+l(U2n+k), k > 1. 

Now, by the Darboux formula for P(a ) (cos 0) [2, p. 194], 

P("N(cos 0) = n 1/2k() cos (NO + 4) + O(n3/2) 

where k(O) = 7r-1/2 (sin 0/2)-a-1/2 (cos 0/2)-f-1/2, N = n + (ca + A + 1)/2, 

0 = - (a + 1/2)7r/2, 0 < 0 < xr, 

we see that the asymptotic behavior of P(1 0)(x) is given by 

(12) P 1'0 (cos 0) = _( 2 ) ' si [(n + 1) - (3 

Thu/s in 0/2 +O(/2 
Thus 

[P: 0(cos 0)]2(1 - cos 0) = 2[1 - sin (2n + 2)0] + 2) [Pn ~~~~~~~~nir sin 0 
0n 
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TABLE II 
Asymptotic Error as n -* O in the Integration of T. and Ur by 

Gauss, Lobatto and Radau Rules 

Gauss n-Points Lobatto (n+ I)-Points Radau (n+ I)-Points 

k T2.+2k(x) U2n4+2k(x) T2n+2k(x) U2rt,2k(X) T2n+l+k(x) Ufn+l?+k(X) 

o 7 
~+O(i)7r +O() - 7+ (') - 7r +O(!) -+() 0 r+ 2 (n+ (11) 2 + (2 n 

2 (n) ) ( 2 o(n) 

3 o(!z) ?(s ?(n) () () 2 + 
0 0 

(/l ?(0 0Z ?(n ?1 ?(n) 

and by analogy to (4) and (5) we have 

T2n+k(cos 6) = s E (, cos 2 ) 

+ Q2n(cOs 0), 

(14) U2~?k(CoS 6) {2[1 - sin (2ti + 2)0] +0(/1 ); (k 

+ R2nl(cos 6). 

Proceeding along lines similar to that in the previous section, we get the following 
relations: 

d,= - -n7r[3(k-j) i - (k-3) j]+ 0(), i = O, k - 1, k 2, 

dol) = -nr/4 + 0(1), 

e = -ngr3(k-j); + 0(1), j = O,***, k - 1, k > 2, 

eo) = - nr/2 + 0(1) . 

Inserting these into (13) and (14), we get the following asymptotic expressions: 

T2n+k(cos 6) = sin (2n + 2)0 - 1 [cos (k - 1)0 - cos (k - 30)] sin 6 

+ O(nF') + Q2n(cOs 6), k _ 3, 

T2n+2(cos 6) sin 0 cos 6 + O(n ') + Q2n(COS ), 
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T2 +1(cos 0) sin (2n + 2)0 - I + O(n1) + Q2.(cos 0), 

2k sin (20 ) 

U2n+k(cos 0) = sin (2n 0+2)0 cos (k - 1)0 + O(n1) 

+ R2n(Cos 0), k > 2, 

U2n+1(Cos 0) 
sin (2n + 2)0 - 1+ O(n1) + R2.(cos 0). sin 0 

From these, we derive our final results: 

En+l(T2n+k) = O(n-'), k = 2, k 2 4, 

E.R+,(T2.*) = 7r/2 + O(n'1), 

E.R+,(T2.+,) = -7r/2 + O(n1'), 

ER+1(U2+k) = O(n1), k ! 2, 

E"+ ( U2.+) = -ir + O(n 1). 

In Table II, we summarize the asymptotic behavior of the errors as n co in the 
integration of Tm(x) and Um(x) by Gauss, Lobatto and Radau integration rules. 
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