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Formulas for Bivariate Hyperosculatory Interpolation 

By Herbert E. Salzer 

Abstract. For a given function f(x, y), bivariate hyperosculatory interpolation formulas 
are obtained by employing a suitably constructed binary nic pn(x, y) that is fitted to 
the values of f(x, y) and its first and second partial derivatives at the m points (xi, y;) of 
a rectangular h X k Cartesian grid, where (xi, yi) (xo + p,h, yo + q1k), pi and qi are 
small integers 2 0, i O(1)tm - 1, m 2 2. In terms of the variables (p, q), where x = 
xo + ph, y = yo + qk (and f(x, y) - F(p, q)), we have Pn(x, y) = Pn(p, q). Often, for P,,(p, q) 
having a specified desirable form, this problem turns out to be insoluble for every con- 
figuration of the points (xi, y,). When this is not the case, it generally requires considerable 
investigation to find a practical configuration of points (xi, yi) for which there is a solution 
of the form Pn(p, q). Formulas are found for choices of Pn(p, q), and soluble configurations 
of points (xi, i'i), that have dominant remainder terms in 

hrkafI...x(r times)y...v( times)(Xo, Yo) 

whose orders r + s are as high as possible. Three two-point formulas, two three-point 
formulas and one four-point formula, including all remainder terms through the order 

r+ = [n+, for m =2 
n + s1 for m 3, 4] 

are given here in convenient matrix form. 

1. Introduction. This present article is concerned with some formulas for m-point 
bivariate hyperosculatory interpolation over an h X k rectangular Cartesian grid, 
where we interpolate for f(x, y) by means of a binary nic p5(x, y), which together 
with its first and second partial derivatives at (xi, yi) agrees with fi f(xi, yi), 
fs-=f (Xi,, yi3, f W(xi, Yi), fx= fxx(xi, y), f2 --,(xi, yi) and f.. f,,,(x,, yi), 
xi = xo + pjh, yi = yo + qik, wherepi and qi are small integers _ 0, i = O(l)m-1, 
and x = xo + ph, y = Yo + qk. Such formulas might be specially convenient when 
f(x, y) is the solution of a second-order partial differential equation where some, or 
even all, of the first and second partial derivatives are readily available at (xi, yi), 
either as a byproduct of a numerical solution of the equation, or from the,equation 
itself. 

2. Previous Related Work. To review briefly the situation for osculatory and 
hyperosculatory interpolation up to the present investigation, we recall first the 
very widely known fact that for a single variable we can always find a unique poly- 
nomial of degree n, say P"(x), such that at any m points x,, i = O(l)m - 1, regularly 
or irregtularly spaced, real or complex, we have Pi"1(xi) = f"'"(xi), ji = O(l)kj, 

*%-I ki + m = n + 1. For two variables, even for ordinary interpolation, say in 
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fitting a binary nic like a + bx + cy + dx2 + exy + fy2 + * + rx" ? sx~'y ? 
* + ty' to f(xi, yi), i = 0, 1, * , (n + 1)(n + 2)/2 - 1, there is the restriction 

that the determiniant II, xi, yi, x2, xi y2, A , X", x,-Yt, , y'J # 0, which 
appears to be just mildly restrictive. It was the detailed investigation of bivariate 
osculatory interpolation, i.e., fitting a binary polynomial to fi, fx, and f, 
i= O(l)m - 1, that brought out some surprising results about the insolubility of 
the problem under a wide variety of conditions [1]. Thus there were some cases 
where a binary polynomial of prescribed form fails for any choice of points (xi, yi), 
and in other cases where it may fail for just certain special configurations of the 
points (xi, yi).* To obtain solutions in the former cases, it was necessary to slightly 
distort a natural looking choice of a binary polynomial, by leaving out a lower 
degree term and adding one of higher degree. For binary polynomials that were 
not generally insoluble, it was often found that the closest and most symmetrical 
configurations of (xi, yi), e.g., . for three points, or for four points, did not 
have a solution, and a considerable amount of searching was necessary in order to 
find the closest configurations that were soluble. But for the present problem of 
bivariate hyperosculatory interpolation, it turns out that these difficulties of finding 
a suitable binary polynomial, and also configurations of (xi, yi) that have a solution, 
are so magnified that there is much less leeway in the selection of workable formulas. 

The foregoing discussion indicates how we may be misled in expecting certain 
properties in univariate interpolation to hold in multivariate interpolation. Thus 
all the standard forms of the interpolation polynomial in one variable, e.g., 
Lagrangian, Gregory-Newton, Newton-Bessel, Everett, and even Newton's general 
divided difference formula, have mixed confluent forms of every variety. But for 
bivariate' interpolation, there is no unambiguous definition of a formula for pre- 
assigned confluent points of specified multiplicity, since in the process of the confluence 
of points in the two-dimensional plane, the direction of approach determines the 
form of the result. Furthermore, even when the direction of approach in the confluence 
of points is specified, in general certain limiting conflueent forms may not exist.** 

In connection with bivariate interpolation, the terminology "irregularly-spaced 
points in two dimensions" in most books on classical numerical analysis, is restricted 
to refer to points (xi, yi) that are irregularly spaced in the x- and y-directions con- 
sidered separately, but not completely irregularly in the x,y-plane. Consequently, 
interpolation formulas given for those so-called irregularly-spaced points are usually 
restricted to arguments (xi, yi) that lie in a rectangular grid formed by rectangles 
of different sizes. For attempts to give suitable definitions of confluent forms, in 
connection with several suggested new divided difference formulas for functions 
of two variables where the arguments (xi, yi) are spaced in a completely irregular 
manner, see [2] and [3]. 

The wide restrictions on the composition of the binary polynomials and the 
arrangement of the points (xi, yi), when there does exist a solution to a bivariate 
osculatory or hyperosculatory interpolation problem, is indicated in the structure of 

* In [1] there are many illustrations for both cascs, e.g., the simplest, for the former, being 
the general impossibility of fitting a + bx + cy + dx2 + exy + fy2 to f i, f; and fyi, i 0 O, 1. 

** E.g., while we may fit a binary quadratic to any f(x, y) specified at the 6 points (0, 0), (1, 0), 
(0, 1), (1, 1), (2, 1) and (1, 2), there is no limiting confluent form as (1, 0), (0, 1) -- (0, 0) and (2, 1), 
(1, 2) -+ (1, 1) (see previous footnote). 
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the relevant determinant. It seems from experience that we must, in the confluent 
cases, avoid a binary polynomial whose general functional appearance is too sym- 
metrical in x and y, and a conifiguration of the points (xi, yi) that is too regular. 
Apparently, for the confluent cases in one variable, this problem does not arise 
because the determinants are closely related to the nonvanishing Vandermondian. 
But it appears that in the confluent cases for two variables over a Cartesian grid, where 
the binary polynomial does not lack solutions for every configuration of the points 
(xi, yi), there are still a number of ways in which the horizontal or vertical alignment 
of even some of the points (xi, yi) may cause the determinant to vanish for many 
configurations of all the points (xi, yi). 

3. Change of Variables. Now it is convenient to shift variables from x, y to 
p, q, where p (x - xo)/h and q = (y - yo)/k. Then f(x, y) will be denoted by 
F(p, q), and fi f(xi, yi) = F(pi, qi) F,. The partial derivatives of F(p, q) with 
respect to p and q at p pi and q qi, namely F,,, F,,(pi, qi), F,- F,(pl, qi), 
F,Pi = F,p(pi, qi), Fv,,i Fva(p , q1) and F -, Fqq(pj, qi) are related to the partial 
derivatives of f(x, y) with respect to x and y at x = xi and y = y. by F,, = hfx8 
Fq8 = kfs,, Fp,- = h 2f,x; F,,; = hkf.,i and F.,,i = k2fL1V. In general, 

Fv . .. = hr'ksx .. . i 
(r times) (a times) (r times) (8 times) 

so that for small h and k, as r + s increases, the 

Fv ...p 1)a... 
(r times) (e times) 

becomes very much smaller than the corresponding 

f;...-, vz...u. 
(r times) (8 times) 

The interpolating binary nic p,,(x, y) is denoted by Pn(p, q). 

4. RemainderTerms. To estimate the accuracy of bivariate hyperosculatory 
interpolation of F(p, q) by a uniquely determined Pn(p, q), in the absence of an exact 
expression for the remainder F(p, q) - Pn(p, q), we obtain its dominant terms from 
its Taylor expansion about (po, qJ) a (0, 0), just as in [1]. One straightforward way 
to find those dominant terms (which is not the most convenient way in view of IV 
below) is to expand each 

Fp...p Q...q;, r + s = 0, 1, 2, i 5 0, 
(r times) (.8 times) 

that occurs in Pn(p, q), about (0, 0), and to subtract that formn of Pn(p,-q) from the 
Taylor series for F(p, q) about (0, 0). The remainder is then seen to be given by 

(1) F(p, q) - P,(p, q) - S F ,..., .o K7,,(p, q), 
r, (r times) (a times) 

where K, .(p, q) are polynomials in p and q. From the uniqueness of both Pn(p, q) 
and the Taylor series, we obtain immediately the following four guiding rules as to 
which (r, s) terms are to be found in the right member of (1), and also how to find 
the polynomials Kr,.(p, q) most conveniently: 



122 HERBERT E. SALZER 

I. If Pn(p, q) contains a term Kp7q', there will be no (r, s) term in the right mem- 
ber of (1). 

II. If Pn(p, q) lacks a term Kp7q', there will be an (r, s) term in the right mem- 
ber of (1). 

III. If Pn(p, q) has a term of the form K(ptq' + p'q), then in (1), K.,r(p, q)- 
Kr, (p, q). 
IV. The application of (1) to F(p, q)-- ptq', for which the right member has 

just a single term, yields for Kr, p, q) the explicit formula 

(2) K ,.(p, q) = (l/r!s!) [pq8 P}(p, q) for the function p'q']. 

5. Determination of Formulas. All formulas have the same quadratic part, the 
first six terms of the Taylor series about (po, qo) = (0, 0), namely, 

(3) F(p, q) = Fo + pFl2 + qFq. J 
+P F,pv. 

J pqFp.. 2 FqQO + 

Those six terms also constitute the optimal hyperbsculatory formula for m = 1. 
For m = 2, say (0, 0) and (pi, q1), we must solve a 6 X 6 linear system for the 

coefficients of the higher degree terms in Pn(p, q), to meet the interpolation con- 
ditions at (P', q1). In view of I-III above, those six terms should be of the lowest 
possible degree. Consider the 6 X 9 matrix of p'q with its first two partial derivatives, 
i + j = 3 and 4, for every (p1, q1). We may drop the subscript I and refer to that 
matrix as P. No polynomial Pn(p, q) can have four independent cubic terms because 
the four cubic columns in P are linearly dependent, as seen from the multipliers 1, 
-3p/q, 3p2/q2 and -p3/q for q 0 0, and a vanishing q3 column for q = 0. The 
author conjectured, and T. N. E. Greville proved in 1960, that rank P < 6. Greville 
showed the linear dependence of the rows of P by verifying that for any polynomial 
P(p, q) consisting only of cubic and quartic terms, 

P(p, q) -pP1, + !qPq - -p2P,P, - -pqP0. - Lq 

These properties of P show that no two-point formula can have more than five 
independent cubic and quartic terms, of which there cannot be more than three 
cubic terms. Thus an optimal formula, from the standpoint of highest degree donminant 
hTk' terms in the remainder, should have three cubic, two quartic and one quintic 
terms. The closest configuration of two points is (p0, q0) = (0, 0) and (p1, ql) = (1, 0).t 
It has the drawback of not being symmetrical with respect to the p, q-grid. At this 
point, we introduce the notation "A" for the determinant of the linear system of 
equations for the coefficients in any formula under consideration throughout this 
article. For (0, 0) and (1, 0), the nonquadratic part of the interpolating quintic P.J(p, q), 
subject to the conditions of A 0 0 and P5(p, q) being symmetrical in p and q,t can 
be only of the form a(p3 + q3) + bp2q + cpq2 + d(p4 + q4) + e(p3q + pq3) 

*** The result in 11] oni the impossibility of finding a binary quadratic for two-point osculatory 
interpolation is expressible as the simplest Greville-type identity: If P(p, q) has only quadratic 
terms, P(p, q) a 'IpPp + IqPq. 

t For (0, 0) and (0, 1) just interchange p and q in the formula for (0, 0) and (1, 0). 
$ Here symmetrical means not unchanged in value on interchanging p and qJ but unchanged 

in genieral funictional form. 



BIVARIATE HYPEROSCULATORY INTERPOLATION 123 

+ f(p5 + q5). For the corresponding formula, with remainder terms through the 
5th order, see Al in Section 6 below. The points (p0, q0) = (0, 0) and (pi, ql) = 
(1, 1) are situated symmetrically with respect to the p, q-grid, though their distance 
apart is nearly 11 times that for (0, 0) and (1, 0). There are altogether 30 symmetrical 
forms for P5(p, q), of which 18 have A = 0 and 12 have A 0 0 for that configuration. 
Of the permissible 12, two representative choices of P6(p, q) are P5(p, q) = quadratic 
part + ap3 + b(e2q + pq2) + cq3 + dp4 + eq' + fIpr + q) ("extreme" 
power weighted), and P5(p, q) quadratic part + a(3 + q3) + bp2q + cpq2 + 

dp3q + epq3 + f(pq2 + p2q3) (44central" power weighted). For the corresponding 
formulas, with remainder terms through the 5th order, see All and AIII in Section 6 
below. 

For m 3, say for points (0, 0), (pl, ql) and (P2, q2), it is natural to meet the 
18 interpolation conditions with a polynomial P5(p, q) having the 15 terms of the 
complete quartic and which preserves its symmetrical form with the three quintic terms 
a(p5 + q5) + b(4q + pq4) + c(3q2 + p2q3). Obtaining P6(p, q) requires the solution 
of a 12 X 12 linear system. It was found that A 0 for these 14 configurations of 
base points (heavier dot for (0, 0)): 

0.0* 0*. * *0 0 *.00 

and A # 0 for these four configurations: 

The scarcity of configurations where A 4 0 is underscored by noting that the last 
three are variations of just 

0 . 

under one of or both the transformations (p, q) -v (q, p) and (p, q) --*> (2 - p, I - q) 
which leave the above selected P5(p, q) unchanged in its symmetrical form. For the 
formula corresponding to the configuration 

with remainder terms through the 6th order, see BI in Section 6 below. We may 
use BI for any other "knight's move" configuration of three points, with the proper 
definition of p and q. E.g., for (0, 1), (1, 1) and (2, 0) replace (p, q) by (p, 1 -q), 
remembering not to overlook the changes of sign in 

F2p...p a ...qi 
(r times) (8 times) 

A different nonsymmetrical Ps(p, q) was employed for the very nice-looking sym- 
metrical configuration 
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having the least diameter of 21'2 = 1.41 ... (cf. with diameter of 51/2 = 2.24 ... for 

Of the 20 possible combinations of three terms in p4q', i + j = 5, to add to the 
complete quartic part of P,(p, q), A $ 0 for just these 4: p5, p4q, q5; p6, pq4, q; p5, 
p3q, q; p, p2q3 eB The second and fourth combinations are essentially the same 
as the first and third resp. because of the symmetrical form of both the 

configuration and the complete quartic part of P6(p, q). The p5, p32, q5 combination 
was chosen because it appears more balanced in p and q than p5, p4q, qB. For the 
corresponding formula, with remainder terms through the 6th order, see BII in 
Section 6 below. As a rule, BII is preferable to BI because it has fewer terms, smaller 
coefficients, a generally smaller remainder,ttt is easier to compute, and the 

@0 

configuration is more convenient and adaptable than 

0* 

(e.g., in interpolating for the solution to a problem in a region that is bounded 
natuirally by a square, where the 

configuration might be inapplicable or less convenient). 
For m = 4, for points (0, 0), (pi, ql), (p2, q2) and (pa, q,3), there is the very natural 

and attractive-looking 

*0- 

configuration. The 24 interpolation conditions are satisfied by a symmetrical sextic 
P6,(p, q) that has the 21 terms of a complete binary quintic and three terms in p q', i + 
j = 6, which must include p3q3 to have symmetry. Of the combinations p6, q6, or 
p5q, pq6, or p4q, p2q4, A $ 0 only for p5q, pq5. For the corresponding formula, with 
remainder terms through the 7th order, see CI in Section 6 below. 

To go beyond m = 4 for second derivative formulas, or to find formulas for 
m ? 2 involving third- or higher-order derivatives, it is recommended that one develop 

tft Exceptions may occur when 
Fp ... p Q,,,qo 

(r tirWes)(a timee) 

is practically the same as 
Fp...p q...qos r + s - 5, 

(s times) (r times) 

for hZ and k sufficiently small. 
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a single comprehensive machinle program for eliminating Pn(p, q) and configurationis 
of (Pi, qi) where A = 0, and then solving for the coefficients of Pn(p q) and the 
dominant remainder terms in cases where A # 0. It may be anticipated, on the basis 
of [1] and this present work, that one will discover an even greater scarcity of satis- 
factory interpolating polynomials Pn(p, q) and sufficiently close configurations of 
points (pi, qi) for which A Pd 0. For instance, in two-point hyperosculatory interpola- 
tion involving third derivatives, we might wish to satisfy the 10 interpolation con- 
ditions at (p,, q,) with a Ps(p, q) having, beyond a complete cubic part for the 10 

conditions at (0, 0), 10 of the 11 possible quartic and quintic terms ptqi, i + j = 4 
and 5. But that is impossible because rank R < 10, where R is the 10 X 11 matrix 
of p'q' and its first three partial derivatives. In fact, the rows of R satisfy a very 
strong Greville-type identity, since the first six alone are linearly dependent, the 
multipliers being 1, -2p/5, -2q/5, p2/20, pq/l0 and q2/20. This implies that if 
we replace the four third derivative conditions at (p1, q,) by any other four conditions, 
not necessarily involving derivatives, or even the point (pl, q,), the corresponding A 
will still vanish. 

6. Schedule of Formulas. Every formnula is given in matrix form 

(4) F(p, q) = a AT + yBT +** 

where aA$7T is the interpolating polynomial Pn(p, q) and -yB5T is the sum of the 
dominant remainder terms. The matrix form has the advantage (besides its obvious 
compactness and convenience) of providing either the coefficients a, b, c, ... etc., 
by first taking the product aA, or the polynomial coefficients of 

Fp...p q ai I r + s 0, 1, 2 
(r times) (a times) 

(analogous to Lagrange interpolation coefficients), by first taking the product AO3. 
Obtaining cxA (AI3T) first might be preferable for machine storage when there are 
fewer (many) sets of 

F, ...p Q ais r + s 0 O, 1, 2, 
(r times) ( timies) 

and many (fewer) arguments p and q. 
Every formula given below, including all the dominant remainder terms, was 

checked by having it reproduce exactly a function F(p, q) that was chosen to be a 
polynomial with integral coefficients and of such degree that the dominant remainder 
terms constituted the entire remainder. 
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Two-Point Fornutilas. 
Al. (po, qo) (0, 0)! (pi, ql) = (1, 0). 
ca is the 1 X 12 matrix IIF0, F,,, Fq., Fl,puo Fp,,.1 Fqq,o F1, F,,, Fq1, Fpp1,, F, F,a,l,J 
A is the 12 X 12 matrix 

1 0 0 0 0 0 -10 0 0 15 0 -6 

0 1 0 0 0 0 -6 0 0 8 0 -3 

0 1 000 0-3 0 0 2 0 

i0 00 0 0 O 0 0 - 0-- 

0 00 0 1 
o 0 0 -2 0 7 0- 

1~~~~ 
00 0 0 O 0 0A 0 0 0 

0 0 0 0 0 0 10 0 0 -15 0 6 

00 0 0 0 0 -4 0 0 7/ 0 -z 
0 00 0 00 0 30 0-2 0 

0 0 90 0 0 0 oo -1o 
0 

2 2 

0 0 0 0 0 0 0 -1 0 0 1 0 

,is the 1 X 12 matrix III p, q, p2, pq q2p3 + q3, pq, pq2, p4 + q4,p3q + pq3, 
pa + q11, 

'y is the 1 X 9 matrix I I(Fp,,, - Fq,,j,/6, (F,,,p, - Fqo)24, (Fpp, o - FpQ,O)-6, 
F,pQFJOI4, (Fpppppo - FqquZaqo)1120 FvPQppso241 FvpQwQo/I2j Fvpqa2qo/12) Fw,aqo/241 1, 

B is the 9 X 12 matrix 
0 0 -1 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 -1 0 0 00 0 

0 0 0 0 0 -1 0 0 0 00 0 

0 -1 0 0 1 0 0 0 0 00 0 

0 0 0 0 0 0 0 0 0 0 0 -1 

1 0 0 -2 0 -2 0 1 0 0o0 0 

0 -1 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 o o 0 o o 1 o 

0 0 0 0 0 0 0 0 0 01 0 

and 5 is the I X 12 matrix Ijp2qpq2, q3 p3qp2q2, pq3,q4 p4q, p3q2,2q3p4q5! 
All. (po, qo) = (0, 0), (pi, ql) = (1, 1). 
a has the same form as in Al above, but a different value, since (pi, q,)=(1, 1) 

instead of (1, 0). 
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A is the 12 X 12 matrix 

1 0 0 0 00 -5 0 - 2 2 

I7 5 17 15 
-3 O 1 ? ? ? ? I- 2 ? - 2 4 4- 

5 7 15 17 5 
-2 ?-2 4 4 - 

000 ~~~0 0 -~~ 7 5 1 
2 12 12 8 8 4 

5 1 5 5 7 1 

O O O O 1 0 5 15 5 I I 7 0 0 0 0 0 ? -- 0 -- - 2 12 12 8 8 4 

0 0 0 0 0 0 50 5 -1 -15 5 
2 2 

5 5 ~15 15 0 00 00 0 2 0 -- 4 

? o o o o o 6 0 21 '5 -4 2 

2 
4 

0 0 0 0 0 0 -1 0 5 15 15 5 

0Fppp 0 0 0 / 120 0 0 12 88 4 

1 -1 1 1 21 ?1 1 -- 1 

0 0 0 0 0 0 - - - 0 -1 - 

4 4 4 2 
32 -1 -0 - -54 0 0 0 4 -- A 0 01 0 - 

0 3 2 -2 s -s ? ?12 12 8 8 0 I I 

4~ ~~ _3 4: 4w 5 --OO10- 

'is the 1 X 12 matrix II IP, p I pq2 p3, P2q + p2% pq 3 pqp + 

,y is the I X 9 matrix I1(F,,,,. - FzaoQj/2, Fvv.6 Fpao4 FrI,2400/6 

- FqQQQQo)/l20p O,/24, Fpqqo/2; Fppqqqn/)2, - (?,p =/241, 
B is the 9 X 15 matrix 

I 1 1 0 0 00 0 00 0 00 0 

5 33 10 Q1 00 0 00 0 1 

1 1 
1--11 -- 0 1 0 -i 0 0 0 0 0 0 

2 2 

44 Z444 4 

.5 
0 55 0 5 1 1 

-0 ---0 00 -0 0 00--I 
6 6 4 4 2 21 

5533 4 1 0 1 1 1.0 

52254W 4 2 2 

1 5 3 5 51 00 1 

-1 - 1 - 0 0 0 - -- 0 0 0 1 - 

and 5 is the I X 15 matrix Iljp3, p2q, pqe, q3, p4, p3q, p2q2, pq3, q4 p3q p q '. :ze 

AIII. (po, qo) = (0, 0), (pi, ql) (11) 
a is identical with that in All. 
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A is the 12 X 12 matrix 

1 0 0 0 0 Q - - -z 
- -z 15 15 - 

O 1 0 0 0 0 - 
3 

_ 0 
9 7 3 

2 2 2 2 

O 0 1 0 0 0 - O - 9 
_ 

001000 ? 12 2 2 2 

O O O O1 0 3 1 -1 5 1 -1 
0 0 0 0 0 -- -1 - 1 - 

2 8 O O 2 4 

O O O O O O - - - 3 3 1 

0 0 ? ? ? ? ? ? 2 - 22 2 2 2 

is th 1 X 12mt1 p 5 I 1 

a a a a 2 4 

0 0 0 0 0 0 ? 9 9 ?5 ? 35 

4 4 4 2 a 

0 00 0 00 ~5 3 9 3 4 
4 4 4 2 

5 9 3 4 3 
000000 4 4 4 2 

0 2 -1 0 0 0 
1 1 1 1I 3 1 
4 2 2 4 4 4 

1 2 3 3 2 1 1 ? 3 3 

-52~~ ~~ 41 4 22? 5 5 -- 

an is the i X 12 matrix inl,p, q,p pq, qA I p + qp2qpq,p3qpq,pq +pq3, 
,yis thelIX9 matrixlIl(F,,,. - Foge)/6, Fzvp /24, Fve.4 FQQQ /24, Fvpp / 120, 

Fpp~ppQ0/24, (F"Q - F,pqQqo)/129 Fpqgq,/G24, Fe II,1211 
B is the 9 >X 15 matrix 

1 3 3 QQo 0 000 0 00 0 

4 i 4 2 2 

---1 -- 011 
4444 2 2 

1111 - 11031 000 0 00 0 
4444Z 

- 
2 2 

33 4 - -3 - 0 5 1 3 

-1 2 -1 0 0 1 0-30 0 0 100 

4 4 2 22 2 

3 3 5 5 1 -1 1 
2 4 2020 2 2 2 

1 3 5 1 1 

21 42- 2 2 2 2 

and 5 is identical with that in All. 
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Three-Poinit Formuiilas. 
Bl. (po, qo) = (0, 0), (pi, ql) (1, 0), (P2, q2) = (2, 1). 
a is the 1 X 18 matrix IjFO, Fp, F00, Flppo Fl,,, FQq., F1, FP,1, FQ.9 Fpp,, F2,OQ, F0qQ, 

F2, FI,, F02,I FV,,,, FPQ2, FQQ,Oj 
A is the 18 X 18 matrix 

1 0 0 0 0 0 -10 20 - 4 -2 15 -40 18 16 9 -6 20 -14 

0 1 0 0 0 0 - 6 19 21 - 8 -19 6 11- 6 -3 19 1i 2 2 2 2 

0 0 10 0 0 0 --7 5 ?3 0 3S6 5 P- 01 1- 
2 2 2 2 

0 0 0 0 0 0 2 217 5 1 3 17 1611 _ 17 11 
2 2 1 27 12 2 26 2 6 2 2 12 

0 .0 G0 0 A 0 0 0 - 2 1 0 51 1 
3 3 3 3 3 

00 0 o o o _ 13 - 1 0 1 17 1 0 1 1 
2 0 2 12 6 2 6 2 12 12 

0 0 0 0 0 010 -1521 -62 -15 30 -27 66 -24 6 -15 6 

0 0 0 0 0 0 - 3 
15 -7 7-2 -58 -24 -3 --12 2 2 2 2 

3 9 
0 0 0 0 0 00 303 - 2 - 6 36 -14 0 2 

0 0 00 0 0 1 _5 23 21 15 25 27 1 5 1 
2 4 4z 2 2i 4 2 2i 4 2 

0 0 0 0 0 0 0 0 9 -18 0-I- 24 -12 0 1 A 2 0 ?? ? 212 1 ?- 941-7? 2 

0 0 0 0 0 0 0 1 6 57 7 - I 5 1 3 6 13 
2 2 4 2 4 

0 0000 0 0-5 -1764 0 10 -82 33 -5 8 

3 _ 7 0 0 0 0 0 0 0 2 5p-26 0- 4- 4 p 32 -12p0 2 q 

0 00 0 00 0 A .~!.-31 0- 5 -- 41 -17 0 -R- 4 
2 2 2 2 

00 0 0 1 X 03ti 1 3 - 1120 1 0 _ - 
6 6 3 4 3 6 12 

F 2 5 4 1 31 2 7 0 00 0 00 0-- 8 0 4 - 40 - - 
3 

3 
3 2 

3 3 
6 

000000 0 ~ -~ ~ _L 41 5 2 
12 12 6 4 6 12 3 

~3is the I X 18 matrix j1, p, q, p2,pq, q,p3,p q, pq2,q3,p4,p q, p q2,pq, q, p6 
q,pq + pq pq2 + p qj, 

,y is the 1 X 10 matrix jf(Fp,,,,,,,. - F00000 0)/ 120,, (F,,,,,,,0, - Fqqo14 

Fz,qq,v000 ,20, F000000 j0/720jj, 



130 HERBERT E. SALZER 

B is the 10 X 22 matrix 

175 3 41 5 4 4 5 00 
6 9 3 2 3 6 3 

_ 23_ 5 46 ? 128 6 o 2 76 76 - 

0 - v -106 24013S3 0 
-8 

4-80 0 10 0 0 0 0 

3 3 ~ ~ ~ g 0000 

0 1 1 2 0 2 1 ? 2 0 1 5 1 1 0 0 0 1 0 0 0 0 
3 3 3 2 3' 3 S' 66300 00 0 

-1 25 61 
55 0 39 60 -3 2 11 11 - 5 -3 0 0 0 0 0 0 

2- 2 2 2 2 

0 0 -16 24 6 13 12 -44 2 3 2 0 4 4 8 0 01 0 0 1 0 0 

0 
I _ -52 0 2 6 0 6 0 3-- 5-- 5 1 0 0 0 10 0 0 0 

2 2 2 

0 2 2 -2 0 - - 28- 41 0 2- 5 -S 2 ? ? ? 0 10 0 0 

d 3 is th -30 - 6 -ar -22 0 11 11 3 0 0 p 0 p2 , 
2 2 2 

0 3 9 -32 0-6 4 47-240 3-5-5 3 0000010 

o A ?7I -8 - 0O -O .-2 41 41 0) -- - 4 0 0 0 0 0 0 0 1 
2 2 2 2 2 

and 8 is the IX 22 matrix 1p3,pq,pq , q Ip4p3q,p2qpqj q.,p5,p4qp3q2pq, 
pq41q5 p, lq,p449 p e pq2, pq5, q6jj. 

BLI. (po, qo) = (0, 0), (p1, q,) = (1, 0), (P2, q2)= (0, 1). 
a has the same form as in BI above, but a different value, since (pa, q) -(0, 1) 

instead of (2, 1). 
A is the 18 X 18 matrix 

I 0 0 0 0 0 -10 0 0 -10 15 0 0 0 15 -6 0 -6 

01 0 00 0 -6 0 -3 0 8 0 0 2 0 -3 3 0 

001 00 0 0 -3 0 - 6 0 2 3 0 8 0 -3 -3 

o0 0 0 0 1 0 0- 0 0 .1 0 01 0 

2 2 2 2 22 

00 0 0010 0 -2 -2 0 012 1 0 6 0 0 

0 0 00 0 0 0 -1 0 0 7 000 00 11 
2 2 2 2 2 

00 0 00 0 10 0 0 0 -150 0 0 0 60 0 

000 00 - 4 0 0 0 70 0 0 0 -31 0 

0 0 00 0 0 3 0 0 0 -2-30 0 0 30 

0 00000 0 0 0 0 1000 0 10 0 
2 2 

00 000 0 0 -10 0 0 1 10 0 0-1 0 

00 0 00 0 0 0 0 0 0 0 00 0 0-0 2 

00 000 00 0 00100 0 000-15 00 6 

00 000 0 00 3 0 0 0 0-2 0 0-3 0 

00 000 00 000-4 0 0 00 7 0 0-3 

0 0000 0 00 0 00 0 0 0 2 0 

00 0 00 0 0 0 -1 0 0 0 0 1 0 0 1 0 

0 0 00 0 0 0 0 Q 00 0 0 -1 0 0 2 2E 
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i3 is the 1 X 18 niatrix 1,P, pq, p2 pq q2p3 p2qpq2 q3, p4, p3q, p2q2, pq3, q4, p 
p3q2 q511 

y is the 1 X 10 matrix I IFvppq,O/24j Fpp(7qqO/12, F7,Q#.qqOq/24, Fpp5"p,po/720, Fpp2p"pqo /120, 
F,pcpfzo/48, Fpvp55eo/36, FPPQ?,IU(,q/48, Fp,qqqaqq/l2O, FqQqqg2qq/720j j 

B is the 10 X 22 matrix 
0 1 0 0 0 -2 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 -2 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 

-10 0 0 3 0 0 00 -3 0 0 0 0 0 1 0 0 0 0 0 0 

0 2 0 0 0 -3 - 00 0 0 2 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 00 0 0 -1 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 00 0 0 0 0 0 00 0 o 1 0 0 0 

0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

0 0 2 0 0 0 0 -3 0 0 0 -2 0 0 0 0 0 0 0 0 1 0 

0 0 0 -1 0 0 0 0 3 0 0 0 0 0 -3 0 0 0 0 0 0 1 

and 6 is identical with that in BI. 
Four-Point Formula. 
Cl. (po, q(o) = (0, 0), (pa, q1) =(1, 0) (P2, q2) (0, 1), (P3, q3) = (1, 1) 

a is the 1 X 24 matrix IJFO Fp, Fq0, Fp,,,, Fp,O , F5Q,,, Fi, F,,,, rq, Fp,* Fp,, FQ 
F2. i;,,, F5,2 q Fp,p2, Fpq2 ,, Fqq F3, Fp, Fqs, Fp,p,, Fpqs, FQQsjj, 
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A is the 24 X 24 matrix 

t 1 0 0 0 0 -10 -3 -3 -10 15 12 9 12 15 -6 -15 -6 -6 -15 -6 6 4 6 

0 1 0 0 0 0 06 4 -5 O 8 7 6 2 0 -3 -8 - -4 0 0 3 20 

0 0 1 0 0 O O -3 -2 6 0 2 6 7 8 0 0 -4 -5 8 -8 0 2 3 

o o o o 5 10 0 A 3 0 0 0 1- 0 0 0 0 100 
] 225 ? ? 2 2 ? -2 2 2 

1 0 0 0 1 0 0 -2 -2 0 0 1 4 1 0 0 0 -2 -2 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 
3 

0 0 0 Q31 0 0 1 
2 2 2 2 22 2 

0 0 0 0 0 0 10 3 5 0 -15 -12 -9 -12 0 6 15 6 6 15 0 -6 -4 -6 

0 0 0 0 0 - 4 -1 0 0 7 53 0 0 -3 -7 -3 -2 O O 5 2 0 

0 0 0 0 0 0 0 3 2 0 0 -2 -6 - 7 0 0 0 4 3 8 0 0 -2 -31 

0 00 00 0 1 0 0 0210 0 01 I 100 0 o1 0 o ? ? ? ? ? 2 22 2 

01 0 0 0 00 0 -1 0 0 0 1 2 0 0 0 0 -2 -1 0 0 0 1 0 

0 0 100 0 0 0 0 - O O 0 - 3 O ? ? ? ? 3 1 ? ? -2 
2 2 2 2 

0 0 0 0 0 0 0 5 5 10 0 -12 -9 -12 -15 0 15 6 6 15 6 -6 -4 -6 

0 0 0 0 0 0 O 2 0 O O 7 -6-2 0 0 8 3 4 0 0 -3 -2 0 

0 0 0 0 0 0 0 0 -1- 4 0 0 5 $ 7 0 0 -2 -3- 7 -3 0 2 3 

0 00 000 0 o 
. o0 ! o-A o0 00 A o 0 0 0- ? o 

2 2 2 2 

0 0 0 0 00 00 -1 0 0 0 2 1 0 0 0 -1 -2 00 0 1 0 

0 0000 0 0 0 0 1 0 0 0 --1 0 0 00 1 0 0- - 
2 2 2 2 

0 0 0 0 00 0 -3 - 0 012 9 12 0 0 -15 -6 -6 -15 0 6 4 6 

0 0 0 0 0 0 O 1 0 0 0- 5 - 0 0 0 7 3 2 0 0 -3 -2 0 

O O O O O O O 0 1 0 0 0 -3 - 00 O 2 5 7 0 0 -2 -3 

0 00000 0 00 0 0 1 ? ? 00 - 1 0 0 0 0 - 22 

0 0 0 0 00 00 0 0 0 0 1 0 0 0 0 -1 -1 0 0 0 1 0 

0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 - 1 0 0 0 

2 2 2 
e 

f3is the IX 24 matrix 1j1, p, q, p2, p 3,pq pq pq2q q3 p4, p3q, p2 pq3 q4, p, 
4 3 2 2 $ 4 5 5 3 3 5e p q, p3 

q, p q, pq, q , pq, p3q3 pqf, 

-y is the 1 X 12 matrix J F.,,,ppo/720, Fpppvpqqo/48, Fvp535/48, FqaqqqqO/720, 
Fp p p pp 50409 FPPPPPPQ o/7209 Fpppppaq O/240, FpIp pqqqi /144, FPppsa q / 144, FppaQaa O /240, 

Fpqq5QQQo/72O0 Fqq(qqqaq/50401 1, 
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B is the 12 X 30 matrix 

-1 0 0 0 3 0 0 0 0-3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0-1 Q 0 0 2 1 0 0 0-1-2 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 

0 0-1 0 0 0 1 2 0 0 0 0-2-10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

O 0 0 -1 0 0 0 0 $ O O O 0 0 -3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

-3 0 0 0 8 0 0 0 0-6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0-1 0 0 0 0 3 0 0 0 0 0-3 0 0 0 0 0 0 1 0 0 0 0 0 0 

0-2 0 00 3 2 0 0 0 0-3 00 0 00-1 0 0 0 0 0 00 1 0 0 0 0 0 

0-1 0 0 0 2 0 0 0 0-1 0 l 0 0 0 0 0-2 0 0 0 0 0 0 1 0 0 0 0 

0 0-1 0 0 0 0 2 0 0 0 1 0-1 0 0 0 0-2 0 0 0 0 0 0 0 1 0 0 0 

0 0-2 0 0 0 2 3 0 0 0 0-3 0 0 0 0 0 0 0-1 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0-1 0 0 0 0 0 3 0 0 0 0 0 0-3 0 0 0 0 0 0 0 1 0 

0 0 0-3 0 0 0 0 8 0 0 0 0 0-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

and a is the 1 X 30 matrix I Ip3, p2q pq2 q p4 p3q p2q2 pq3 q4 p5 p4q p3q2 p29qI pq4 
5 8 5 42 3q3 2q4 5 8 7 8 5p2 4q3 3q4 2q5 pq q711. q,p ,p q,p q,p q ,p q, pq, q ,p ,p q,p q , p q,p q5p q,p 
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