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On Hadamard Matrices Constructible by 
Circulant Submatrices 

By C. H. Yang 

Abstract. Let V2, be an H-matrix of order 2un constructible by using circulant n X n sub- 
matrices. A recursive method has been found to construct V4, by using circulant 2in X 2n 
submatrices which are derived from n X n submatrices of a given V-2. A similar method can 
be applied to a given W4w, an H-matrix of Williamson type with odd ni, to construct W8,. 
All V2, constructible by the standard type, for 1 < n ? 16, and some V2n, for n1 _ 20, are 
listed and classified by this method. 

Let Hn be an n X n Hadamard matrix. Although it is conjectured that no cir- 
culant H4n-matrix exists for n > I (see [3]), it is known that many H4,-matrices can 
be constructed by using circulant submatrices of order n or 2n. (For H-matrices of 
Williamson type, see [1], [2], [4].) 

Let V2, be an H2n-matrix constructible by using circulant n X n submatrices. 
Then V2, can be constructed by the following standard type: 

(*) M2n = L A B 
, where A, B are n X n circulant matrices 

--B TAT 

and CT means the transposed matrix of C. 
A recursive method has been found to construct V4, by circulant 2n X 2ii matrices 

which are derived by circulant n X n submatrices of a given V27.. (See Theorem 1, 
below.) Likewise, let W4, be an H47.-matrix of Williamson type with odd n; W8' 
can be constructed by using 2n X 2n symmetric circulant matrices which are derived 
from n X n symmetric circulant submatrices of a given W47.. (See Theorem 2.) 

Let Sn = ((ei)) be the n X n circulant matrix with the first row entries ei, (O < 
i ? n - 1), all zero except for e, = 1. Then n X n circulant matrices A, B of (*) can 
be written as polynomials in S. (We shall omit the suffix n of Sn and others when there 
is no confusion.) 

n-1 n-I 

A = A(S) = E aiSt, B = B.(S) = i S, 
i=O i.=0 

with coefficients ai, bi = 1 or - 1; where S =In = the n X n identity matrix. 
A sufficient condition for the matrix M2n of type (*) being an H-matrix is that 

M-InM2'n= 2nI2, which is equivalent to 

(1) AAT + BBT = 2n In. 
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Let P = P,,(S), Q = Q,,(S) be matrices obtained by replacing -1 by 0 in A, B 
respectively. Then the condition (1) is equivalent to 

(2) PPT + QQT = (pn + qn - rn)I + rJ, 

where J = Jn = E?- S' and p,,, qn are, respectively, the numbers of l's in each row 
of P, Q. Here, p,,, qn and rn must be solutions of the following necessary conditions 
for existence of V2n, 

(3) (n - 2p.)2 + (n - 2qn)2 = 2n, 

(4) Pn + qn - rn = 2n. 

Similarly, by taking Q' = J - Q, instead of Q in (2), (3), and (4), which is possible 
since whenever A and B satisfy the condition (1), so do A and -B, we obtain the 
corresponding conditions: 

(5) ppT + Q'Q'T = (Pn + q; - rn)I + rnJ, 

(6) (n - 2p,)2 + (n - 2q )2 = 2n, 

(7) Pn + qn - rn = n. 

Since q- = n - q,,, we also obtain from (7) and (4), 

(8) rn = 2Pn- rn. 

THEOREM 1. Let M2m be a given V2m,-matrix of type (*) satisfying the conditions 
(2), (3), and (4). Then M4m, a V4m-matrix of type (*), can be found as follows: 

(**) P2m(S) = Pm(S2) + SkQm(S2), (S) = Pm(S2) + skQ, (S2), 

where s -S2, Q I = Jm - Qm, and k is any odd integer. 
Proof. Since P2m = pmn + qm, q2m = Pm + (m - q,,), r2m = 2pm are solutions of 

the conditions (3) and (4) for n = 2m whenever pm, q., rm are solutions of (3) and 
(4) for n = m, it is sufficient to show that P2,,m and Q2m satisfy the condition (2), i.e. 

(5) P2mP2'm + Q2mnQ2m = mI2m + 2Pm J2m. 

From (**), the left side of (5) equals, (since PT(s) = P(s-1)), 

(P(s2)P(s-2) + Q(S2)Q(S-2)) + (p(s2)p(s-2) + Q'(s2)Q'(s2)) 

+ [skP(s2) + s-kP(s2)] Jm(S2), [since Q(s2) + Q'(s2) = Jm(S2) = Jm(S-2)] 

m-1 m-1 m-1 
= mI + rm s21 + - mI + (2pm- r) 

E 
S2 i + 2pm 52i+1 

2 i 2 i_o i-o 

= mI + 2pm J. 

Let N4n be a 4n X 4n matrix such that 

A, B, C, D 

N4n, = -B, A, -D, C 

-C, D, A, -B 

L-D, -C, B, Ai 
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wlhere A, B, C, D are n X n symmetric circulant (+ 1, - 1)-matrices. Then a sufficient 
condition for N4ft being a W4,-matrix is that 

N4.NTn= 4n I4. 

Let P, Q, K, and G be matrices obtained by replacing -1 by 0 in A, B, C, and D, 
respectively. Then, corresponding to the conditions (2>-(4), we obtain 

(2') p2 
+ Q2 + K2 + G2 = (tt -_r)I + rnJ, 

where tn = p + q + k + g; p, q, k, and g are the numbers of l's in each row of 
A, B, C, and D, respectively. 

(3') (n -2p)2 + (n-2q)2 + (n-2k)2 + (n--2g)2 = 4n. 

(4') tn- rt, = n. 

Similarly, corresponding to the conditions (5)(8), we obtain 

(5') p2 + Q'2 + K2 + G2 (t r)I + r'J, 

where Q' = J- Q, G' = J- G, and t' = p + q' + k + g'; q' and g' are, respectively, 
the numbers of l's in each row of Q' and G'. 

(6') (n - 2p)2 + (n - 2q')2 + (n - 2k)2 + (n - 2g')2 = 4n. 

(7') t- r' = n. 

(8') r-2(p + k)-r 

THEOREM 2. Let N4m be a given W4m-matrix with odd m satisfying the conditions 
(2'), (3') and (4'). Then N8m, a W8sn-matrix, can be found as follows: 

P2m(S) p(s2) + SnQ(s2), Q2m(s) = P(s2) + SmnQ(S2), 

K2(s) - K(s2) + s'G(s2), G2(s) = K(s2) + sr'G (s2); 

where s = S2i, Q' = J- Q, and G' = Jn - G. 

Proof. We know that P2mp Q2., K2m, and G2m are also symmetric circulant and, 
as in the proof of Theorem 1, that pm = p + q, q2m -p + (n - q), k2m-= k + g, 
and g2. = k + (n - g); r2m= 2(p + k) are solutions of (3') and (4') for n = 2m 
whenever p, q, k, g, and rm are solutions of (3') and (4') for n m. Therefore, it is 
sufficient to prove that the condition (2') is also satisfied, i.e. 

(2"t) P2m + Q2m + K2m + G2m 2ml + 2(p + k)J. 

The condition (2") can be checked easily since the process of proof is exactly similar 
to that of Theorem 1. 

Let Iu. } and { vi I be two finite sequences respectively of 
n-I n-1 

ppT E uis and QQ T E vis, 
i-O ~~~~~~~i-O 

where P, Q are n X n circulant (0, 1)-matrices; in this case, we also obtain Wni =Wi 

for w = u or v. 
The following Table I, of all constructible V2n (I ? n < 16) of type (*) with the 

restriction pn,, qn, _ in, is obtained by matching two finite sequences Iui } and 
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Xvj I, respectively of PPT and QQ7, such that ui, + vi = r. for 1 ? i 2 4n. Here, 
Theorem 1 serves as a tool of classifying these finite sequences. 

Note. 1. s- S, where k is any integer relatively prime to n. 
2. When q- =n, Qn(s) and Q'(s) produce the same finite sequence. 
3. * indicates the class of Ps(s) and Qn(s) unobtainable by Theorem 1. 
It should also be noted that for a given n X n circulant matrix K(S), all matrices 

M(i, j)- SK(S'), for any integers i and j with (n, j) = 1, produce the same finite 
sequence corresponding to M(i, j)MT(i, j). Among all M(i, j) regarded as polynomials 
in S, there is a polynomial, say R, of least nonnegative degree; we list R, as the rep- 
resentative of all matrices M(i, j) producing the same finite sequence, as Rn(s) in the 
Table I. 

In Table I, Classes I and IT of n = 16 are respectively derived from the corre- 
sponding classes of n = 8. Although P8 and Q8 of Class II cannot be derived from 
P4 and Q4, they produce P,6 and Q16 of Class II, by Theorem 1. In this case, P16 and 
Q16 are interchangeable since p = q = 6, and we have 

TABLE I 

n Pn(s) Qn(s) 

0 0 

2 0 I 

4 I 1 

8-I I+ s 1+ s + S3 + S5 

11* J +s I + s + s3 + s4 

10 I+ s + I + s + S4 +6 

16-I I+ s + S2 + s3 + S6 + ?S0 I+ s + 3+ S6 + S8 + SI- 
or or 

1+ s + S2 + S4 + S7? S8 + s + s4 + 56 S SI8 + S1' 

II I + s + s2 + S4 + s5 + SI0 + S + S3 + S7 + S9 + SI2 

or or 
I+ S + S2 + S5 + 6 + 8 I+ S + S4 + S7 + 9 + Sl 

III* I +- s + s 2+ s4 + s6?9 I + s + s? + 57 + S3? + SI 

or or 
I + S2 + S5 + s4 + S6 + Sll + S + 52 + s6 + S9 +- S12 

or or 
I + S + S3 + S + S7+8 1?SS + s 4 S4+ 6+ s + s'o 
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P(s, k) =P8(S2) + S;Q8(s2) = I + S4 + Sk(I + s2 + s6 + s8), 

Q(s, k) p (s2) + SkQj(s2) = 
I + S4 + sk(s4 + SI0 + S12 + S14). 

We obtain 

P,.(s) I + S + S2 + S4 + S5 + s50 s Q(s, 5) 

or 
+S + S2 + S5 +S6 +8 S P(s,-l), 

since these two polynomials are of distinct type (in the sense of [5]) and of least 
positive degree in s = S producing the same finite sequence among all P(s, k) and 
Q(s, k) for this case. 

When n = 20, we obtain two subclasses of matrices P and Q by Theorenm 1. We 
have the following cases: 

Subclass-1: 

P(s, k) = PO(s2) + S-kQ10(S2) I + s2 + S6 + s-k(I + s2 + sS + s'2) 

and 

Q(s, k) Jp'1(S2) + skQ' (S2) 

I + s2 + S0 + Sk(S4 + S6C + S10 + S1 t + S1' + S1S); 

Subclass-2: 

P(s, k) P10(s2) + skQ1o(S2) 
I + s2 + S6 + s5k(I + S-2 + S-8 + S'12) 

and 

Q(s, k) PIp(S2) + -kQ, (52) 

= I + s2 + S6 + S-k(S4 + s6 + s10 + S'4 + S16 + S18); 

Each one of the subclasses produces five distinct designs corresponding to k = 1, 3, 
5, 7, and 9. For example, the finite sequence { u2i+1 } of odd components (since the 
even components u2i = r = 2 for all i, it is sufficient to consider only odd components 
of I u, }) corresponding to P(S, k) are: (u1, U3, U5, U7, U9) = (4, 1, 3, 2, 2), (2, 4, 2, 2, 2), 
(2, 3, 3, 2, 2), (3, 1, 3, 3, 2), and (2, 3, 1, 3, 3) for Subclass-I respectively of k = 1, 3, 
5,7,and9;and(2,2,3,2,3),(1,3,3,2,3),(2,2,2,4,2),(3, 1, 3, 3,2), (2, 4, 1,2, 3) 
for Subclass-2. 

The following Table II is obtained by taking s = S' with k, an integer relatively 
prime to n = 20 for P20 = P(s, 9) of Subclass-2, i.e. P20(Sk) = I + S2* + Sk ? S' + 

S + Sllk + s19k. 

Starting from P = Q = I for z = 4, and repeating applications of Theorem 1, we 
obtain, for example, the following Pn, Q,, for n = 32 and 64: 

P32 = s, where a E {0, 1, 2, 3, 4, 8, 9, 13, 14, 16, 17, 23} 
cr 

and 

Q32= s, where 0 { J0, 2, 4, 5, 7, 8, 11, 14, 15, 16, 19, 21, 25, 27, 29, 31}; 

64 s, Q64 S 
> 

3, 



186 C. H. YANG 

TABLE II 

k (+ 1, - 1)-matrix A corresponding to P20 'I 1 

I +-++- -+--+ -+ - -+ 2, 4, 1, 2, 3 

3 +-? +++ ---+- --++- 2,2, 1,3,4 

7 ++++- --?++ --+-- 4, 3, 1, 2, 2 

9 ++___ __+__ -+--+ ---++ 3, 2, 1, 4, 2 

where a G {0, 1, 2, 4, 5, 6, 8, 9, 11, 15, 16, 17, 18, 23, 26, 28, 29, 31, 32, 33, 34, 39, 
43, 46, 51, 55, 59, 631 and i & {0, 2, 3, 4, 6,7, 8, 13, 16, 18, 19, 21, 25, 26, 27, 28, 32, 
34, 35, 37, 41, 45, 46, 47, 49, 53, 57, 61}. 

It should be noted that Theorem 3 of Williamson [4] produces Williamson type 
matrices of the same order, but of different construction, as given by Theorem 2 of 
this paper. When n = 29, we obtain a W4,-matrix (see [7]) with submatrices 

P29 - ta, Q29 = to, K29 = E ty, G29 = E t> 
a ,B5z a 

wheret8=Sk S29- + -k;e {2,3,5,6,8, 12},i3 {4,7,9, 10, ll}, e {3,4, 5, 8, 
9, 11, 13, 14}, and E {1, 3, 4, 5, 8, 9, 11}. By applying Theorem 2, we obtain Wsn.- 
matrix with submatrices 

POB = > ta, Q58 = > tp, Ka8 = ty and G.58 = > , 
a 5i ry 

where t, = sk + s68-k for k # 29 and t2g = S29; and a E= {4, 6, 7, 9, 10, 11, 12, 15, 
16,21,241,13E {1,3,4,5,6, 10, 12, 13, 16, 17, 19,23,24,25,27,291,yE {6,7,8 
10, 11, 13, 16, 18, 19, 21, 22, 23, 26, 27, 28}, and 6 - {1, 3, 5, 6, 8, 9, 10, 15, 16, 17, 
18, 22, 25, 26, 28, 29}. 
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