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On Hadamard Matrices Constructible by
Circulant Submatrices

By C. H. Yang

Abstract. Let Vo, be an H-matrix of order 2n constructible by using circulant # X n sub-
matrices. A recursive method has been found to construct ¥, by using circulant 27 X 2n
submatrices which are derived from n X n submatrices of a given ¥,. A similar method can
be applied to a given Wy, an H-matrix of Williamson type with odd n, to construct Ws,.
All V,, constructible by the standard type, for 1 £ n < 16, and some V,,, for n = 20, are
listed and classified by this method.

Let H, be an n X n Hadamard matrix. Although it is conjectured that no cir-
culant H,,-matrix exists for n > 1 (see [3]), it is known that many H,,-matrices can
be constructed by using circulant submatrices of order » or 2xn. (For H-matrices of
Williamson type, see [1], [2], [4].)

Let V,, be an H,,-matrix constructible by using circulant n X n submatrices.
Then V,, can be constructed by the following standard type:

*) M,, = 4 B , where A, B are n X n circulant matrices
—B" A"

and C” means the transposed matrix of C.

A recursive method has been found to construct ¥, by circulant 2z X 21 matrices
which are derived by circulant » X n submatrices of a given V,,. (See Theorem 1,
below.) Likewise, let W,, be an H,,-matrix of Williamson type with odd n; W5,
can be constructed by using 2n X 2n symmetric circulant matrices which are derived
from n X n symmetric circulant submatrices of a given W,,. (See Theorem 2.)

Let S, = ((e)) be the n X n circulant matrix with the first row entries e;, (0 =
i < n— 1), all zero except for ¢, = 1. Then n X n circulant matrices A4, B of (*) can
be written as polynomials in S. (We shall omit the suffix # of S, and others when there
is no confusion.)

n—1 n—1
A= A(S)= D> a,S’, B = B(S)= D bS",
=0 1=0
with coefficients a;, b; = 1 or —1; where S° = I, = the n X n identity matrix.
A sufficient condition for the matrix M,, of type (*) being an H-matrix is that
M, .M} = 2nl,, which is equivalent to

M AAT + BBT = 2uI,.
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Let P = P,(S), @ = Q.(S) be matrices obtained by replacing —1 by 0 in 4, B
respectively. Then the condition (1) is equivalent to
2 PP" 4+ 00" = (0o + @0 — t)I + 1uJ,

where J = J, = Y "2} S* and p,, g, are, respectively, the numbers of 1’s in each row
of P, Q. Here, p,, ¢, and r, must be solutions of the following necessary conditions
for existence of Vi,.

3) (n — 2p)' + (n — 24.)" = 2n,
4 Dot Gu — ra = 3n.

Similarly, by taking Q' = J — Q, instead of Q in (2), (3), and (4), which is possible
since whenever 4 and B satisfy the condition (1), so do 4 and — B, we obtain the
corresponding conditions:

©) PP 4+ Q0" = (o + ai — ) + 11U,
6 (n = 2p.) + (n — 2q1)" = 2n,

Q) pntan— 1= in.

Since ¢, = n — g¢,, we also obtain from (7) and (4),

® ra = 2p, — ra.

THEOREM 1. Let M,,, be a given V,,-matrix of type (*) satisfying the conditions
), 3), and (4). Then M,,,, a V,.-matrix of type (*), can be found as follows:

(**) PZm(s) = m(sz) + stm(sz)9 Q2m(s) = Pm(sz) + st:n(sz)l

where s = Som, Q. = Jn — Qu, and k is any odd integer.

Proof. Since psm = Pm + Gms G2m = Pm + (M — Gu), F2m = 2p. are solutions of
the conditions (3) and (4) for n = 2m whenever p,., gm, r» are solutions of (3) and
(%) for n = m, it is sufficient to show that P,, and Q., satisfy the condition (2), i.e.

&) PonPim + Q2nQom = Mlyn + 20mJom.
From (*¥), the left side of (5) equals, (since P’(s) = P(s™")),
(PP + 06HOGE™) + (PEHPE™) + 0'6MQ'G™™)
+ P + sT*PE)1TLGY,  [since OG7) + Q'(%) = Ja(%) = Ja(7H)]

m—1 m—1 m—1
% ml+r, 35" + % mI 4+ (2pm — rm) 25" + 2pm 2, 5
i=0

1=0 =0
= ml + 2p.J.
Let N, be a 4n X 4n matrix such that
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where A4, B, C, D are n X n symmetric circulant (41, — 1)-matrices. Then a sufficient
condition for N,, being a W,,-matrix is that

NuNi, = 4nl,,.

Let P, Q, K, and G be matrices obtained by replacing —1 by 0 in 4, B, C, and D,
respectively. Then, corresponding to the conditions (2)-(4), we obtain

2" P+ + K +G =@, —r)+rJ,

where t, = p+ g + k + g; p, q, k, and g are the numbers of 1’s in each row of
A, B, C, and D, respectively.

3" (n— 20 + (n — 29" + (n — 2k)° + (n — 2¢)° = 4n.
@ t, — I, = n.

Similarly, corresponding to the conditions (5)~(8), we obtain

" P+0"+ K+ 6" = (@t —mI+rl,

whereQ' =J— Q,G' =J—G,andt,=p+ ¢ + k+g'; ¢ and g’ are, respectively,
the numbers of 1’s in each row of Q' and G'.

(6" (n—20" + (n — 2¢'Y + (n — 2k) + (n — 2¢')* = 4n.
™) th— rl = n.
3" rn=2(p + k) — r..

THEOREM 2. Let N,,, be a given W,,-matrix with odd m satisfying the conditions
29, (3") and (4). Then Ng,., a Ws,-matrix, can be found as follows:

Pon(s) = P(’) + 5s"Q(%),  Qumls) = P(s") + s"Q'(s),
Kom(s) = K(*) + s"G(s”),  Gom(s) = K(G*) + s"G'(s);

where s = Sy, Q' = J, — Q,and G' = J,, — G.

Proof. We know that P,,,, Qsm, Kom, and G,,, are also symmetric circulant and,
as in the proof of Theorem 1, that p,, = p+ ¢, Gow = p + (0 — @), kom = k + g,
and gon = k + (n — £); 72w = 2(p + k) are solutions of (3') and (4') for n = 2m
whenever p, g, k, g, and r,, are solutions of (3") and (4’) for n = m. Therefore, it is
sufficient to prove that the condition (2') is also satisfied, i.e.

2" P+ Ot + Ko + Giw = 2mI + 2(p + k) J.

" The condition (2”/) can be checked easily since the process of proof is exactly similar

to that of Theorem 1.
Let {u;} and {v;} be two finite sequences respectively of

n—1 n-1
PPT = > u;s' and QQ" = > u.S',
i=0 1=0
where P, Q are n X n circulant (0, 1)-matrices; in this case, we also obtain w,_; = w;
forw = uorv.
The following Table I, of all constructible V., (1 £ n £ 16) of type (*) with the
restriction p, £ ¢, < 3n, is obtained by matching two finite sequences {«,} and
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{v:}, respectively of PP" and QQ, such that u;, + v; = r, for | £ i £ in. Here,
Theorem 1 serves as a tool of classifying these finite sequences.

Note. 1. s = Sk, where k is any integer relatively prime to x.

2. When q,

3. * indicates the class of P,(s) and Q,(s) unobtainable by Theorem 1.

It should also be noted that for a given n X n circulant matrix K(S), all matrices
MG, j) = S’K(S’), for any integers i and j with (1, j) = 1, produce the same finite
sequence corresponding to M(i, )M (i, j). Among all M(i, j) regarded as polynomials
in S, there is a polynomial, say R, of least nonnegative degree; we list R, as the rep-
resentative of all matrices M(i, j) producing the same finite sequence, as R,(s) in the

Table 1.

3n, Q.(s) and Q!(s) produce the same finite sequence.

In Table I, Classes I and II of n = 16 are respectively derived from the corre-
sponding classes of n = 8. Although Py and Qs of Class II cannot be derived from
P, and Q,, they produce P;s and Q;s of Class II, by Theorem 1. In this case, P,s and
Q.6 are interchangeable since p = g = 6, and we have

TABLE 1
n P.(s) “Q.(s)
1 0 0
2 0 I
4 I I
8-1 I+s I+s+§8+5
1* I+ I+s5+5+5
10 I+s+5s I+s+s+¢
16-1 T+ s+ 8+ 4+ 84 5° 1+s—|—vs3+s‘*—l—s"+s'2
Ol.I—I—s+s2—i—s‘—|-s7+-s8 Orl—l-s—i—s*—l-s“-}-ss—l—s“
I T4+ s+ 8 +s5 45+ 5° 14+ s+ 845 +5° + 5
orI+s—|—s2+s5—i—s‘3—|-s8 01‘I+s-l-s"—l—s’—l—ss’—i—s“
I1* I+s+s+s+s5+5 I+s+54+ s+ + 5"

or

or

]+s2+sa+s4+ss+su
I+s+84+8+54+5

or
I+ s+ 54+ 45" +5
or
I+ s+ s+ + 5" 45
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P(s, k) = Po(s’) + 8'0s(s) = T + s +5*(7 +5* +5° + 5,

0Gs, k) = Ps(s") + s°04(s") = I+ s* + s*6" + 5 + s + 5.
We obtain

Psls) =T +s+s+s5"+5 +5°=50G,5)
or
=Il4+s+8+s5+s5+5 =s5P6, —1),
since these two polynomials are of distinct type (in the sense of [5]) and of least
positive degree in s = S producing the same finite sequence among all P(s, k) and
QO(s, k) for this case.
When n = 20, we obtain two subclasses of matrices P and Q by Theorem 1. We

have the following cases:
Subclass-1:

P(s, k) = Pio(s®) + s7°01(®) = T+ s> + S + 55U+ 5 +5° + 5

and
0, k) = Pio(s*) + s7°Qlo(s")
=148+ +56 + "+ )
Subclass-2:
P(s, k) = Pm(Sz) -+ S_leo(s_g) )
=148+ +sFTF s+ +5
and

0Gs, k) = Piy(s") + 57°01o(s")
—_ ] + s‘_’ + s6 + s-—k(s4 + s6 + le + sli + slG + sla);

Each one of the subclasses produces five distinct designs corresponding to £ = 1, 3,
5, 7, and 9. For example, the finite sequence {us;.,} of odd components (since the
even components u,; = r = 2 for all i, it is sufficient to consider only odd components
of {u;}) corresponding to P(S, k) are: (uy, us, us, ttz, 4g) = (4,1,3,2,2),(2,4,2, 2, 2),
2,3,3,2,2),(3,1,3,3,2),and (2, 3, 1, 3, 3) for Subclass-1 respectively of k = 1, 3,
5,7,and 95and (2,2, 3,2, 3),(1,3,3,2,3),(2,2,2,4,2),3,1,3,3,2),(2,4, 1,2, 3)
for Subclass-2.

_ The following Table II is obtained by taking s = S* with k, an integer relatively
prime to n = 20 for Py, = P(s, 9) of Subclass-2, i.e. Ppo(S*) = I+ S** + S + S* +
- g% + Sllk + SIOk'

Starting from P = Q = Ifor n = 4, and repeating applications of Theorem 1, we

obtain, for example, the following P,, Q, for n = 32 and 64:

Py = 2. s%, wherea € {0,1,2,3,4,8,9, 13, 14, 16, 17, 23}

and
0w = .5, where 8 E (0,2,4,5,7,8,11, 14, 15, 16, 19, 21, 25, 27, 29, 31};
: 8

Py, = Z %, Qs = zﬁ: 53,
a
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TABLE II
k (41, —1)-matrix A corresponding to P,, 7y
1 +-++- +--4+ 4+ ————+ 2,4,1,2,3
3 b —— = —— 4= 2,2,1,3,4
7 ++++- —-————- -———++ ——+-- 4,3,1,2,2
9 ++--- -—+-— —+—-——+ ———++ 3,2,1,4,2

where o & {0, 1,2, 4, 5,6, 8,9, 11, 15, 16, 17, 18, 23, 26, 28, 29, 31, 32, 33, 34, 39,
43, 46, 51, 55,59, 63} and B € {0,2,3,4,6,7, 8,13, 16, 18, 19, 21, 25, 26, 27, 28, 32,
34, 35, 37, 41, 45, 46, 47, 49, 53, 57, 61}.

It should be noted that Theorem 3 of Williamson [4] produces Williamson type
matrices of the same order, but of different construction, as given by Theorem 2 of
this paper. When n = 29, we obtain a W,,,-matrix (see [7]) with submatrices

P29 = Z tas Q29 = ﬂE tg, K29 = E t-y: 629 = 62 ts,
a Y

where #, = $* 4+ §* %« € {2,3,5,6,8,12},8 € {4,7,9,10,11},y € {3,4,5, 8,
9,11, 13, 14},and 6 € {1, 3,4, 5, 8,9, 11}. By applying Theorem 2, we obtain W;,-
matrix with submatrices

Py = Z tas Oss = AZ tg, Kss = Z ty and Gy = 52 5,
a

where 7, = s* + s *for k % 29 and 1y = s*°;and a € { 6,7,9,10, 11, 12, 15,
16,21, 24}, 8 € (1,3, 4, 5,6, 10, 12, 13, 16, 17 19, 23, 24 ,2 29,y € (6,7, 8
10, 11, 13, 16, 18, 19, 21, 22, 23, 26, 27, 28}, and & & {1, 5,6,8,9, 10, 15, 16, 17,
18, 22, 25, 26, 28, 29}.
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