
MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 114, APRIL, 1971 

Contractive Difference Schemes for Symmetric 
Hyperbolic Systems 

By Philip Brenner and Vidar Thomee 

Abstract. Consider the initial-value problem for a constant-coefficient symmetric 
hyperbolic system with initial-values vanishing in a half-space. Consider also a finite 
difference operator consistent with the system. Conditions are given in terms of the orders 
of dissipation and accuracy which ensure that the solution of the discrete problem tends to 
zero exponentially with the mesh-width in half-spaces where the solution of the continuous 
problem vanishes. 

1. Introduction. Consider the Cauchy problem 

a9Ll d 19U 
Ai dx' 

t > O, 

(1.2) u(x, 0)-v(x), 

where Ai are constant hermitian N X N matrices and u and v are N-vector valued 
functions. As is well known, this problem is correctly posed in L2. If e = 5v denotes 
the Fourier transform on L2 normalized to coincide for v E L1 witlh 

v(i) = 
d v(x) exp (- i(x, t)) lx, (x, ) = j x,t, 

then the solution operator corresponding to (1.1), (1.2) can be written as 

(E(t)v)(x) = u(x, t) =F'(exp (UP(O))"v), 

where P(Q) = E', Ai, t. The correctness in L2 is then a consequence of the fact that 
exp (it?(P)) is a unitary matrix for real t and t > 0. 

An important feature of the solution operator is that the value u(x, t) at the point 
(x, t) of the solution only depends on the initial-values v on a compact set and that 
the values of these initial-values on a compact set on t = 0 only influence u = E(t)v 
on a corresponding compact set for fixed positive t. More precisely, if for an arbitrary 
hermitian NV X N miiatrix A we let X)min(A) denote its minimal eigenvalue, we have 
the following well-known result (cf., e.g. Lax [11]). 

THEOREM 1.1. If v E L2 uanishes for- (x, -q) > K, theni ui(x, t) = 0 a.e. for (x, q) + 
tXmin (P(QI)) > K. 

Proof. The essential part of the argument is that of the proof of the Paley-Wiener 
theorem. To emphasize tlle connections with the subsequent analysis, we give some 
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of the details. We first prove the following lemma. Here and below, I denotes 
euclidean length and matrix norm and (. , *) the corresponding inner product. 

LEMMA 1.1. For any real t, &, and r7, we have 

I exp (itPQ + ir)) I < exp (tX.mij(P(n))). 

Proof. Let v be an arbitrary N-vector. Then, u(t) exp (itP(Q + ir))v is the 
solution of the following initial-value problem, namely, 

du iP()u - PQq)U, t > 0, u(O) = v. 
dt 

We hence obtain 

dt lu =2 Re (du u 
dt dt 

= 2 Re [i(P(Q)u, u) - (P(n)u, u)]- -2(P(n)u, u), 

since P(s) and P(n) are hermitian. It follows that 

dJIu2 ? 2mi(P))I U 12, dt 

or, taking into account the initial condition, 

Iu(t) 12 < exp (-2tXmin(P(n))) v12, 

which clearly proves the result. 
We can now complete the proof of the theorem. By a trivial transformation of 

variables, it is sufficient to consider the case K = 0. For any n, we have 

e -T0E(0v = r-'(exp (itP(Q + i?))ff(e('t)v)) 

It therefore follows by Parseval's relation and Lemma 1.1, for s > 0, 

Ilexp (s((x, t) + Amin(P('q))))E(t)vI|2 : lie x?")VI2 ;5 lIVl12 

(We denote the norm on LD(Rd) by I I 1,.) If E(t)v did not vanish a.e. when (x, '7) + 

tAmX, (P(7)) > 0, then we would obtain a contradiction by letting s --+ C. 
We shall consider explicit difference operators 

Ehv(x) = apv(x + Ah), 

where h is a (small) positive number, ,B = .. * , g) are multi-integers, a, are 
constant N X N matrices, and the summation is over a finite set of j. Introducing the 
symbol of E^, 2(t) = a, exp (i(f, k)), we can write 

Eh,v = 5F1(P(ht)gv). 

The operator Eh is consistent with (1.1) if 

@()= exp (iP() + o(ljt)) as -0, 

and accurate of order v if 

_9Q) -=exp (iP(Q) + 0(1lI'`')) as 0 0. 
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We have chosen here to take tlle time step equal to the mesh-width in space which 
is clearly no restrictioni of generality since, in the general case, this can be accomplished 
by a change of scale in t. 

For t nh, we may introduce 

Eh(t)v = Ehv = 3F-l(P(hi)ngV) 

and it is obvious, by the definition of Eh(t), that the following analogue of Theorem 
1.1 holds, namely: If v = 0 for (x, j) > 0, then Eh(Q)v(x) = 0 for 

(1.3) (x, w) + t min (j, q) > 0. 
aoo 

If Eh is consistent with (1.1) and stable in L2 which latter property is equivalent 
to the uniform boundedness of the set of matrices P(9)' for real t and positive n, then 
it is well known that for any positive t and v E L,, 

lim IIEh(t)v - E(t)vl12 = 0. 
h-0; nh-t 

Consequently, if v = 0 for (x, q) > 0, then by Theorem 1.1, 

(1.4) lim IIxntEh(t)vI12 = 0, 
h-*O; nh-t 

where xX,t is the characteristic function of the half-space 

(1.5) (x, X7) + tXmin(P(0)) > 0. 

This is, in a certain sense, a stronger statement than the above. In fact, by con- 
sistency and stability in L2 (actually one only has to assume weak stability, i.e. 
p(Q(t)) ? 1 where p(A) denotes the spectral radius of A), one may conclude the 
Courant-Friedrichs-Lewy condition 

min (d, il) < Xmin(P(0)), 

(cf. [11] or [15]) so that (1.3) implies (1.5). 
We shall be concerned with a stronger property than the above, namely, when 

the decay in (1.4) is exponential. Thus let, for t, a positive and -q a real N-vector, 
x.t. be the characteristic function of the half-space {x; (x, q) + tXmij (P(V)) ? a}. 
We shall say that E, is contractive with respect to -q if for given positive t, t there 
are positive constants -y and n, such that for v bounded and vanishing for (x, q) > 0, 

I Ix,,t, 5Eh(t)v II. exp (--yn) I ivII., .nh = t, n _ nO. 

We shall be able to prove bellow the following characterization of contractive dif- 
ference operators. 

THEOREM 1.2. Assume that p(P(i)) ? 1. Then Eh is contractive with respect to 
-q if and only if 

(1.6) sup p(Q(t + isv)) < exp (-SXmin(P(7)) + o(s)) as s -O 0, s > 0. 

In order to find criteria for this condition to be satisfied, and also to obtain more 
precise estimates, we shall introduce the following concept. For ,u > 1, r > 1, we 
say that E, is strongly dissipative-contractive of orders (J, r) if there are positive 
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constants c, C with the property that for any C z Q ={; 1J 1 7r, j- 1, , d} 
there is a hermitian matrix H(t) such that for E E Q and X E Rd, 

(1.7) C'I ? H(t) < 
C15 

Il(Q + ifl)lI(e) < exp (-clIA - Xmin(P(fl)) + CjnIr). 
Here, for any N X N matrices A and H with H positive definite, we have denoted 
by IA H the matrix norm of A induced by the vector norm (Hu, u)112. Obviously, if 
Eh is strongly dissipative-contractive, it follows by Theorem 1.2 that Eh is contractive 
with respect to any q. We shall prove the following more precise estimate. 

THEOREM 1.3. Let 1 ? p ? o and assume that Eh is strongly dissipative-contractive 
of orders (A, T). Thien, there are positive constants c and C such that for any v with 
|ml = 1 and any v E L, with v Ofor (x, n) > 0, we have 

(1.8) 1 Xn ||x. BEh()V| I Cn d(1-11u) 112 -1 '17 exp (-cn,3T/(7-1)vI, 
where at =at-l. 

The proofs of Theorems 1.2 and 1.3 will be given in Section 3 below. In Section 
4, we then give criteria for difference operators to be dissipative-contractive based 
on the behavior of @(t) for real t and relating the order of contractivity to the orders 
of dissipation and accuracy. In particular, it will be proved that if Eh has hermitian 
coefficients, is dissipative of order ,u, and accurate of order u - 1, then E,, is strongly 
dissipative-contractive of orders (,u, ,u). In the case of strictly hyperbolic systems, we 
shall obtain orders (Ax, 1,) under the reduced requirement of order of accuracy / 2. 
The technical work in Sections 3 and 4 is preceded by Section 2 where a number of 
matrix lemmas are collected. 

Contractive difference operators were first discussed by Kreiss and Lundqvist 
[10] who used a similar notion in studying the domain of influence of "wrong" 
boundary values in the case of scalar one-dimensional problems. These results were 
generalized to the case of hyperbolic systems in more dimensions by Osher [12]. 
Again, for scalar equations and one space variable, Apelkrans [1] used analogous 
techniques to study the propagation of jump discontinuities in the initial-values. 
That same problem had also been attacked previously by Hedstrom [7] who obtained 
very precise estimates by using refined methods for apraising the coefficients in Ehn. 
In a subsequent paper [3], we show how these results can be obtained directly by 
the methods of the present paper and how these techniques can be used to treat more 
general discontinuities. In particular, it is then possible to improve the estimate (1.8) 
in some cases by deleting the power of n in front of the exponential. Two reasons why 
these results are difficult to generalize to systems are that the operators Eh and E(t) 
in general do not commute and that E(t) is bounded only in L2 and not in L , p 5 2. 

2. Some Matrix Lemmas. In this section, we collect sonie lemmas on N X N 
nmatrices most of which are well known and can be found elsewhere. 

LEMMA 2.1. Given N, there is a constant C such that for any N X N mnatrix A wvith 
spectral radiuis p, 

pn <lAn <I Cp n-IV+ IZ AJ)v9-. 
In particular, 

p = lim IAnI1ln. 
n--o 
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Proof. See e.g. [14, Lemma 3.2]. 
We shall need the following version of Carlson's inequality. This has been used 

previously in connection with difference schemes in [2], [3] (cf. also [5], [6]). 
LEMMA 2.2. Given k > d/2 and N. Then, there is a constant C such that for all 

N X N matrix trigonometric polynomials A(t) = - ape", t) the following inequality 
is valid, namely, 

E la5| <C| |A| d.12k(Q) 11All-d/2k 

where IIAIIw.k(Q) ( a(jk ID'AIL,(Q))"2 
Proof. Since all norms for N X N matrices are equivalent, one easily finds that 

it is sufficient to prove the inequality for N = 1. By Parseval's relation, 
k 1/2 

Ak E E 10 12ia 1ao2 
0- p 

is equivalent to the norm in Wk(Q). Setting A' = (,, 1312ifapl2)12, we obtain by 
Schwarz' inequality 

E japsl < E lapl + E lal 

< C'(~ d2 j a 12") + C lfK 11 2k E 12k laplI4 
#0 1I1 u X1J 

< C{@d/2 A' + wd/2 A'. 

Consequently, choosing co (A1/Ao)l/k1 we obtain 

I Ja# I C(A )/2k (Aj)ld/2k < CAd/2kAI-d/2k 

Since 

aI o (2i7r)d f A(t) d| ? CAo ? CA4I2kA; d/2*, 

the proof is complete. 
The following is the version in which we shall use Lemma 2.2. Here and below, we 

denote the operator norm of a linear operator in L,(Rd) by II -II,. 
LEMMA 2.3. If the difference operator Eh has the symbol X, we have, for nh =t, 

| |Eh(t)j | < Cn d/21 | |n-d I IL(Q 

Proof. Setting E,(t)v(x) = E nv(x ) = : a,,v(x + '3h), we have 

11EA(t)11- la= # a 

Therefore, if we apply Lemma 2.2 with k = d to the symbol P(t)n of Eh(t) and notice 
that I InjII W.d(Q) Cnd IEn-d I IL,(Q), the result follows. 

For a N X N matrix A = (a jk), w shall denote by Ao the diagonal matrix (3 5ai J). 

Further, we shall denote by sp A the set of eigenvalues of A, counting multiple eigen- 
values the appropriate number of times. A statement like sp A = sp B + o( e) as 
e - 0 will mean that one can number the eigenvalues X 7(A) and N 1(B) in sp A and 
sp Bin such away thatX1(A) = X (B) + o(E) as e -O for j 1, ,N. We shall 
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formulate three lemmas where this notation will be used, the first of which is the well- 
known Gerschgorin theorem. 

LEMMA 2.4. Let A (a i ) be a N X N matrix and let rP be the disk in the complex 
plane with center a1i and radius p; = Ek i lal kI. Then, spA C UN=, r;. Moreover, if 
the union r of p of the disks is disjoint from the remaining N - p disks, then r contains 
exactly p of the eigenvalues of A, counting multiplicities. 

Proof. See e.g. [4]. 
LEMMA 2.5. Let D be a diagonal matrix with distinct diagonal elements and let 

< a < 1. IfF, = D + O(Ea) when EO - 0, then 

sp F.=sp (Fjo + o(E) as e -0. 

Proof. Evidently, sp F, = sp D + o(l) as e -* 0. We shall have to prove that the 
eigenvalue X,(E) of F, for which Xj(e) = di + o(l) when e - 0 actually has the form 

=(fe)u(f)i + o(e) as e -+ 0. 

By permuting rows and columns, we find that we may restrict ourselves to consider 
the case j -1. Let P, be the diagonal matrix with diagonal (1, V -, * , V e). Then, 

sp F, = sp (PFe FP,) and PEF, Pj' F o(l) I as e -* 0, 
o(E) D2 + o(l) 

where D2 is the diagonal matrix with diagonal (d2, * *, dr). The result now follows by 
Lemma 2.4, since for small e the disk corresponding to the upper left-hand element is 
distinct from the remaining disks. 

LEMMA 2.6. Let D be the diagonal matrix diag (d1, * * , dN) and let Q (qj ) have 
the property that qi k= 0 when di = dk. If Ff D + EQ + o( e) as E-> 0, then sp F, 
sp(F.)o+ o(e)as e- 0. 

Proof. Consider an eigenvalue di of D and assume that it has multiplicity p. As 
before, we may assume that 

Fe = D[ 0 + EQll 
Q121 + o(e) as e -* 0, 

O D2J Q21 Q229 

where D, has the diagonal (d1, * , d1) with p elements, D2 has the diagonal 
(dp+l ... , dN) and Q,, is diagonal. Analogously to above, let Pf be the diagonal 
matrix with the p first diagonal elements 1 and the remaining diagonal elements-V E. 
We then have 

PEFEP21 = [D+ +EQl1 + o(e) o(l) 1 
0(E) D2 + o(1) 

from which the result again follows by Lemma 2.4. 
We conclude this section with a version of the well-known Kreiss stability theorem. 

For a N X N matrix A, we denote by A(A) the maximum of the real parts of the eigen- 
values of A and set Re A = I(A + A*). 

LEMMA 2.7. Assume that F(t) has the property that 

sup lexp (tF(Q))j < C, E: C , 
t>O 
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for somne set 2 C Rd. Then, A(F(t)) < 0 for t C Q and there is a positive constant C1 
andfor any t ? 52 a hermitian matrix H(t) such that 

Cj 1I < HQ() < C1I and Re (H(Q)F(Q)) < 1A(FQ))HQ). 
Proof. See [8], [14]. 

3. Proofs of the Main Results. In this section, we shall prove Theorems 1.2 and 
1.3. We begin with a lemlma. 

LEMMA 3.1. Eh is conitractive with respect to -n if and only iffor any positive a and t 
there are positive -y anid n0 sulch that for nh = t, n > n0, 

(3.1) E I a.08 1 exp (-,yn), 
-h (P.i) +t)im in (P (i))i k 

where as in Lemm7ofa 2.3, the a7^, denote the coefficients in Eh(t). 
Proof. Assume that the condition is satisfied and that v is bounded and vanishes 

for (x, -) > 0. We obtain 

(3 .2) l Eh(t)V(X) I JIVII |?? la,p I 
(x+AJh, , ) O 

Hence, if x is suchi that (x, n) + tXm i,(P(,)) > a this implies for n > n0, 

1Eh(t)v(x)1 E lan,pl :! exp (-,yn), 
-h (/E, ) + 0m in(P (11)) k 

so that Eh is contractive. 
On the other hand, assume that Eh is contractive with respect to -q and let 6, t be 

positive and x satisfy (x, q) + tXm i u(P(,)) = a. Clearly, it is possible to choose v with 
I Ijv I, = 1 vanishing for (x, q) > 0 such that we have equality in (3.2). But this then 
proves (3.1). 

Proof of Thieorem 1.2. We shall first prove that if Eh is contractive with respect to 
X with =L - 1 then (1.6) holds. We have, by the triangle inequality for s > 0, 

(3.3) exp (nXmin(P(s?7))) R(P + ts)rl ? _ j a, I exp (-s(o, n) + nsAmin(P(q))). 

Let B maxa,o i3 and B1 = B+ >i2 IAjI. Then, a. = 0 for If I > Bn and hence 
for - (0, 77) + nXmn i(P(q)) > B,n. Let now a > 0 be arbitrary. We obtain by Lemma 
3.1, 

(3.4) jlao exp (-s(K, 77) + nsXmin(P(G))) ? exp (n(Bls -y)) ? I, 
-h (P,.l) + tXm i n(P(0l) )? 2 

for n n, s :5 so = y/B,. On the other hand, by Lemmas 2.1 and 2.3, we obtain 
for oJh 1, 

E la.fi| exp (-s(3, r7) + nsXmin(P(q))) 
(35) -h(0, -) + 4Xmi n(P (,q));S 

< exp (s bhl') E la,pj I CnN- +d/2 exp (s5n). 

Together, (3.3), (3.4), and (3.5) imply for s _ so 

ID(t + isnYrj ? Cnfl+d/l exp (-nsXmin(P(77)) + san). 

The result now follows by Lemma 2.1 by taking nth roots and letting n tend to in- 
finity. 
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We shall now prove that, conversely, if In I = 1 and (1.6) is satisfied then Eh is 
contractive with respect to q. Let (, t be positive and let s be positive and so small that 
with at- = /t 

(3.6) p(P(Q + isaq)) ? exp (-sXmin(P(n)) + 's(t), e E Q. 

We then obtain with s, = s/h, 

Ra = IIx,,g,5Eh(t)vI Ila 

< | exp (Sh((X, fl) + tXmin(P(n)) - 3))Eh(t)V I co 

= exp (snXmin(P()) - ns6t) II exp (sh(x, n7))Eh(t)vjll-- 

Introducing the operators 

(3.7) Ehv = e Eh(e_'"v) 

(3.8) Eh. (t)= Ehn t nh, 

and noticing that Eh, has the symbol kQ( + ihl7), we get 

I I|exp (Sh(X, q))Eh(t)V|j |_! < &Eh,,8,,(t)| I I | Iexp (Sh(X, q))V|| 

=< | |Eh.,hn(t)II 1 Vt 1x, 

since (x, r7) is nonpositive when v is nonzero. By Lemmas 2.1 and 2.3 and by (3.6), 
we now obtain 

|IIEh,oh(t)|IIco < cnNl+d/2p(LR(t + iS,)an-d) 

< CnNl +d/2 exp (-nsXmin(P(fl)) + 4ns6A), 

so that 

Rs ? CnN1+d12 exp (-2ns6,) llvll, 

which proves our statement. 
We shall now prove Theorem 1.3. The main step is in the following lemma. 
LEMMA 3.2. If Eh is strongly dissipative-contractive of orders (,,r) and 1 ? p ? X, 

then there is a constant C such that the operator Eh,,, defined in (3.7), (3.8) satisfies 

(3.9) |IEh (t)II ? Cnd(l-1/P) 11/2-1/PI exp (-t in(P(1)) + Cthr-'Iq 1). 

Proof. By assumption, we have for t E Q, 

(3.10) IL(Q + ih/i)"I ? C exp (-cnjII; - nhXmin(P(,q)) + CnhTInIT), 

and hence, 

IlER(. + ihq)|IIL (Q) ?< Cnd1' exp (-tXmin(P(fl)) + Cth/i l1X11). 
The result for p = c, therefore, follows by Lemma 2.3. For p = 2, (3.9) is an im- 
mediate consequence of (3.10) since 

IIEh,,,(t)112 = sup I1(R + ih/)"l. 

The statement for general p with 1 ? p ? o is now a consequence of the Riesz- 
Thorin interpolation theorem. 
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Proof of Theorem 1.3. We have for any s > 0, 

Rs a - l x,tt,s8Eh()V I IP 

| exp (s((x, q) + tXAin(P(Qq)) - 6))Eh(t)vI 2p, 

and hence 

Ra < exp (s(tX,.j.(P(q)) - 5)) IIEj,,.(t) II2 Iexp (s(x, n))v|jI. 

Using the fact that v = 0 for (x, j) > 0 and Lemma 3.2, we obtain 

R Cn (1- ') 1/2-1/1 exp (-sa + CtshT- 1) 1VI |Pl. 

The result now follows by choosing 

(3.11) hs = 

4. Criteria for Strong Contractivity. In this section, we shall give sufficient conv 
ditions for operators Eh to be strongly dissipative-contractive. We recall that Eh is 
said to be dissipative of order ,u if there is a positive c such that 

P(PQO) _!! exp (-c 1211% t EE Q 

We shall assume that Q(t) is nonsingular so that we may write @(t) a exp F(S). By 
continuity, this holds also in a neighborhood of the real line and F(s) is analytic near 
the origin. We shall then introduce a somewhat stronger condition than dissipativity: 
We say that E, is strongly dissipative of order A if there are positive constants c, C 
and for E? Q a hermitian matrix H(t) such that 

(4.1) C- I1 H(Q)? CI, 

(4.2) H(Q) - II ? Cjli_', 

(4.3) Re (H(Q)F(Q)) ? -c(1j". 

We shall giye below a number of conditions for operators to be strongly dissipative. 
However, before we do so we shall see that this condition implies that of strong 
dissipativity-contractivity. 

THEOREM 4.1. Assume that E, is strongly dissipative of order ,u and accurate of order 
v. Then, Eh is strongly dissipative-contractive of orders (,u, r) where r = u( -v)-'. 

Proof. Since Eh is explicit and r > 1, it is clearly sufficient to prove (1.7) for small 
,1, Int < e, say. For such X and t E Q, we want to estimate for t = 1, exp (tF(Q + in?))v 

which is the solution of 

du/dt = F( + iq)u, t > 0, u(0) = v. 

Witlh R(t) = F(t) - iP(t), we have 

F(Q + i-) = F() - P(-q) + Q(Q, q), 

where Q(t, n) R(Q + in) - R(t). Since E, is accurate of order v, we have R(Q)= 
0(0t I+1) as 0 0 and hence 

Q(Q, 7) _ C((rj( (7fV + 1(71+l) l ? 7 E 
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We find for U = (H(t)u, u) IUIH(t) that 

dU=2 Re (dui 
dt dt U H(t) 

= 2 Re (F()u, u)Ij(t) - 2 Re (P(n)u, U)IH() + 2 Re O_ , -q)u, U)H(O). 

Now, by our definitions, 

2 Re (FQ()u, U)HtO) < -2c 1j JU, 

-2 Re (P(-q)u, u)H(t) _ -2(P(77)u, U) + CH-7I 1'-V'U 

< [-2Xni.(P(-q)) + CG7i jj1 ]U. 

Consequently, 

dU < [-2cj|j" - 2Xmin(P(-q)) + C(jn( 1i1' + 1XJ'1 )]U. 

Since v < g, we obtain 

1X1 I21 ' EI4V + Ce1?7 'r = - (A-P), 

and since P + 1 2 r, we therefore have 

dU - [< cI! - 2Xmin(P(n7)) + CnIrT] U, 
dt- 

or 

U = jujH(g) < exp (-cj|j' - 2Xmin(P(fl)) + Cl/nl') /V/i(t), 

which clearly proves the theorem. 
We shall first give a criterion for strong dissipativity in which the matrix H(Q) can 

be chosen as the identity matrix. In this case, (4.1), (4.2), (4.3) reduce to 

(4.4) Re F(O) ? -c//LPI. 

THEOREM 4.2. Assume that Eh is consistent, dissipative of order p and such that .() 
is a normal matrix. Then, Eh is strongly dissipative of order A. 

Proof. By the spectral mapping theorem, we have 

A(F(Q)) :!! -cj% EEl, Qs 

and hence (4.4) follows by the normality of F(Q). 
We shall now give two results in which the construction of the matrix H(Q) in 

(4.1), (4.2), (4.3) is the essential part of the proofs. These results and their proofs are 
modelled after Parlett's proofs [13] of similar estimates of Kreiss [9]. In fact, our results 
contain those previous results; it is quite easy to see that (4.1), (4.2), (4.3) imply, with 
the same H(i), 

1201(t) H(O < exp (-cjlj'), EQ. 

In fact, this follows, as in the proof of Theorem 4.1, by noticing thatR(P)v = (exp F(Q))v 
is the solution at t = 1 with initial-values v at t = 0 of the differential equation 
du/dt = F(,)u. 
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THEOREM 4.3. Assume that Eh has hermitian coefficients, is dissipative of order , 
and accurate of order / - 1. Then, Eh is strongly dissipative of order ,. 

Proof. For any 5 > 0, we have for I I1> I , > C Q, that p(iP)) ? y < 1 and hence 

sup {I _()n |; it1 > Ci E Q} < Co 

With 1(Q) -exp F(t), this implies that 

sup {I exp (tF(Q)) I; 1 I > 5,t E Q, t > 0? < c, 

and hence, by Lemma 2.7, there exist for these t hermitian matrices H(Q) such that 
(4.1) holds and 

Re (HQ()F(Q)) ? -cI. 

Consequently, it remains only to consider a neighborhood of -=0. 

Setting o - , = I = 1, we have 

(4.5) F() = iP(Q) + R(Q), 

where R(Q) - ,j,, 'RjQ(o). Notice that RQX(,) is hermitian. We shall consider 
hermitian matrices H(Q) of the form 

(4.6) H() = I + o-1Ho(to). 

For such H(Q) we have for n = aos, Inoi =1, 

Re (H(Q)F(n)) = Re {(I + a''Ho(Qo))(iaP(no) + aoR,((n0))} + o(o') 

= o'B(Qo, X0o, a), 

where 

(4.7) B(,no, fo a) = B(Q0, no) + o(l) as oa O , 

(4.8) B(0, no) = RO(no) + Mi[Ho(o)P(no) - P(no)Ho(Qo)]. 

We shall prove that, for fixed t0, Ho = Ho(Q0) can be chosen so that B(o, t0) - 28I 
for some positive 8. If this is the case, then, by continuity, there are positive e(40) and 
o-(Q) such that B(Qo, fo, a;) _-8I for o- ? o(-Q) and 

(4.9) flo - toI < E(to), 

so that the same H(t) can be used for a whole cone with vertex at the origin. By com- 
pactness, we can find a finite set of such 00 so that the corresponding subsets (4.9) 
cover the unit sphere. Consequently, H(t) can be defined in such a way that for all 
of < 0-o, I ol I =1, 

HQ) - II < Co-A, Re (H(Q)F(Q)) ? -8oI. 

It remains to prove that, for fixed to, B(Q, 40) can be made negative definite by a 
proper choice of Ho = Ho(to). Since the property of being negative definite is invari- 
ant under unitary transformations, it is no restriction of generality to assume that 
P(SO) is diagonal, P(Qo) = D = diag (d,, * * , dN), and that R, = R,(Qo) = (r, ik) 
has the property that rik = 0 when di = dk. Hence, we want to prove that, given D and 
R, with these properties, we can find Ho hermitian such that B = R,, + 2 i(HoD - DHO) 
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is negative definite. But clearly, Ho = (hi,) can be chosen so that B is diagonal; 
we only have to take 

h- 
2r,2,, #k 

hik = . r,*di 7- dk, 
-i(d, - dk) 

= 0, di = dk. 

Since HD - DHo has zero diagonal elements, it remains to prove that the diagonal 
elements of RA are negative. 

By the assumption of dissipation, we know that for small , 

(4.10) A(F(Q)) = aA(iD + or'1R, + o(af1')) ? -cc" 

Setting e = -"1, the assumptions in Lemma 2.6 are satisfied, and consequently, we 
may conclude that the eigenvalues of F(Q) are of the form 

iordj + ar, jri + o(&a), as a -> 0. 

But (4.10) then implies that the r,,jj are negative. This concludes the proof. 
We recall that (1.1) is called strictly hyperbolic if the eigenvalues of P(Q) are dis- 

tinct for all real t 5 0. 
THEOREM 4.4. Assume that (1.1) is strictly hyperbolic, that Eh has hermitian coeffi- 

cients, is dissipative of order ,u > 4 and accurate of order u - 2. Then, Eh is strongly 
dissipative of order,u. 

Proof. This time, we have (4.5) where R(Q) = - riRJ(Q0). Here R,1 and R, 
are skew-hermitian and hermitian, respectively. Setting again (4.6), we have now 

Re (H(t)F(77)) = Re {(I + ao-'Ho(o))(iaP(no) + o'_'R1_(n0) + a'4RO(MO))} + o(a) 

= oAB(Qo, fl0o 0), 

where, as before, (4.7) and (4.8) hold. The rest of the reasoning goes as before up to 
the point where we want to prove that the diagonal elements of R, are negative. This 
time, by dissipation, we have for small a, 

A(F(Q)) = crA(iD + &-2RA-1 + o-'R ? o(orM1)) ? -c. 

Setting E = ao-1, we notice that a- = E' /'( and since ( -2)/( -1) > 2 
the assumptions of Lemma 2.5 are satisfied so that the eigenvalues of F(Q) are of the 
form 

io-di + o--rA- + I crM,:, + o(cf) as u -> 0. 

Since r,,_ j, are purely imaginary, we obtain as before that rp j; are negative. This 
completes the proof. 

1Remark. Our main result, Theorem 1.3, admits a generalization to implicit schemes. 
In that case, the inequality (1.7) which is the conclusion in Theorem 4.1 can be 
proved only for small values of n, Ini I E, say, and the choice of hs in (3.11) can 
only be made when hs ? E. The exponent in the estimate (1.8), therefore, has to be 
replaced by -cn min {f W , } (cf. [13]). 
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