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Third and Fourth Order Accurate Schemes for 
Hyperbolic Equations of Conservation Law Form* 

By Gideon Zwas and Saul Abarbanel 

Abstract. It is shown that for quasi-linear hyperbolic systems of the conservation form 
We = - F. = -A W, it is possible to build up relatively simple finite-difference numerical 
schemes accurate to 3rd and 4th order provided that the matrix A satisfies commutativity 
relations with its partial-derivative-matrices. These schemes generalize the Lax-Wendroff 
2nd order scheme, and are written down explicitly. As found by Strang [8] odd order schemes 
are linearly unstable, unless modified by adding a term containing the next higher space 
derivative or, alternatively, by rewriting the zeroth term as an average of the correct order. 
Thus stabilized, the schemes, both odd and even, can be made to meet the C.F.L. (Courant- 
Friedrichs-Lewy) criterion of the Courant-number being less or equal to unity. Numerical 
calculations were made with a 3rd order and a 4th order scheme for scalar equations with 
continuous and discontinuous solutions. The results are compared with analytic solutions 
and the predicted improvement is verified. 

The computation reported on here was carried out on the CDC-3400 computer at the 
Tel Aviv University computation center. 

1. Introduction. When dealing with one-dimensional problems in continuum 
mechanics, and, in particular, hydrodynamics, it is often necessary to solve nonlinear 
hyperbolic systems of the form 

(1) Wt+F.- ?, 

where ( )t and ( )= denote, respectively, partial differentiation with respect to the 
time and space coordinates. W is a vector whose components are the unknown 
functions and F is a vector whose components are dependent functionally on the 
components of W only. We consider the quasi-linear case where F,, = A W, A being 
a matrix whose components depend on the unknown functions only, and not on their 
derivatives. Since Eq. (1) is assumed to be hyperbolic, the eigenvalues of A are all real. 

Systemns of the form of Eq. (1) are called "Conservation Law Form" systems. 
Various numerical schemes for their solution have been developed, see [1], [2], [3], 
[4], [5], starting with Lax and Wendroff [1]. 

Keeping in mind that, ultimately, the main interest will focus on multidimensional 
systems, it is obviously important to develop numerical schemes whose order of 
accuracy is higher than one. A widely used 2nd order accuracy scheme is the one 
due to Lax and Wendroff [1]. Their finite-difference approximation is written thus: 

) W n = W n ( n n) [ + n_-- F (2) W , -W-2 (F"+, - F" 1) + (A 1/+l2(Fi Fnj) - Aj_1,2(F; j_) 
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wlhere 

;= W(x j s tn) s Q = 1, 2, s J = Im = 0, 1, 2 s ,.. 

A= Atl/Ax. 

If the problem contains discontinuities (such as shocks which may develop even 
if the initial conditions are smooth; see [6]), the system may be handled either by 
adding a nonlinear artificial viscosity term [1] or by iterative methods [4]. A stability 
criterion determines At,, for the predetermined and fixed Ax. 

With a view towards multidimensional computations, it is of interest to consider 
3rd order accuracy schemes for nonlinear hyperbolic equations of the type (1) where, 
for the present, we shall consider the scalar case, i.e., a simple conservation-form 
equation. A first attempt in this direction is due to Burstein [7] who developed a 
three-step approach in analogy to Richtmyer's two-step method [3] which approxi- 
mates the Lax-Wendroff 2nd order scheme. We shall use the basic ideas of Lax 
and Wendroff [1] for estimating truncation errors in order to construct a third order 
scheme. 

2. Derivation of the Method. The Lax-Wendroff (L-W) method is based on 
the fact that from the equation W, + F = 0 one obtains 

(3) Wt- ( A F,). 

This allows the construction of a 2nd order scheme by developing W(x, t + At) 
in a Taylor series which, to order (At)', is given by 

(At)2 3 
W(x, t + At) = W(X, t) + (At) - + 2! Wt + O(At) 

and the time derivatives are replaced by space derivatives through the use of Eqs. (1) 
and (3). This provides a finite-difference scheme, where W is advanced in time by 
using only spatial differences. 

Our first task is to construct a formula similar to Eq. (3) for higher order time 
derivatives. We make the following claim: 

If the matrix A of the hyperbolic system (1) is commutative with its partial- 
derivative-matrices, then 

(4) W = (W ) dn_ (An-1 F.) 

for every natural number n. 
The proof proceeds as follows: 

(5) Wt - (AF.X) = A.F. + APF.; 

on tlhe other hand, 

(6) WtWt = (W A W)t - A At W.- A W =-At W . + AFz. 

Comparing, (5) and (6), we obtain 

(7) Al W. -A.F = -A. AW3. 
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With these preliminaries and with our assertion (4), known to be true for n 1 
and 2 (even without the commutativity condition), we now consider the case n = 3: 

(8) Wttt = [(AF).]t = [(AF.)JJz = [AtF. + AF.J. = [AtAW. + A(- AF.).]z. 

Now substitute the commutativity restriction A,A = AA, into (8) to get 

Witt - [AAtWX - A(AXFX + AFz.)]L. 

Using (7), we obtain (using A,A = AA.): 

Wttt [A(-AzF) -AAXFX A2FXX]L- [-2AA.Fz- A 2Fzz] 

-[(A 2)xF + A 2FZZ] -(A 2F)x x 

We have thus verified our claim (Eq. (4)) for the case - = 3. It is easy to show by 
induction that Eq. (4) is valid for all n. 

With the aid of this result, we can construct a finite-difference schenme to any 
desired truncation error by writing the required Taylor series: 

(10) W(x, t + At) = W(x, t) + E (-) -! dk-1 (A- F.) + O[(At)m+l]. 
k-i k! Ox 

One has only to take care to represent the various derivatives by a finite-difference 
expression which has the proper accuracy so that the overall scheme retains the 
desired truncation error. It should be noted that by the Cayley-Hamilton Theorem 
it is possible to express Ak (k ? r) in terms of A, A2, , Ar', where A is of order 
r X r. 

It is interesting to note that the equations describing the fluid dynamic behavior 
of polytropic products of detonation with y = 3 satisfy the commutativity restriction. 
For this situation, the system is described by 

W= c F=: uc A= Xu cl 

taJ t 1 ~u2 + .1 2 tc U, 
w={jj~~ F~[12 ~2j. Af j 

where c and u are the speed of sound and particle velocity, respectively, and 'y is 
the polytropic constant. This system, where an equation of state of the form p -pl 
is assumed, cannot describe solutions with strong shocks but can give very good 
approximations for expansion flows and flows with weak shocks [9], [10]. 

3. A Third Order Finite-Difference Scheme. We shall consider now the case 
of a system obeying the restriction on A 

(11) W = Fz = A( W) WS, 

with the initial condition 

(12) W(x, 0) =-VX) 

In order for all the terms in the finite-difference representation to be of at least of 
third order, it is necessary to improve the representation of the first derivative thus: 

n + - _ Vi +2 - 2 V +1 + 2 V-1 7-2 4>2 
(13) (V) 2h 12 ? 0(h=) 
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It should be noted that for a third order accuracy scheme, one may still use A71+1/2= 
A[I(W7+1 + WI)] or something equivalent; but for higher order schemes, it will 
be necessary to utilize a better interpolation. 

We can now write down a finite-difference scheme of third order accuracy: 

-Win + \[I(F, - F,_,) - (F, - 2F>+j + 2F_ - Fj2)] 

+ - [Ai,+12(Fi+1 - F,) - Ai_12(F, - F>,)] 
(14) 2 

+ e - 

[L(A%+j)2(F +2 - Fi) - (A)2((F, _ - ) 

+ 3(A,1) (F - F,_2)] 

with 6 = e 1. If we set 8 e- 0, we get back to the 2nd order accuracy scheme 
of Lax and Wendroff. Scheme (14) is unstable as it stands. In order to stabilize it, 
we have to add artificial viscosity terms. This requirement is typical in schemes of 
odd order of accuracy. 

4. The Stabilizing Artificial Viscosity. We propose an artificial viscosity term 
of the form 

(15) -S2 a 4(X2 2 + PX4A4)W4. (W4z-a4w/Wx4). (15) ~~24h A A 4 

The part of (15) which is proportional to X2A2WW4$ results from expressing W,, to 
a higher accuracy than O(h2). This improvement, if given in a conservation form, 
is written thus: 

[(AF.)8]7 - [A7+,12(F+, - FPn) - A>1,,2(F - F, 1)] 

(16) - - [A +3/2(F+2 - F,+,) - 3A +,12(F, - F,) 

+ 3A>1/2(F7 - F>,) - Aft3/2(F>- F,)]. 

It is the second term on the R.H.S. of (16) which gives rise to X'A'W4X (with A being 
taken constant, since the term is not needed for accuracy, only for stability). 

The X4A4W4X part of (15), however, is due to extending the Taylor series; i.e., 
it is derived from 

(17) W4t = (A3F.)zzz 

The finite-difference representation of (17) is, to 3rd order accuracy, 

[(A3Fz)r = -Fh [(A+3,12)'(Fi+2 - F7+,) - 3(A7+,12)'(F7+i - P7) 
(18)h 

+ 3(A,_,2)'(F? - F>,) (A 7-3/2) (F>-1 - >-2)]. 

In practice, we will take the artificial viscosity term, either in its conservation form 
(i.e., use (16) and (18)), or in the linear version where the finite-difference form of 
(15) is: 
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(19) - 
0 

[X2(A,)2 + VX4(A,)4][W7+2 - 4Wn+1 + 6W, - 4Wn,-1 + W,_2]. 

If we examine the linear stability of the scheme in the asual von Neumann fashion, 
then we find that for Q = e = a -v = 1 the criterion is Xa ? I where a is the 
spectral radius of A. This result is also a special case of Theorem I in Strang's paper 
of 1962, [8]. 

In principle, it is possible to build up, in the above manner, numerical schemes 
of any desired accuracy. It seems that such schemes of odd orders will not be linearly 
stable unless an artificial viscosity term is added. The artificial viscosity term that 
we have added contains a term which is proportional to the next higher even deriva- 
tive of the Taylor series development of W(x, t + At). Thus, it might be possible 
to take just that amount of artificial viscosity which will not only stabilize the scheme, 
but also will add one more order of truncation accuracy. Of course, when doing 
this, care has to be taken that all the differencing is consistent with the higher order 
accuracy. In effect, this is the case with the Lax-Wendroff term, which might be 
considered as a stabilizing term added to a first order scheme. If the coefficient of 
(AF,), is cleverly chosen to be At2/2! , then an additional bonus is the 2nd order 
accuracy. 

5. Analytic Solutions for Comparison Purposes. Consider the single (scalar) 
equation u, + A(u)u. = 0, with the initial conditions u(x, 0) = -b(x). This hyperbolic 
equation has straight characteristics whose slope is given by dt/dx = 1 /A(u). Since u 
is known at t = 0, and since u remains constant along a characteristic, it is easy 
to find analytic solutions to the above initial-value problem with A(u) u and 
b(x) x-x, a 0 O, 1, 2, 2 

(20) a = 0: u(x, t)= 1, 

(21) a = 1: u(x, t) = x/(l + t), 

2xt ? 1 - (1 + 4xt)" 2 

(22) a= -2: u(x, t)= 2?x ( x)s 

(23) q = 2: u(x, t) = (t ? 4x-t 
1 ~~~~~~2 

(24) a, = I -: u( Wt -4 !-",2 

(24) a 
. =-: u(x t) = Z'/3 _ t 

z-1/3 (z x + 
(2+ t31) 

We shall take these solutions at x = 0 and x = 1 to serve as the boundary conditions 
for the numerical work which is to be checked in 0 < x < 1 against the above analytic 
solutions. 

The case of a solution containing a discontinuity which is created at some t = t, 
is demonstrated by taking the following initial conditions: 

4)(x)- I, -co < x< a, 

(25) 2 2-x/l, G < x < 20, 

-0, 20 < x < . 
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The solution is giveni by 

u(x, t) = 1, - < x < t + 0, 

(26) = ~~202 x t + 0 < x 2 20 (0 < t < 0), 
(26) 6 t+ ? ? 6 (?<) 

-0, 20 <x < co 

and for t ? te 0: 

(27) u(x, t)- 1, _ o<x < x? (t +3) (3 0) 

-O, (t +3 0) <x<1 

The "shock-wave" is created at time t0 = 0 and at the location x =20, and moves 
to the right with the speed X. = .1. In the numerical computations corresponding 
to this case, we shall examine the behavior of the solution also across the discontinuity 
and compare it to both the analytic solution and the results obtained from the standard 
Lax-Wendroff method. 

6. Numerical Results. In reporting on the numerical work, we shall compare 
the standard Lax-Wendroff results with those of our third order scheme (Eq. (14)), 
either with the linear viscosity (Eq. (19)) or with the conservation form artificial 
viscosity ((16) and (18)). 

6a. An Example for Smooth Solutions. We take Ax = 0.005, u(x, 0) = b(x) = x2 

and, from (22), 

u(0, t)-= 0, u(l, t) _ 2t + 1 - (1 + 4t)'12 2t2 

As expected, the maximum relative error using the scheme presented above is about 
100 times smaller than the one given by the standard Lax-Wendroff method. This is 
the case when we use the linear artificial viscosity (Eq. (19)). When the conservation 
form of the artificial viscosity is used, the ratio of the maximum relative errors 
decreases from about 1/100 to about 1/1000. 

6b. An Example for Discontinuous Solutions. Here, we take u, + uu. = 0 with 
the initial distribution (25) and boundary conditions according to (26) and (27). 
The results indicate that the 3rd order accuracy scheme gives a slight improvement 
over the L-W calculation in the large gradient region, in the sense that the "shock" 
is slightly steeper and the post-shock oscillations are weaker and are damped more 
quickly. On the other hand, unlike the L-W case, there is a very small negative per- 
turbation ahead of the "shock". The appearance of this precursor perturbation is 
due to the fact that in the 3rd order scheme, in addition to ui and uj,, one also 
uses uj12. 

7. A Fourth Order Finite-Difference Scheme. As was mentioned before, if, 
in the term stemming from Wt1, we represent A%12, by a higher order interpolation 
formula, and if we take Q = 1, then our scheme becomes of fourth order accuracy. 
This is in line with the remarks at the end of Section 3-adding a stabilizing term 
to an odd order scheme can raise the order of accuracy if the coefficients of this 
added derivative are chosen properly. 
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In the present case, the fourth order finite-difference scheme has the following form: 

W= + X[(F+1 - Fn1) - (F> - 2F,+ + 2F>1 - F,2)] 

+ 2! {A,n+1/ 1- F12) - 14>1/2(F' - F>) 

- Sz [A7+3/2(F7+2 - F>1) - 3A 1/2(F>1 - F,) + 3A>_112(F F -Fn_-) 
(28) 

- A+ _3/2(Fi_I - F,_2)] 

3! A '{(An )2nn 2_ F^n) A (A)(Fj._ Fan_-) + '( A_) -F Fn,-2)1 

+ Q A- {(A73,2)3(F+2 - F>1) - 3(A 1/2)3(Fn4j - F ) 

+ 3(An_1/2)3(Fn' F>1) - (An3/2)3(F,_1 - Fn2)1 

where 

(29) 17*1/2 = l(A>1 + A,) - fM (A>2 - A>1 - An + An,1). 

Scheme (28) meets the stability criterion Xac < 1. Note that if , = 0, then Eq. (28) is 
the 3rd order scheme with the linear artificial viscosity represented in a conservative 
form. If also a-e = Q = 0, then we have the Lax-Wendroff scheme. For the fourth 
order accuracy, we must use a5 = = = 1. We ran test runs with 4(x) =x 
in order to determine in practice, and compare to prediction, the amount by which 
the grid can be coarsened and still maintain the same maximum relative error as we 
go from Lax-Wendroff to 3rd order and then 4th order schemes. The grid sizes (based 
on Ax = .005 for the L-W scheme) were found to be, respectively: AXL.W. .1/200; 
AX3rd Order = .1 /50; and AX4th Order = .1/25. These grids produce absolute errors of 
CX lo- 6 where for a =2 and t - 3, 1 < C < 5. 

In conclusion, it may be stated that a 3rd or 4th order scheme, such as the schemes 
proposed in this paper, will, in the smooth part of the solution to a hyperbolic problem, 
yield, in practice as well as in theory, one or two orders of accuracy higher than, say, 
the Lax-Wendroff method. In the regions near shock-like discontinuities, the im- 
provement over the L-W scheme is not as good. This opens up the possibility that 
in multidimensional cases, we shall be able in a practical manner to overcome par- 
tially the problems of restricted machine memory by using coarser grids and higher 
order schemes. 
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