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Calculation of the Gamma Function
by Stirling’s Formula

By Robert Spira

Abstract. In this paper, we derive a simple error estimate for the Stirling formula and
also give numerical coefficients.

Stirling’s formula is:
log () = (s — Hlogs — s + £ log 27
1 ™
+ 2§72k M2k — 1)7'By + R.,

k=1

where
2) R, = — j; s + x)"@m) 'Bynu(x — [x]) dx.

Formulas (1) and (2) and a simple estimate for |R,,| are derived in de Bruijn [1, pp. 46~
48].
Another form of R,,, developed on the assumption Re s > 0, is

2=D" (/" W™ du dt
Rm = Sm—1 2 2 2xt )
N 0 o U + S)e -1

(Whittaker and Watson [5, p. 252]), and Whittaker and Watson also estimate this
expression, finding

IR | < lB2m+2!K(S)
"= em+ D2m + 2) |s]
where
K(s) = upper bound |s*/(* + 57|, u= 0.

This is the form given in the NBS Handbook, and is clearly poor near the imaginary
axis. It follows, however, from this form, that if |arg s| < /4, then the error in tak-
ing the first m terms of the asymptotic series is less in absolute value than the abso-
lute value of the (m + 1)st term. Another form of the remainder, valid for |arg s| <
« — 8, is derived in Whittaker and Watson [5, §13.6], but this remainder involves the
Hurwitz zeta function, and has never been used for numerical estimates. An estimate
for R,, as given by (2), may be found in Nielsen [6, p. 208], and, expressed in current
notation, is

| Bamsz] .
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This gives a uniform estimate in the angle |arg s| < = — 5. We now develop an esti-

mate for R,, which has the advantages of simplicity in application, and uniformity

for a set of points whose distance from the negative real axis is = some fixed amount.
THEOREM.

3) [Rm| £ 2 |Bow/Cm — D|-|Ims|"™™  for Res < 0, Ims 5 0,
“) [Rm| £ |Bom/@@m — D] |s|'*" for Res = 0.

Proof. Since B,,.(x — [x]) varies only slightly over the range of x, and |B,,.(x — [x])|
< |B,.|, the problem of estimating |R,| reduces to the problem of estimating
I% |s + x| dx. Note that the integrand will be large only when s is near —x. By
symmetry, we need only consider the case when Im s = 0. First, let Re.s < 0 and
Im s s 0. Then, taking £ = Im s,

@ —Re s —~Re s+k ®
f |s+x|"2"'dx=f -l-f -l-f .
0 0 —Res —Res+k

Estimating the integrands of the second integral by |s + x|™" < k™", and of the
third by |s + x|" = (x + Re 5)™", we obtain

© —Re s
f ls + x| dx < f ls + x| dx + 7" 4+ @m — 1))
0 0

It remains to estimate [;*°*. If —Re s < k, we approximate the integrand again by
k™", giving

~Re s .
f Is + x| dx < (—Res)-k™*™ < k7",
0
If, however, —Re s > k, we break up the range of integration, giving

-~Re s —Re s~k —Re s
f Is + x| dx = f |s 4+ x|7*" dx + / ls + x|7*" dx
0 0

-Re s~k

IIA

—~Re 8=k
f (—x — Res) ™™ dx + k7"
0

2m 1:_1. [kl—zm - (_ Re s)l—zm] + kl—2m

<+ 1/em — D)),

Il

So that in all cases, if Re s < 0
f [x + 5|7 dx £ dm/Cm — 1K',
0

so we have derived (3).
If Re s = 0, then |s + x| £ |ki + x|™" since

Is + x|” = (Res + x)° + (Ims)® = 2x Res + x* + k* = [ki + x|°.

Next, estimating as before,
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f |ki + x|7*" dx f K™ dx 4 f gy £ KT+ 1/2m — 1)),

thus giving (4), and completing the proof.
On taking the exponential, we find

N,

® N
k=1

where

(6) Aoy = Bo/2k(2k — 1).

A short calculation gives (formally)

© Ao @ _ Ai‘Ai’,""Ain
exp [k szi'ill] 1+ 3s "[ > T ]
=1 k=1

(arfy, vee,anin) €Q(K) JI! 12! s 0t s Tl

Q)
=1+ Z cisF
k=1
where the «,’s are distinct and Q(k) is the set of partitions of k into odd parts («i‘ means

a; repeated j; times in the partition).
Wrench [2] found the recurrences

B, sz

® 2k — Degp—y = 5 = Cok-2 + Czk P + TR
B, B
©) 2kcyy, = 2 A C2k-1 + Czk—a + -+ ‘_Z"kcn
where k = 1, 2,3, -+« and ¢, = 1, and these formulas are more suitable for calcu-
lation than (7).

Wrench [2] also gave the ¢;’s for j = 0(1)20, in exact form and to 50D, and also
found approximations to about 6S for j = 21(1)30. We give in Table 1 the exact
rational values for j = 21(1)30, and in Table 2 their 45D equivalents. The following
corrections are necessary in Wrench’s tables. In his Table 2, the last ten digits of ¢;5
read 01893 93280, and should read 01894 09396. In his Table 3, entries 22, 23, 24, 26,
28, 30 can be corrected from Table 2 of this paper. Dr. Wrench confirmed the correct-
ness of the author’s value for ¢, and that it is likely that the author’s corrections
to his Table 3 are also valid. It is of interest to note that while Dr. Wrench’s calcula-
tions were carried out on a desk calculator, the author’s were performed on a Fortran
simulator of a large decimal machine (Spira [7]).

A further calculation revealed that entries 3, 4, 7, 8, 11, 12, 15, 16, 17 for c,,,/c.
in Table XII of Spira [3] have errors beyond 16S. These errors did not affect the re-
maining tables.

Finally, we remark that estimates for the error in using

(10) T(s) ~ (27r)”“‘e"“s’"”2{1 S+ z—}
can be obtained from estimating

m k
(11 exp {Z Agios' ™M Rm} - 2 e

i=1
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TABLE 2

45D values of coefficients 21 through 30 in the asymptotic series for I'(z)

c21 13. 39798 54551 42589 21762 69304 32019 67195 04205 85565
022 1. 12080 44642 89911 60686 26394 00139 92394 10087 44581
€53 - 156 . 80141 27040 22726 37282 36984 46041 18986 42959 25353
C24 - 13 . 10786 30226 33865 65902 75053 22267 17265 62139 54267
Co5 2192 . 55553 60905 23432 96901 29668 35404 98912 17444 39338
©.6 183 - 19073 34845 24338 08866 21120 60475 26830 49008 10167
C27 -36101. 11929 32220 75951 91379 10143 10212 31172 74408 12019

c28- 3015 - 07731 26223 05854 21582 73842 95134 58512 61670 77656

c29 691346 . 37614 18781 21600 20149 42362 07859 56471 17679 20033

©30 57721 - 33636 30407 22716 58721 99716 32365 57540 83996 54732

and using (3) and (4), where m = [(k + 2)/2]. For example, for Res = Oand |s| = 1,
and k = m = 2, we have

T(s) = n)%"s*""? exp {-1—;; -+ L + Rz} ,

360s°
where
1
|R.| = 9—(”;!3 ,
SO
1
‘eXp R, — 1| = ‘Rzl {1 -+ lel -+ lR2|2 + } = 89lsl3’
Next,
1 1 1 1
exp (Tz‘i + 360s3> - (1 Tt 288s2>
1 1 1 11 1 ®
< 9, 1
= 360|s|° + 12-360][s|* + 2-360°|s|° 31 125 T 3608 +

which estimates as before. Such estimates show the series for I'(s) is an asymptotic
series (de Bruijn [1]). \

For calculations near the origin, it is best to use the functional equation I'(s + 1) =
sT(s) and calculate T'(s) = T'(s + j)/P(s), where P(s) is a polynomial. This formula
could also be used for larger |s| for ultraprecise calculations where precisions are
needed which are greater than the maximum precision obtainable from the asymp-
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totic formula. For calculations in the left half-plane with small imaginary part, one
can use the equation I'(s)I'(1 — s) = «/sin =s.

The preparation of this paper was with the aid of NSF Grant GP-8957. I wish to
thank the referee for several suggestions.
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