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Numerical Solution of a Parabolic Free Boundary 
Problem Arising in Statistical Decision Theory 

By Gary G. Sackett* 

Abstract. A parabolic free boundary problem which arises in a statistical decision setting 
is reduced to a free boundary problem for the heat equation which is amenable to numerical 
solution by the method of lines. An algorithm is given and the apparently globally con- 
verging results are compared with the asymptotic expansions of H. Chernoff and 
J. Breakwell. 

Introduction. In a series of papers [1], (2], (3], Herman Chernoff and John 
Breakwell describe a statistical decision problem, relate it to a parabolic free boundary 
problem, and give an asymptotic solution for that free boundary problem. 

In this paper, the method of lines (sometimes referred to as the Rothe technique, 
after a paper of Erich Rothe [5]) is employed to solve numerically a free boundary 
problem for the heat equation which is equivalent to the free boundary problem of 
Chernoff and Breakwell. As will be pointed out later, the asymptotic results of 
Chernoff and Breakwell are valid strictly locally; the method of lines technique 
employed here appears to converge globally. 

Background. For those readers who might be interested in a skeletal view of 
the background, a brief description of the original statistical decision problem is 
given. A more detailed account is to be found in [2]. 

Consider a Wiener-LUvy stochastic process x(r) and the associated process t(r) 
having drift iA, 

t(r) = X(r) + or 

where , is an unknown constant whose sign is to be determined. M is to be considered 
as a random variable with known a priori normal distribution. Starting at some time 
r0, 4(r) is observed for a period of time and then, according to a prescribed stopping 
rule, observation ceases and A is hypothesized as positive or negative according as 
the sign of t is positive or negative at that instant. Since there is to be assessed a cost 
of observation and a cost of making an incorrect decision, this prescribed stopping 
rule should be chosen in such a way as to minimize the expected cost of the entire 
operation. 

Specifically, assign to each point (Q, x) a Bayes risk B(Q, r), defined by 

B(Q, r) = E cost of an incorrect decision i(r)-=4 
+ E{cost of continued testing from (4, r)}, 
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where E is the expected value operator. Then the problem becomes one of dividing 
the upper half-plane T _ To into two regions, a continuation region and a stopping 
region, in such a way as to uniformly minimize B(4, T). These regions may be viewed 
as being defined by two boundaries a = ,i(T), i 1, 2, as indicated in Fig. 1. 
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FIGURE 1 

In particular, let the cost of an incorrect decision be proportional to 4, and 
assume that the cost of observation is constant per unit time. Then, Chernoff has 
shown in [2] that, after suitable normalization, B must satisfy the parabolic equation 

(1) 2- Bet + t Be + B, + 1 = 0 

in the continuation region. The symmetry of the problem leads to the observation 
that al(T) = -a,2(r) and further, the definition of a as the stopping boundary gives 
rise to the boundary condition 

(2) B(r(r), r) = D(u(r), r), 

where D is the known function given by 

D(Q, r) = r-1/2 VIT-1/2) 

where 

Ak(a) = fp(a) + asNa) -a, a > O. 

= fp(a) + asXa), a < O. 

and so, 4' are density and distribution functions, respectively, for a normal (0, 1) 
distribution. 
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Chernoff has given an argument, related to and reported by Sherman [7], that if 
such a minimizing curve exists, the so-called "smooth-pasting" condition 

(3) Bj(o(r), T) = Dj(a(r), r) 

must also be satisfied. The problem is rounded out with the boundary condition 

(4) Bt(O, T) = 0, 

deduced from symmetry considerations. 

Metamorphosis. The problem (1), (2), (3), (4) is seen to be a parabolic free 
boundary problem for the determination of B and a-. We shall metamorphose this 
problem into a problem which is susceptible of solution by the method of lines by 
first enlisting the transformation 

(5) x =/r, t = 1/2r 

as suggested by Sherman in his report [7] dedicated to the analytic examination of 
our problem. 

Then, putting 

(6) u(x, t) = B(Q, r) - D(Q, r) + r, s(t) = 2ro-(1/2r), 

a free boundary problem for the heat equation emerges. Namely, 

(7a) Urn = U O < x < s(t), 

(7b) u,(0, t) = 2s t > O. 

(7c) u,(s(t), 0 = 0, t > 0, 

(7d) u(s(t), t) = 1/2t, t > 0. 

This problem, save one critical distinction, is of the type considered in [6]. That 
distinction is found in condition (7d), which makes the problem singular at t = 0 
(r = co). 

Since such a singularity is somewhat distasteful, an attempt to remove it is made 
by considering the following decomposition of u: 

(8) U(X, t) = W(X, t) + V(X, t), 

where w is to have the form 

(9) W(X, t) = t @(Xt /2) 

and is to satisfy 

(10 ) WXX = Wt 

in the appropriate region. Such a decomposition is, in some sense, natural in view 
of the type of singular behavior found in (7d). 

Operating with (9) and (10) leads to the ordinary differential equation 

(11) "0(Z) + 2 6(z) + 0(z) = 0. 
2 
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To specify iv(x, t), we have at our disposal 0(0), O'(0) which we choose with an eye 
toward making v(x, t) as docile as possible near the origin. Examining the boundary 
conditions for v, we have 

(12) V (O, t) = 2 - t 3120(O), t > 0, 

(13) v(s(t), t) = l- 0[t-12s(t)]} t > 0, 

(14) V (s(t)' t = _ t- 3/2 01[C 1/2 
SWt] t > O. 

Equation (12) makes it clear that 0'(0) ought to be taken zero. Such a choice having 
been made, (11) has the power series solution 

(15) w(z) = 0(0) E (-I)?& 
n0 (2n)! 

Substituting this expression into (13) yields 

(16) v(s(t), t) = - (0)[I - s) + 1 2t2+ IL 

The only chance for good behavior for v as t -* 0 is to choose 0(0) 2 in order to 
kill the singularity caused by 1/2t, and hope that s(t) turns out to be at least O(t) as 
t -O 0. This seems a reasonable hope in view of the results of Breakwell and Chernoff, 
whose results will be discussed momentarily. 

At this point, we now have that w is the explicit function 

(17) W(X, ) = tE(1)"n2,!A t' X > 0. 
2tn'. (2n)! t' ' 

' 

Whence the problem for B(Q, r), o(r) has been reduced first to problem (7), and now 
to this problem for v(x, t), s(t): 

(18a) VLZ = Vt, 0 < X < S(t), 

(18b) v (0, t)O =, t > 0, 

(18c) v(s(t), t) = F(s(t), t), t > 0, 

(18d) vL(s(t), t) = G(s(t), t), t > 0, 

where 

F(x, t) = 1 f ! X2nC-(n+1) 

(1 9) 2 n-1 (2n)! 

2 4 14.3 + 1 6 + 
424 240 

(1)n+1 n! 2n-1 I-(n+ I 

(20) 2 (2n - 1)! 

= _Xt X3t 3 + - x t4 + 
6 4 0 

This would seem an appropriate juncture to relate problem (18) to the results of 
Breakwell and Chernoff in [1]. In that paper (in yet other variables from those used 
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here) B and a are assumed to have certain series expansions and by use of the boundary 
conditions, appropriate coefficients are generated to yield an asymptotic solution. 
When these series are translated into the x, t variables of this paper, one gets the 
series 

U(X, + tXn1 + 
.1 fl (21) x 2 (1 (-2, ) !t\ 4 + 4 48) (24 /) 

s(1)~.~~2(l 2t3 28t6 184 
S(1) _t2 (I 3 + 15 2iTt ) 

There are two important items to observe about these expansions. 
(a) The infinite series term in the expansion for u is exactly our function w given 

in Eq. (17). Except for this sum in (21), the series for u is termwise well-behaved 
at the origin; this meshes with the hope that L(x, t) itself will behave near (0, 0). 

(b) The expansion for s given in (21) suggests that s is in fact O(t2) as t -* 0, which 
fact makes it reasonable to expect that F(s(t), t) and G(s(t), t) as given in (19) and (20) 
have finite limits as t -- 0. 

The Algorithm. Armed with these suggestions that numerical success is within 
our grasp, we attack the free boundary problem (18) by applying the method of lines 
in a manner similar to that given in [4] and [6]. Specifically, (18a) is replaced by the 
system of ordinary differential equations 

f w'(x) - .,X (22) w'(x) - h , 0 < x ?sR, n = 1, 2, 

where s. is to be chosen so that 

(23) wI(0) - 12 
W,'(s.) 

= 
F(s., nh), w'(sn) = G(s., nh), 

and 

(24) wf(x) = w.(x), x < Sn 

= F(sn, Ith) + G(sn, nh)(x - snjs x > Sn. 

(Note. In general, wn will need to be extended beyond Sn in order to compute w,+1, 
thus necessitating the extension w,, given in (24).) 

To initiate this procedure, it is necessary to specify w0(x) on the interval [0, sj]. 
However, in view of the expectation that s(0) = 0, it is only necessary to have iV0 

and this is taken to be f'0(x) = x/2. This is reasonable in light of condition (18b) 
and the property that 

lim F(s(t), t) = 0 

as long as s(t) = O(t) as t -*> 0. In any event, the choice of iv', is not critical since its 
effect on subsequent wco will tend to zero as h -* 0. 

Proceeding, Eq. (22) has the explicit solution 

(25) w,(x) = A.nj(x) + B.(P2(x) - , n-1(QX2(X - i) do 

where spo(x) = cosh (xh /2) (p2(x) = sinh (xI -1/2). The three conditions given in (23) 
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are to be used to determine An, Bn, sn. Using these conditions to eliminate An, B. 
from (22), we find that the required sn must be a zero of the function 

(26) (D.n(s) = F(s, nh)X02(s) - h112G(s, nh)o 1(s) + 1h"2 _ h"h f A/2) dt. 

An explicit computation algorithm can now be given. 
1. The nonlinear function (n in (26) is subjected to one of the extant zero-locating 

routines; denote the approximated zero by sn. 

2. With s,, in hand, it is a simple matter to compute A,,, B,, by using (25) and two 
of the three conditions given in (23). 

3. w,,(x) can then be computed from (25) for 0 <j x < sna. 

Discussion of the Algorithm. To begin with, viewing 4', apart from the context 
of the original problem, there is little (if anything) to suggest that it has any zeroes, 
much less that it has a unique, positive zero for any n, h. Analytically, this is a very 
difficult problem as can be witnessed in the analyses in [4] and [6] where functions 
similar but simpler than that in (26) are examined for unique zeroes. Such an analytic 
investigation will not be made here; nevertheless, from the origins of the problem, we 
can reasonably expect that s,, exists for any n and h and is unique and positive. This 
conjecture is borne out in the computations. 

The method used here to find the approximate endpoints s,, is the usual Newton's 
method, since 4' is relatively easy to compute. The subsequent computation of 
An, Bn and finally of Wn(x) is straightforward, with the integrations involved being 
handled by a Simpson integrator. 

Numerical Results. Probably the more useful component of the solution to the 
original statistical decision problem is the solution boundary, s(t) (n6e a(r)), rather 
than the actual values of the Bayes risk itself. After all, it is this boundary which 
defines the stopping rule-the Bayes risk evaluation is incidental to that rule. There- 
fore, the bulk of the results cited henceforth will deal with the approximations to s(t). 

All the computations were done in single-precision arithmetic on an IBM 360/67. 
The attendant parameters in these calculations include 

(a) Simpson integration step size; h/2 was used in each case, 
(b) Maximum error in Newton's method of determining Sn, 10-5, 

(c) Number of terms of F and G used, 12 (cf. (19) and (20)). 
(It is reasonably clear that the size of t would influence the number of terms of F and 
G to be used; the larger t, the more terms of F and G to be used; the larger t, the more 
terms of F and G necessary to preserve accuracy. For t < 2, 12 terms are sufficient 
and for t < 1, 6 will actually suffice.) 

Table 1 shows the results obtained for 0 < t .<1, with the concomitant computa- 
tions from the Breakwell-Chernoff expansion, where the first three terms of that 
expansion are employed (more terms yields no change). These results for the method 
of lines are merely corroborative with the asymptotic results. 

The more significant contribution from the method of lines is found for larger 
values of t, these results being given in Table 2. It should be noticed that there is 
(apparent) linear convergence of these boundary estimates. Table 3, on the other 
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hand, demonstrates the limitations of the Breakwell-Chernoff expansion and at best 
suggests usable results only for t less than about .5. 

Additional evidence of the divergence of the asymptotic expansion for s is found 

TABLE 1 

Method of lines boundary Breakwell-Chernoff 
t h = .01 expansion 

.01 .0001000 .0001000 

.02 .0004000 .0004000 

.03 .0009000 .0009000 

.04 .0016000 .0015999 

.05 .0024998 .0024998 

.06 .0035996 .0035995 

.07 .0048990 .0048989 

.08 .0063980 .0063978 

.09 .0080964 .0080961 

.10 .0099938 .0099933 

TABLE 2 

Method of Lines Boundary Estimates 

t h = .2 h = .1 h = .05 h = .02 

.1 .0099970 .0099957 .0099943 

.2 .0399482 .0398675 .0398273 .0398054 

.3 .0888193 .0886486 .0885481 

.4 .1558680 .1548998 .1544795 .1542611 

.5 .2352109 .2345049 .2341754 

.6 .3281219 .3263323 .3256817 .3252925 

.7 .4257654 .4251320 .4248957 

.8 .5314652 .5310651 .5309301 .5307290 

.9 .6406202 .6410626 .6411589 
1.0 .7501025 .7531593 .7542704 .7544931 
1.1 .8682284 .8699195 
1.2 .9772512 .9843462 .9870185 
1.3 1.101370 1.104626 
1.4 1.208308 1.219378 1.223219 
1.5 1.337466 1.342154 
1.6 1.442169 1.455322 1.460742 
1.7 1.573937 1.574011 
1.8 1.675314 1.691085 1.693958 
1.9 1.807692 1.814964 
2.0 1.907213 1.924348 1.941728 
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TABLE 3 

Breakwiell-Chernoff Boundary Estimates 

t 1 term 2 terms 4 terms 6 terms 

.0 0.00 .0000000 .0000000 .0000000 

.1 .01 .0099933 .0099934 .0099934 

.2 .04 .0397867 .0397913 .0397913 

.3 .09 .0883800 .0884870 .0884891 

.4 .16 .1531733 .1540291 .1541040 

.5 .25 .2291667 .2321800 .2322883 

.6 .36 .3081600 .3077250 .2785884 

.7 .49 .3779534 .3123113 - .3085791 

.8 .64 .4215466 - .0179218 -7.225949 

.9 .81 .4163398 - 1.529703 -60.27365 
1.0 1.00 .3333333 -6.561902 -379.3532 

in the following family of free boundary problems: 

VXX - t < x < s'(t), 

(27) ~~~vn(0 , t) - ,t > 0 , 

Vn(sn(t), t) = F(S.(t), t), t > 0, 

Vn(Sn(t), t) = G(Sn(t), r), t > 0, 

where Sn(t) is the fixed boundary function comprising the first n terms of the 
Breakwell-Chernoff expansion; e.g., S(t) = t2, S2(t) =t2 - t5 etc. Problems (27) 
no longer exhibit the unknown boundary Sn(t) on the right-hand side of the free 
boundary conditions; these conditions are now more similar to those found in [6], 
i.e., of the form 

v(s(t) ) , v(s(t), t) = g(t). 

Proceeding to solve problem (27) by the same method of lines reveals that for 
small values of t, the solution curves are close to the "assumed" solutions Sn(t). 
However, for t greater than about .6, the process begins to diverge. Of course, if the 
sequence Sn(t) were a convergent one, then the corresponding solutions to problems 
(27) would converge to that boundary. Since this is not the case, one can only conclude 
that the Breakwell-Chernoff boundary series is indeed only asymptotic and not 
convergent for t larger than .6, for example. 

Finally, since the function v(x, t) in the solution of (18) has been the victim of 
some neglect, Table 4 gives approximate values of v for the grid given by At = .1, 
Ax = .1 for t ? 1.0. The values given to the left of the sketched free boundary are 
at the grid points; the values to the right are the computed values of v at the boundary, 
the boundary points being given in Table 2 under the column h = .05. Table 4 was 
computed with h = .05 and integration step size of .025. To give some notion of the 
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speed of the method, the results given in Table 4 were tabulated in less than 30 
seconds on the IBM 360/67. 

Department of Mathematics and Statistics 
The University of New Mexico 
Albuquerque, New Mexico 87106 

1. JOHN BREAKWELL & HERMAN CHERNOFF, "Sequential tests for the mean of a normal 
distribution. II. (large t)," Ann. Math. Statist., v. 35, 1964, pp. 162-173. MR 28 #1679. 

2. HERMAN CHERNOFF, Sequential Tests for the Mean of a Normal Distribution, Fourth 
Berkeley Sympos. on Math. Statist. and Prob., vol. 1, Univ. of California Press, Berkeley, Calif., 
1961, pp. 79-91. MR 24 #A1788. 

3. HERMAN CHERNOFF, "Sequential tests for the mean of a normal distribution. III. (small 
t)," Ann. Math. Statist., v. 36, 1965, pp. 28-54. MR 30 #680. 

4. NGUYEN DINH CHI (THI), "On a free boundary problem for a parabolic equation," 
Vestnik Moskov. Univ. Ser. Math. Mech., No. 2, 1966, pp. 40-54. (Russian) 

5. ERICH ROTHE, "Two dimensional parabolic boundary value problems as the limit of one 
dimensional boundary value problems," Math. Ann., v. 102, 1930, pp. 650-670. (German) 

6. G. G. SACKETT, "An implicit free boundary problem for the heat equation," SIAM J. 
Numer. Anal., v. 8, 1971. 

7. B. SHERMAN, Some Comments on Free Boundary Problems for Parabolic Equations 
Arising in Statistical Decision Theory, Rocketdyne Research Report #66-24, 1966. 


	Cit r12_c13: 
	Cit r14_c15: 


