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PECE Algorithms for the Solution of Stiff Systems 
of Ordinary Differential Equations 

By R. W. Klopfenstein and C. B. Davis 

Abstract. This paper presents a study of a class of PECE algorithms consisting of an 
application of a predictor followed by application of one iteration of a pseudo Newton- 
Raphson method to a corrector. Such algorithms require precisely two evaluations of the 
derivative function for each forward step. Theorems 1 and 4 show that the stability properties 
of such algorithms compare favorably with those obtained with application of the Newton- 
Raphson method to the corrector iterated to convergence. 

A subclass of these algorithms have local truncation error of second order and some 
have local truncation error of third order. Theorems 2 and 3 exhibit members of this subclass 
wherein an estimate of the local truncation error is explicit in the algorithm at each step. 

Initially (in Theorem 1) these algorithms are characterized in terms of their stability 
properties in the limit as the interval of integration becomes indefinitely large. In Section 5, 
their properties for other intervals of integration are discussed through the study of some 
enclosure properties. 

I. Introduction. The phenomenon of "stiffness" in the numerical solution of 
ordinary differential equations occurs in problems from a great variety of sources. 
Among these are the simulation of parabolic partial differential equations where the 
space variable has been discretized so that a system of ordinary differential equations 
in the time variable results. The efficacy of implicit formulas in such problems has 
been recognized for some time and, indeed, Richtmeyer [8] has proposed local 
linearization (the Newton-Raphson method) for solving the nonlinear systems of 
equations which may arise therein. Another important area often more limited by 
the "stiffness" phenomenon is the numerical determination of the transient response 
of electrical circuits [1], [11]. In this context, the difficulty has been dubbed "the small 
time constant problem" and is an infamous source of frustration to users of large 
computer programs for the analysis of such circuits. Recently, considerable progress 
has been made in the alleviation of difficulties arising in such problems. 

Dahiquist [3] defined the property of A-stability for linear multistep methods 
which requires that the solution of the equation y' = Xy tend to zero as the number 
of steps approaches infinity for arbitrary interval size, h, whenever X is in the left-half 
complex plane. He showed that this property was obtainable only with implicit 
formulas of order equal to or less than two, and that among formulas of second order 
the trapezoidal rule has the smallest error constant. Widlund [12] showed that formulas 
of orders three and four could be obtained if the domain of stability was restricted to 
a wedge-shaped region within the left-half plane rather than the entire left-half plane. 
Liniger and Willoughby [7] have exhibited implicit formulas through order four 
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having the property of A-stability provided the class of linear multistep methods is 
broadened to include terms involving the second derivative. 

More recently, a number of authors [4], [7], [10] have been concerned with the 
implementation of such implicit formulas in general purpose algorithms for the 
numerical solution of stiff systems of ordinary differential equations. In the instances 
cited, such algorithms have been based on a particular implicit formula of the type 
discussed above with the solution to this implicit formula being obtained by an 
iterative application of the Newton-Raphson method. Typically, the previous point 
(v.) is taken as first approximation to the new point (y,,,). Sandberg and Shichman 
[10] discuss some results corresponding to a single iteration of the Newton-Raphson 
method as well as iterative application when the open Euler formula is used as an 
implicit formula. 

One motivation for use of iterative applications of the Newton-Raphson method 
is quite clear. To the extent that iteration to convergence is carried out, the stability 
properties of the algorithm are completely described by the stability properties of 
the implicit formula on which the algorithm is based. This is generally an easier 
question to study than the stability properties of an algorithm based on a fixed 
number of iterations. There are some drawbacks to such algorithms, however. First 
of all, the number of iterations (and, hence, derivative evaluations) per step forward 
is open-ended and possibly quite large. Secondly, if (y) is taken as first approximation, 
there is no direct estimation of the truncation error incurred at each step forward as. 
an explicit part of the algorithm (though indirect methods may be used [10]). Finally, 
there are limitations on the convergence of the iterative process itself (see [7] and 
our Theorem 4). 

We should also mention some implicit algorithms patterned after Runge-Kutta. 
processes, first proposed by Rosenbrock [9]. These algorithms require only a fixed 
number of derivative evaluations and may be of third or higher order. Callahan [21 
describes an attractive third-order algorithm of this type and also mentions the 
importance of nonsensitivity to the value of the Jacobian matrix. Haines [5] discusses 
third-order algorithms of this type from a somewhat more general point of view and 
develops algorithms which include a mechanism for estimation of the truncation 
error at each step. 

In this paper, we are concerned with the properties of one-step and two-step 
alogrithms of the form 

P.+i = yn + h[ofd. + /fn.-J, 

(1.1) co.a = y. + h[vf(x.+1, p.+l) + ufnj, 

Y.+i = p.+i + [a - vhJ]F(c.+1 - 

where, as usual, we have the differential equations 

(1.2) y dx YoY() 

y,, is the result of the nth application of the algorithm and f,, denotes f(xn, y.). The 
a, A, u, v, and a are real constants while I is the identity matrix of order N (N being 
the number of equations in the system (1.2)) and J is a matrix of order N which 
approximates the Jacobian matrix of (1.2), i.e., af/&y. 
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Such algorithms are of Adams-type (involve only the most recent value of y.) 
and require precisely two derivative evaluations per step forward. When "aa" is 
equal to unity, (1.1) corresponds to one application of a predictor followed by one 
application of the Newton-Raphson method to a corrector, and, hence, we refer to 
these algorithms as PECE algorithms. We shall see later that values of "a" somewhat 
different from unity furnish a most useful parameter in the design of algorithms of 
this class. 

Algorithms of the form (1.1) lend themselves well to organization of intermediate 
results, and when the predictor and corrector are independently of the same (first or 
second) order, a useful error estimator is explicitly present (see Theorems 2 and 3). 
Algorithms with i = 0 in (1.1) enjoy the further advantage of requiring no special 
starting procedures. 

We shall study the stability properties of these algorithms in terms of the difference 
between the approximate Jacobian matrix, J, in the algorithm and the actual Jacobian 
matrix, J, of the system (1.2). 

II. Asymptotic Absolute Stability. We consider the system of ordinary differen- 
tial equations (1.2) and a (k + 1)-step algorithm 

(2.1) Yn+i = F(h, J, yn o . Yn-ko to . . . 

which generates a sequence of approximate solution values to (1.2) with h a real 
positive scalar. We refer further to the linear system of ordinary differential equations 
with constant coefficients 

(2.2) Y d= + C, 

with c a constant vector, and J a constant matrix of order N with eigenvalues properly 
in the left-half complex plane. 

Definition 1. The algorithm (2.1) is said to be asymptotically (h -a co) absolutely 
stable in solving the system (2.2) if the sequence {yn}. , is uniformly bounded in 
norm 

1. for all positive h for some J which may depend on h, and 
2. for all sufficiently large h _ ho > 0 when the eigenvalues of 

hA = h(J - J) 

lie within a region R containing a circle of radius cl > 0 centered on the origin where 
cl is independent of h. 

Definition 2. The region R of Definition 1 is called the "asymptotic region of 
absolute stability" for the algorithm (2.1). 

Throughout this paper, the norms of vectors and matrices will refer to the 2-norm 
thereof [13, p. 80]. 

From these definitions, it can be seen that we are focusing on the behavior of an 
algorithm (2.1) when applied to a (possibly nonlinear) system (1.2) by studying its 
behavior when applied to a related linear system (2.2), i.e., the "locally linearized" 
equivalent (1.2). Our justification for doing this is that any results so obtained will be 
strictly applicable to such linear systems while at the same time providing insight 
into the behavior of algorithms when applied to other systems (nonlinear or linear 
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with variable coefficients). Differences between J and J may occur for a number of 
reasons. It may not be possible to obtain accurate values for the elements of J, for 
example, if they are obtained by numerical differentiation. Also due to errors in the 
process of matrix inversion, the inverse matrix appearing in (1.1) will correspond to a 
somewhat different Jacobian matrix, i.e., J. Finally, when (1.1) is being applied to a 
nonlinear problem, the matrix J may be out-of-date, i.e., it no longer furnishes an 
accurate value for the current J. It is perhaps worth noting that except for changes 
in the matrix, J, the inverse matrix in (1.1) need only be formed when the interval 
of integration changes. It is also worth observing that when the matrix whose inverse 
is indicated in (1.1) is sparse (a common occurrence in practice), efficiencies may be 
effected by solving the sparse system of linear equations implied by the third equation 
of (1.1) at each step of the integration rather than retaining a preformed matrix 
inverse [7]. 

It is convenient in what follows to express the third equation of (1.1) as 

Yn+1 = Pn+1 + (I -vh(J - Al))F1(cn+l - Pn+1), 

(2.3) where A1= a Ia 
vh 

so that the parameter "a" no longer appears explicitly in the algorithm. It is sufficient 
to apply the algorithm (1.1) to (2.2) with the constant term set equal to zero. It may 
be verified by direct substitution that the sequence yn, so obtained, leads readily 
through yn(c) = y,, - .JP-c to that obtained for nonzero c, and yn(c) is bounded in 
norm if and only if yn is. When this is done, the following two-step difference equation 
is obtained for the yn 

(2.4) (I - vh(J - Al))y.+1 = [I + uhJ + vhA,(I + ahJ)]yn + jBvh2A1Jy"_1. 

We restrict our attention to those matrices J which can be fully diagonalized by a 
similarity transformation and define 

(2.5) Q = hPJP', Z" = PY", D = hPA1P-1, 

where Q is a diagonal matrix whose elements lie entirely in the left-half complex 
plane. When these variables are introduced into (2.4) along with premultiplication of 
both sides of (2.4) by the matrix P followed finally by the change of variable 

(2.6) tn = Qzni 

we obtain 

(2.7) [(I + vD)Q-l - vI]tn+l = [(I + vD)Q-' + (uI + avD)]t,, + fvDtn-1 

We shall now look for conditions on D and on the parameters of the algorithm such 
that the conditions of Definition 1 are satisfied. 

We note first that for D = 0, and, hence, 

(2.8) J _ 1-a I vh 

that 

(2.9) t,+l = (I - vQ) 1(I + uQ)tn a 
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Since the matrix on the right-hand side of (2.9) is diagonal, we can see that when 
the elements of Q are in the left-half complex plane, the solutions of (2.9) tend to 
zero for all h > 0 and n X-> provided that 

(2.10) v > 0, Jul < v. 

Thus, under conditions (2.10) we obtain the J required in the first part of Definition 1. 
In studying other values for D, we shall first place (2.7) in the form of two simul- 

taneous first-order recursions. We obtain 

R lw,+l : - SiWn , 

with 

(2.11) W Ltl R [S T] 

where 

R = vI + (I + vD)Q', 

S = uI + oevD + (I + vD)Q-1, 

T = lvD. 

We can see that the last terms in the expressions for R and S will be small in some 
sense for large intervals of integration. We proceed at this point by setting these 
terms equal to zero and in Appendix 1 make precise how this relates to the limiting 
behavior demanded in Definition 1. We may then write (2.11) in the form 

-- I - aD -AD (2.12) wn+1 = Cwn, with C = v D 

It is easily seen that the solutions of (2.12) will tend to zero when the eigenvalues of C 
are strictly less than one in absolute value. We seek these eigenvalues through 

(2.13) Cz = Xz, with (u)z 

and these lead to the simultaneous equations 

(2.14) (-- I- aD)u- Dv = Xu, u- Xv. 

Eliminating u, we obtain 

(2.15) Dv - vx + f3V, 

and can now assert that the eigenvalues of C will be less than unity when the eigen- 
values of D lie within the complement of the map of the exterior of the unit circle in 
the X-plane under the transformation 

(2.16) d(X) X =+ 
u 

v ax + . 
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The region R so defined is symmetrical with respect to the real axis since the param- 
eters of (2.16) are real. When it is not empty, it can be translated through selection of 
an appropriate value of the real parameter "a" to provide the circular region required 
in Definition 1. 

The mapping (2.16) is precisely two-to-one and may be written in the form 

(2.17) +( + y ad)X + fd= 0, withy =u/v, jyj l I. 

Thus, to establish the existence of a nonempty region R, it is sufficient to exhibit a 
real point, d, both of whose images are within the unit circle. d = 0 is a suitable point 
when Jy! < 1, since its images are 

(2.18) X = 0, X2 -7. 

To examine the two limiting cases, we expand (2.17) through first order in d, obtaining 

(2.19) X -- d + 0(d2), X2 = _'Y + 
a d + 0(d2), 

where e is either plus one or minus one. From (2.19), we are assured of a value d such 
that both of its images are interior to the unit circle when yiy = 1, except possibly 
when 8 = a (for y = 1) and A = - a (for y -1). But in these cases, the roots of 
(2.17) can be expressed exactly as 

(2.20) X1,2 -ad, -1; Xi,2 = -ad, 1; 

respectively. In these last cases, the y, do not tend to zero but the conditions of 
Definition 1 are still met since they remain bounded. 

We have therefore proved the following: 

THEOREM 1. The PECE algorithm (1.1) with v > 0, Jul 5 v, a" + ,2 0 0, is 
asymptotically (h -a co) absolutely stable in solving the system (2.2) when the eigen- 
values of the matrix 

(2.21) hA = h(J - 

lie within a closed subset of the open region R defined by 

(2.22) d(X)=-\I -a-X ax+ Jf X = e'f,-Or so< 7r 

where "a" may be selected as different ftom unity, if necessary, so that R properly 
contains the origin. 

Hence, we see that algorithms of the form (1.1) are asymptotically stable under 
very broad conditions on the parameters. The parameter "a" is available to "center" 
the region R on the origin. The remaining parameters are available to achieve other 
desirable properties in the algorithm. 

III. First- and Second-Order Algorithms. In practice, one would like the algo- 
rithm (1.1) to have truncation errors of at least second order in h and perhaps third- 
order truncation errors would be desirable in many cases. We have retained the 
arbitrary parameters up to this point mainly to exhibit under what broad conditions 
the property of asymptotic absolute stability may be obtained. From this point on, 
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the parameters a and v will be restricted as given by 

(3.1) oV= l-3, v= 1-U. 

This results in the predictor and corrector each being of at least first order. Further- 
more, for the values 

(3.2) U3= -2, u= , 

the predictor and corrector, respectively, will be of second order. While it is possible 
for the predictor to have order one less than the corrector without reducing the order 
of the PECE algorithm, we will generally refrain from this in order to have a direct 
estimate of the truncation error incurred at each step. 

Let the exact solution of (1.2) at any given point be denoted by y(x") and suppose, 
in the usual way, that y,, = y(xR). Then 

y(x.+1) = y. 
+ 

hy'(x.) 
+ 

4h2y",(x.) 
+ 

6-h'y"'(x.) 
+ O(h4), 

(33 = Y'(Xn) - hy"(x.) + Ih2y"'(x. ) + O(h3), 

fn = Y I(Xn) , 

fn+I= Y'(x.) + hy"(xn) + 3h 2y"'(x) + O(h3), 

so that 

en = y~x.4a) - p+- (I + 1)h2y" (xn) - I(N - '3)h3y"..(x.) + O(h4), 

(3.4) 
e, = y(x,,+,) - c.+1 = (u - I)h2y" (xn) + I(u - 2)h3y "'(xn) + O(h4), 

Cn+l - P.+, = (X3-u + 1)h2y"(xn) - 2(/ + u- 1)h3y"'(xn) + O(h4). 

It should be noted that the use of fn+, in place of f(xn+,, pn+l) does not affect the 
second-order terms of (3.4) (for a first-order predictor) or the third-order terms (for 
a second-order predictor). The Eqs. (3.4) furnish the basis for assertions in the 
following two theorems. 

THEOREM 2. The algorithm (1.1) with a 1= - , V 1 U-, u < 12, 

1. is asymptotically (h --+ co) absolutely stable in solving the system (2.2) when the 
eigenvalues of the matrix hA = h(J - J) hle within a closed subset of the open region R 
given by (2.22), 

2. is offirst order with local truncation error given by 

(3.5) ev = 
n= y(Xn+I) - 

+I 

- [(N + 4)- (N2-)u + 1)(aI - (1 - u)hJ)-']h2y"(x") + O(h3), 

3. has a first-order estimate for the local truncation error incurred at each step 
given by 

(3.6) en+= Pn+1- Y + - a + I 
- 

THEOREM 3. The algorithm (1.1) with a - 4, / = - - V = , U = 4, 
1. is asymptotically (h X- o) absolutely stable in solving the system (2.2) when the 
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eigenvalues of the matrix hA = h(J - J) lie within a closed subset of the open region R 
given by (2.22), 

2. is of second order with local truncation error given by 

ev= Y(Xn+) Y.,, 

(3.7) [ 5 
- I (aI - 

h J) ]h3y"'(x. ) + 0(h 4), 

3. has a first-order estimate for the local truncation error incurred at each step 
given by 

(3.8) en+1 = P-+1 Yn+1 + 6(C+1 - Pn+l). 

It should be noted that the parameter "a" has not been specified in the algorithms 
of Theorems 2 and 3. It may be selected in any given case to "center" the region R on 
the origin. One possibility is to so select "a" such that a circle centered on the origin 
of maximum radius may be inscribed in R. However, other criteria may be relevant 
in some special cases. 

For the first-order algorithms described in Theorem 2, we will restrict our attention 
to the case fi = 0 since that case has the important advantage of requiring no special 
starting procedures. The predictor is now the Euler formula. In this case, (2.22) can 
be written 

(3.9) d(X) = {+ a- (1- )} 

and it is clear that if we set a = 1-u, the map of the unit circle will be a circle of 
unit radius centered on the origin. We may obtain larger regions up to circles with 
radius approaching two by using other values for A but this would be at the expense 
of the self-starting feature. 

For the second-order algorithm of Theorem 3, the region R specified by (2.22) is 
exhibited in Fig. 1 where "a" has been set equal to one. The bounding curve of this 

COMPLEX d-PLANE 

-.5i 

FIGURE 1. Stable Region for Algorithm of Theorem 3 
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region has a cusp at d = -2 since this is a branch point of the mapping. The largest 
circle that can be inscribed in this region has center at about d = -.58 and radius of 
about 0.42. The appropriate value of "a" that will shift the region R so that the 
center of this inscribed circle is at the origin is a = 0.71. 

IV. Comparison with Iterated Corrector Algorithm. Under the restrictions of 
Theorem 1, the second equation of (1.1), considered as an independent implicit 
formula, is A-stable, that is, stable unconditionally for systems of differential equations 
whose eigenvalues lie entirely in the left-half complex plane. It is natural to seek 
solutions of this implicit equation through an iterative application of the Newton- 
Raphson method and, indeed, several authors have suggested this [4], [7], [10]. We 
would like to examine the properties of such an algorithm within the same frame of 
reference which has been applied here to PECE algorithms in order to judge their 
relative merits. 

The general first-order corrector with iterative applications of the Newton- 
Raphson method can be expressed as 

(4.1) Cn+" = yn + h[vf(xn+1, Yn+l)+ 
(m+1) = (n) + (I- vhJ)-1(cm+1) (in)) 

with 

m = 0, 1, 2, 3, -* ; Q = J -J; v =1 U. 

We apply (4.1) to the system (2.2) and obtain 

(4.2) (I - vhJ)y,(7l) 
= 

vhAyn+n + (I + uhJ)y, 
+ hc. 

The convergent value of (4.1), however, satisfies 

(4.3) (I - vhJ)y.+) = vhAyR+, + (I + uhJ)y,, + hc. 

We therefore define 

(4.4) Em = 1- + 

and subtract (4.3) from (4.2) to obtain 

(4.5) (I - VhJ)?m+l = VhAe,. 

Again, we restrict our attention to those matrices J which can be fully diagonalized 
by a similarity transformation and define 

(4.6) Q = hPJ pl D = hPAP1, tS = PEM, 

obtaining upon substitution into (4.5) 

(4.7) (1 - vQ)tm+i = vDtm. 

P is selected so that Q is a diagonal matrix whose elements generally lie in the left-half 
complex plane, though there may be exceptions to this in border line cases since it is 
the approximate J that has been diagonalized rather than J. (4.7) may therefore be 
examined by its components and we have established the following: 
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THEOREM 4. The iterated corrector algorithm (4.1) is convergent when applied to 
the system (2.2), provided that the eigenvalues of hA = h(J - 7) lie entirely within a 
closed subset of an open circular region centered on the origin with radius 

rdm in r U 

where 

(4.8) d inji = Min I - (1 - u)hXil, 

the Xi being the eigenvalues of J. If the Xi lie entirely in the left-half complex plane 
dmin ? 1. 

Theorem 4 provides a basis for comparison of the iterated corrector algorithm 
(4.1) with the PECE algorithms of Theorems 2 and 3. Asymptotically (h a-* cx), the 
iterated corrector algorithm (4.1) has a much larger region of convergence than the 
stable region of the PECE algorithms of Theorems 2 and 3 since the radius of that 
region approaches a constant (Xmin) rather than being of order 1/h. However, note 
that it is the smallest eigenvalue of J which limits the convergence of (4.1) so that 
for much of the solution we would have dmin only slightly larger than one. Only as 
the solution of a system of equations was closely approaching its steady-state value, 
would values of dmin substantially greater than one be admissible while retaining 
an appropriately small error in the solution function. 

Thus, we see that in spite of the asymptotic superiority of the iterated corrector 
algorithm (4.1), for many purposes, the explicit PECE algorithms of Theorems 2 and 
3 may be comparable insofar as sensitivity to the value of J is concerned and have 
the added advantage that only an explicit number (two) of derivative evaluations 
are required at each step forward. 

V. Enclosure Properties. We desire to study the properties of PECE algorithms. 
for values of Q other than the infinite limit. As a first step in this direction, we consider 
the case where A can be simultaneously diagonalized with J. The results from such 
an assumption are strictly applicable for decoupled systems of equations and by 
implication should be relevant for lightly coupled systems. We proceed and note 
that from (2.7) the characteristic equation can be written in this case in the form 

(5.)d 
X Vx + u - (x - 1)w 
V ax + / - X(X - l)w 

where w = 1 /q, d and q are used in place of any corresponding components of D 
and Q, and X is a corresponding eigenvalue of (2.13). Note that w is in the left-half 
complex plane when q is. 

Definition 3. An algorithm (1.1) is said to have the property of enclosure for all 
q in a set Sa if for every q in SQ the map of the exterior of the unit circle in the X-plane 
under (5.1) is a subset of that map with q -* o (w = 0). 

If an algorithm has this property its stability properties for q in Sa are at least as 
favorable as they are at infinity. Note that the point X = 1 is common to the mapping. 
(5.1) for all q. 
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We consider first the first-order algorithms of Theorem 2 with ,B - 0. In this case, 
(5.1) simplifies to 

(5.2) a= d + v-1- (_- w 
v I (X -1)w 

This mapping is bilinear in X for all w and, hence, it maps the unit circle in the X-plane 
onto circles and lines in the 8-plane. In fact, all of these mappings have in common 
the point a = -1 with a vertical tangent (corresponding to X = 1). This situation 
is depicted in Fig. 2. 

X - PLANE 8 - PLANE 

qweiO_1 

q u-I 

-I 0 I-3 -2 -1 0 1 2 

-i - 

FIGURE 2. Stable Region for Algorithm of Theorem 2 with 3 = 0, a = 1- u 

The exterior of the unit circle in the X-plane maps in the 8-plane onto 
(1) the exterior of the unit circle for q on the imaginary axis and not equal to zero, 
(2) the exterior of circles enclosing the unit circle for q in the left-half plane 

exterior to the circle e"' - 1, 
(3) the half-plane to the left of the line 6 = -I for q on the circle eP' - 1 and 

not equal to zero, and 
(4) the interior of circles tangent to and to the left of the line 6 - 1 for q 

interior to the circle ef' - 1, 
since the infinite point in the X-plane maps into 6 = -1 + q. 

We have, therefore, established the following: 
THEOREM 5. The first-order algorithms of Theorem 2 With -=0 have the property 

of enclosure for all q in the left-half complex plane. 
For the second-order algorithm of Theorem 3, (5.1) becomes 

(5.3) d= -2X 
X 

_ - 2(X - )w 
3X - 1 - 2X(X - l)w 

This mapping is considerably more difficult to study than that of (5.2) since it is no 
longer bilinear in X. 
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The mapping for w = 0 is exhibited in Fig. 1. A complex number which is an 
exterior normal to the bounding curve at a point (w, X) is given by 

(5.4) n = Xd,, where dx = Od/ax. 

On the other hand, the incremental change in d due to a change in w is given by 

(5.5) Ad = d.Aw + O((Aw)2), where d. = dd/dw. 

The requirement that such an increment in w not carry a point on the boundary into 
the interior of the region can be expressed as 

(5.6) -_ < Arg (d - Arg (Aw) ? 

Applying this to (5.3), we find that 

Xd, _ (3-2w)X+ 1 +2w 
(5.7) f d,- 2(X- 1)2 

and for X = eif, 

(5.8) f = -4(1 - cos so)-'[3 - 2w + (1 + 2w)e-"]. 

The argument (phase angle) of f will limit the permissible arguments for Aw in (5.6) 
for a given (w, X). We now have the following result. 

THEOREM 6. The second-order algorithm of Theorem 3 has the property of enclosure 
in a region SQ which 

1. contains the entire negative real half-line, and 
2. is bounded asymptotically as jqj -* co by the lines 

(5.9) -2 + Arcsin (D) < Arg (-q) < 2-Arcsin (i). 232 

The boundary of the region SQ for this algorithm is exhibited in Fig. 3. The details 
of the calculation leading to the determination of this boundary are discussed in 
Appendix 2. 

It should be mentioned that the property of enclosure is not necessary for useful 
stability properties for an algorithm. Neither is it sufficient in view of the limitation 
on the diagonalizability of D introduced at the beginning of this section. However, 
it is one meaningful attribute which is useful in characterizing an algorithm. Addi- 
tional work is needed to obtain results similar to those of this section for more 
general systems of ordinary differential equations. 

VI. Computational Experiences. An adaptive subroutine based on the algo- 
rithm of Theorem 3 with a = .71 was programmed in FORTRAN IV for the RCA 
Spectra 70/45 computer. This subroutine has proved effective in the numerical 
solution of a variety of stiff systems of ordinary differential equations arising in the 
transient response of electronic circuits and in some one-dimensional heat flow 
problems. 

It is not our intent to report here detailed experimental verification of the results 
of the theory presented in the preceding sections of this paper. However, experimental 
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FIGURE 3. Region S., of Enclosure for Algorithm of Theorem 3 

calculations have been carried out in connection with a linear system of differential 
equations with the Jacobian matrix perturbed by a family of matrices with known 
eigenvalues. These experiments have been sufficient to verify the main features of 
the asymptotically stable region exhibited in Fig. 1. 

VII. Conclusions. In this paper we have studied the properties of a class of 
PECE algorithms consisting of an application of a predictor followed by application 
of one iteration of a pseudo Newton-Raphson method to a corrector. Such algorithms 
require precisely two evaluations of the derivative function for each forward step. 
We have shown in Theorems I and 4 that the stability properties of such algorithms 
compare favorably with those obtained with application of the Newton-Raphson 
method to the corrector iterated to convergence. 

An important subclass of these algorithms have local truncation errors of 
second-order and some have local truncation errors of third-order. In Theorems 2 
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and 3, we exhibit members of this subclass wherein an estimate of the local truncation 
error is explicit in the algorithm at each step. 

Whereas initially (in Theorem 1) these algorithms were characterized in terms of 
their stability properties in the limit as the interval of integration becomes indefinitely 
large, we discuss their properties for other intervals of integration in Section 5 through 
the study of some enclosure properties. 
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Appendix 1. Precise Limiting Process for Definition 1. In determining the 
limiting region of absolute stability for Theorem 1, we simply set the terms involving 
Q_' in (2.11) to zero. In this appendix, we examine with more precision the effect 
on the eigenvalues as those terms approach zero. 

If we divide the members of (2.7) by -v, it becomes 

[I - A]t,,+i = - I+ aD + A]tn - 3Dtn- 1, 

(A 1.1) 
_ 

A = (I + vD)Q 1, 
V 

which in turn can be written as a single first-order recursion 

Rlw?, W = SIlWn , 

with 

(Al.2) =n KJ ?0 S T 

where 

R = I- A, S = - - aD- A, T -ED. 
V 

We now study the eigenvalue problem 

S1z = XR1z, 

with 

(Al.3) RI = I + E, S1 = So + E, E= -{A 0 

A very closely related problem is discussed by Wilkinson [13, p. 135] which differs 
from the present one only in that E appears only in S1 and not in R,. By following 
procedures exactly similar to those followed there, we find 

(A1.4) Min IX - XjI < 11 - XI IIPJI tIEll llPP1ll, 
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where X is an eigenvalue of (Al.3), the X, are the eigenvalues of the unperturbed 
system (2.13), and P1 is the matrix which diagonalizes SO. (Al.4) holds for an arbitrary 
matrix E though we are interested primarily in the case where I I E I is small. As noted 
before, the norms of vectors and matrices used here are the 2-norms [13, p. 80]. 

We will restrict our attention to the case 1Xi < 1 for which (Al.1) has solutions 
approaching zero. In that case, 1 - XI < 2, and further 

||EJJ - |tAJJ -< -IQ'I 1Q_11 II+ v 1 

(Al .5) 
< 1 + vIjD 

vqmin 

where qmin is h times the magnitude of the smallest eigenvalue of J (see (2.5)). Since 
the eigenvalues of A and, hence, of D are restricted by (2.22), we have that 

(AI.6) Min X - iI < K/h, 

where K is positive and bounded. This assures us that the eigenvalues of (Al.3) lie 
within a union of discs of radius K/h, with the eigenvalues of (2.13) as centers. By 
taking h sufficiently large, the radius of these discs can be made as small as desired. 

By requiring the Xi to be within a circle of radius I - K/h, we can be assured that 
the eigenvalues of (Al.3) will be less than unity. The complement of the map of the 
exterior of this circle will be internal to the region of stability R referred to in 
Theorem 1. However, by selecting h large enough this region, say Rh, will also enclose 
the origin since R properly encloses the origin. 

It is important to note that we are not asserting that absolute stability can be 
obtained for a given fixed A for arbitrarily large h, but only for A which continue to 
meet the requirement of (2.22) as h increases. 

Appendix 2. Enclosure Property for Second-Order Algorithm. In order to de- 
termine the region in the q-plane having the property of enclosure, we set 

(A2.1) d(w, X) = d(O, t7), 

where d(w, X) is given by (5.3). Values of w, X, and a7, satisfying (A2. 1), represent an 
intersection of the regions of stability R and Rh. If this equation is solved for w, we 
obtain explicitly 

1 -~~~2X(X - 1)(77 - 1 )2 

(A2.2) q=-= X(X + 1)(3 - l) - 7(X7 + 1)(3X- 1) 

The envelope of curves traced out by (A2.2) in the q-plane as X and X range over 

(A2.3) XA = e I, X- =e a _ < aP, a < 7r, 

furnish the boundary of S. 
This can be thought of as a one-parameter family of curves in the real (x, y) 

plane with 
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q = x + iy, 

(A2.4) q(X, q) = F((, a) + iG(p, a), so that 
x = Rio, a), 

y = G(w, a). 

A condition that must be satisfied on the envelope of this one-parameter family of 
curves is 

(A2.5) J('G)= FGa - FaGV = 0. 

The last two equations together determine the envelope. 
Now 

aq aq j 
(A2.6) =iXa = F + iGg, y=l = F, + iGc , 

so that 

(A2.7) Imag X7 aq = ?' 

where Imag [ denotes the imaginary part of and the upper bar denotes complex 
conjugate. Upon performing the operations indicated in (A2.7), we obtain 

Imag [11f2] = 0, where 

(A2.8) 1 3I1-I-- 1J 
I 

and 

f2=flF2 + 1 3X- 1 1. 
LO-1I X - 'O 3X - X -~ -I 

Computationally, one proceeds by selecting a value for p and finding a corre- 
sponding value for a satisfying (A2.8). This (a, a) pair is used in (A2.2) to obtain a 
point q on the boundary of SQ. The result of this computation is exhibited in Fig. 3. 
To within the accuracy of the computation, these points lie on the left branch of the 
hyperbola 

(A2.9) 8(x _ 1)2 _ y2 - 2 = O 

where q = x + iy. However, we know of no way of directly inferring this from 
(A2.2) and (A2.7). 
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