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The Calculation of Fourier Coefficients by the Mobius 
Inversion of the Poisson Summation Formula. 

Part III. Functions Having Algebraic Singularities* 
By J. N. Lyness 

Abstract. The purpose of this paper is to extend the MIPS theory described in Parts I 
and II to functions having algebraic singularities. As in the simpler cases, the theory is 
based on expressing the remainder term in the appropriate Fourier coefficient asymptotic 
expansion as an infinite series, each element of which is a remainder in the Euler-Maclaurin 
summation formula. In this way, an expression is found for f' f(x) cos 2irmx dx (O 5 
a < b ? 1) where f(x) = (x - a)a(b - x)6(x), +(x) being analytic and a, , > -1. This 
expression, and variants of it form a convenient basis for the numerical calculation of a 
set of Fourier coefficients. The calculation requires approximate values of the first few 
derivatives of +(x) at x = a and at x = b, together with trapezoidal rule sums over [0, 1] 
of f(). Some of the incidental constants are values of the generalized zeta function t(s, a). 

1. Outline of Problem. In Parts I and II (Lyness [1], [2]) of this series, the author 
has introduced representations for the Fourier coefficients 

(1.1) Ccm)f = f(x) cos 2rmx dx; S m~f = f(x) sin 2zrmx dx 

for various classes of functions f(x). These representations may be applied in the 
problem of calculating a set of Fourier coefficients to a uniform accuracy. This 
method of calculation is termed the MIPS method. 

In Part I, attention was restricted to functions satisfying 

(1.2) f(x) E C("l[O, 1]. 

In the first half of Part II, piecewise continuous functions were considered. This 
problem was immediately reduced to that of considering f(x) defined by 

f(x) = (x), O < x < b, 

(1.3) f(x) = 12(x), x = a, x = b, 

(x)= O, x<a,x> b, 

where O < a < b < 1 and 

(1.4) 4(x) E C(v)[a, b]. 

In the second half of Part II, a special treatment for analytic functions having known 
poles in the complex plane near the middle of the integration interval was given. 
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In this part (Part III), we conclude this series by generalizing the treatment to 
functions f(x) which have a finite number of algebraic singularities located on the 
interval of integration, but which are otherwise analytic on this interval. It suffices 
to treat only the interval between two adjacent singularities. Thus, we define 

(1.5) f(x) = (x - a)'(b - x)00(x), as > -1, 

where 

(1.6) +(x) E C&'[a, b] 

and 

(1.7) f(x) = 0, x < a, x > b. 

In general, at least one of a or A is nonintegral. If both are integers, the theory reduces 
to that described in Part II, while if in addition a = 0 and b = 1, it reduces to that 
described in Part I. 

The theory described in Parts I and II is valid for continuous functions f(x) (or 
4(x)) whose first p derivatives are continuous. However, the computational methods 
based on this theory become successively less useful, the lower the value of p. When 
f(x) has a low value of p by reason of an algebraic singularity of known form, the 
use of the methods described in this paper is significantly more efficient than those of 
the previous parts. 

The formulas derived in all cases involve trapezoidal rule sums of the form 

im 
(1.8) R'm"llf = 

I a," lU/nM), 
m i-O 

(1.9) Rlm'. f = - E f- i+ '), t, = (1 + v)/2, i I < 1, 

and in applications, these sums have to be calculated for m = 1, 2, *, , the terminal 
value depending on the required accuracy. In addition, approximations for the 
derivatives " 4<(b), 0+(a), q = 1, 2, * ,p, are required. However, as in the previous 
cases, the accuracy of the result need not be affected by the use of only poor ap- 
proximations for the derivatives. 

The formulas derived here are closely related to those considered previously. 
One difference is that the derivatives which occur in the formulas are g"')(a), h'q)(b) 
where 

(1.10) g(x) = (b -xr(x) 

(1. I 1) h(x) = (x - a)ao (x) 

and so a subsidiary calculation may be necessary to obtain these from 4(`)(a) and 
4(q)(b). Another difference is that the incidental coefficients are no longer trivial to 
compute. For example, the coefficients required in one version of the MIPS method 
are 

(1.12) t(-(q + )brm); q = 0, 1, 
s 
,p - 1; m = 1,2, ... * 

J 
3 

t(-(q + or), -am); q = 0, 1, ., Pa- 1; m = 1, 2, *.. , S. 
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Typically, pa = Pb = 5 and 3 = 20. Here f(s, x) is a function of period 1 in the x 
variable which coincides with the generalized zeta function t(s, x) in the interval 
0 < x < 1. It is relatively straightforward to write an algorithm to calculate these, 
but this is of course an inconvenience which does not occur in the special cases treated 
in Parts I and II. This is because when q is an integer, f(- q, x) is related to the periodic 
Bernoulli function BP(x) through the relation 

(1.13) f(-q, x) = -A1 +(x)/(l + q). 

In Part I, in fact, the only values of x required are l, 2, I and l and so the only coeffi- 
cients needed are Bernoulli and Euler numbers. 

In the less sophisticated cases dealt with in Parts I and II, the same basic approach 
was followed as will be followed here. This consists in writing down an asymptotic 
expansion (the FCAE) for the Fourier coefficient. This asymptotic expansion is then 
used to derive an asymptotic expansion for the error functional corresponding to a 
trapezoidal rule, which is a variant of the conventional Euler-Maclaurin expansion. 
This manipulation is carried out by means of the Poisson summation formula which 
also yields an expression for the remainder term for the Euler-Maclaurin expansion 
in terms of remainder terms of the FCAE. The Mobius inversion of this set of equa- 
tions produces the formula of interest by providing an expression (in the form of an 
infinite sum) for the remainder term in the FCAE. 

In the case under consideration here, the steps in the derivation are identical to 
those in the previous cases. The difference is that the results are more complicated. 
Consequently, in the derivation given here the discussion is kept to a minimum. Only 
points which do not arise in Parts I and II are discussed in any detail. 

2. The Fourier Coefficient and Euler-Maclaurin Asymptotic Expansions. The 
FCAE for the Fourier coefficients (1.1) of the function defined by (1.5) has been 
derived by Erdelyi [3]. A simpler proof, valid when +(x) is analytic in the interval 
[a, b], is given in Lyness [4]. In terms of the related functions g(x) and h(x) given by 
(1.10) and (1.11), this FCAE takes the form: 

C +m) + iS(m)f = f (X)eiTiM dx 

(2.1) = 2erimb-i rp/2 E h (b)i (q + 3)! 

Qao q! (27rm)Q 

where the remainder term satisfies the order relation 

(2.2) C p~paf + .S(m)I O(m-min(Vb+j6+lVa+a+l) as m 

The Poisson summation formula (I, 2.12) may be written 

(2.3) R[m'f - If = 2 E Re [e 2irtu f We2virmx dx] 

The proof of this formula, given in Part I, Section 2, depends on the circumstance 
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that the function coincides with its Fourier series at each point at which function 
values may be required. Thus: 

co co 

(2.4) f(xi) = Y(xj) = If + 2 E C&'Jf cos 27rrxi + 2 ES f sin 2n-rx. 
r-1 r-1 

When f(x) has an infinite singularity at a (or at b), relation (2.4) is not valid when 
xi = a (or b). If the rule sum R""'m'f then involves a function evaluation at x = a 
(or b), the derivation of (2.3) fails. In this case, the left-hand side of (2.3) is indeter- 
minate because of the term f(a) (or f(b)) while the series on the right fails to converge. 
Consequently, (2.3) is valid for all a > -1, A > -1 under the following restriction. 

Restriction 2.5. 

For a < 0, ma-t, $ integer, 

for f < 0, mb-t, 0 integer. 

We now proceed to substitute expression (2.1) into the right-hand side of (2.3). The 
sum over index r may be expressed in terms of the generalized zeta function r(s, a). 
In particular, we require the sum of the Fourier series 

co cos [27n-rx - (q + I1)ir/2] 
(2.6) ?(-q, x) = 2q! E + 

q _ O. all x; 0 > q > - 1, x 0 integer. 

For values of x on the interval (0, 1), this coincides with r(- q, x), while, for integer 
n, we have 

(2.7) f(-q, n) = '(r(-q, 0) + ?(-q, 1)), q > 0, n = integer, 

f(0, n) = 0, n integer. 

Carrying out this substitution, we find the 
Euler-Maclaurin Asymptotic Expansion. 

[m~~~wl P-' h(a)(b)(_l)'qf(-(q + p)mb-is Rws I' - if = E P + ),m-t) 
(2.8) Q -0 q! me+a~ 

+ V g(a)(a)f(- (q + a), t.- ma) + Elm.f, 
a+a+l Pb .,f 

ad0 q! m 

where the remainder term is given by 
co 

(2.9) E" Pb ,f = 2 A Re e~2Tirt(Cj,;p)j + 25 Re 
r-1 

In view of order relation (2.2), it follows that 

(2.10) E[m: PIf ',O(M-M 
in (Vb+J6 PV+a+1)) 

and also we note that Restriction 2.5 is in force here. This is the variant of the Euler- 
Maclaurin summation formula, valid for the function defined by (1.5). The sub- 
sidiary functions appearing on the right-hand side are defined by (1.10), (1.11) and 
(2.6). In addition (for a or f3 negative), Restriction 2.5 is also applicable. This result 
has been previously published in Lyness and Ninham [5] in a different notation. 
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3. The Singular Case. Before proceeding, it is convenient to examine carefully 
the nature of Restriction 2.5. This denies validity to the Euler-Maclaurin expansion 
(2.8) in the case when a function value f(a) (or f(b)) is required for the rule sum and 
a (or ,3) is negative. In this case, the rule sum RJ" Off is undefined since one of its 
constituents f(a) (or f(b)) is undefined. 

However, closer examination reveals that the remainder term E'n: r'f is properly 
defined by (2.9) independently of this restriction. What happens in (2.8) is that an 
'infinite' function value in the rule sum is precisely counterbalanced by an 'infinite' 
value of a generalized zeta function in the first coefficient in the expansion. 

Subsequently, we shall wish to evaluate sums over index m of expressions con- 
taining El", 'f. In order to do this when a or j3 is negative, we derive an alternate 
form of the Euler-Maclaurin expansion (2.8) which does not carry this inconvenient 
and inessential restriction. The result (Theorem 3.15 below) is simply that the 'infinite' 
function value may be ignored and that the 'infinite' coefficient is redefined in a 
specified and natural manner. 

We now define a modified trapezoidal rule sum R" ""f* as a version of Rl" Of 
which 'ignores any singularity.' Specifically, 

Definition 3.1. 

(3.1) 1['w - I G*j+t-l 

where 

f *(x) = f(x), when this is defined, 

= 0, otherwise. 

Let us suppose that there is a singularity at x = a, that is a < 0. We recall that 

(3.2) 1(x) = (x - a)ag(x), a < x < b. 

We define a function f.(x) which coincides with f(x) in the vicinity of x = a but is 
zero elsewhere as follows: 

(3.3) f(X) 
= 

(x - a)g(x), a < x < a + m/2, 
fa(x) = 0, elsewhere. 

The function 

(3.4) f. (x) = f(x) - Xa(x) 

then coincides with f(x) for x > a + m/2 and is zero for x < a + m/2. 
We now take a value of z for which RIVf is defined, write down the Euler- 

Maclaurin expansion (2.8) and subtract R"Ifa from both sides. This gives 

-tn'101 , -) =Pb-1 h (b)(_ )"f (q + 3) mb - 
ago0 q! m 

(3.5) + , g (a)f(-(q + a), t,- ma) 
q! m 

+ [g(a) ( t - a) - mfa + E'f. P 
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This formula, like the Euler-Maclaurin expansion, is valid only when t, - ma is not 
an integer. We now proceed to the limit as t, - ma approaches an integer. We denote 
this integer by -jf - 1, since then in the limit 

(3.6) (+ - 1 = f (a) 

and ja is the value of the index j in the rule sum (1.9) at which the singularity is 
encountered. Consequently, we set v to be a function of e given by 

(3.7) t, - ma = -ja - I + Ie 

and take the limit as e -- 0. The only terms in (3.5) in which a formal limiting process 
is required are those enclosed in square brackets. The first of these is evaluated as 
follows: 

(3.8) Lim (R[m, f - R [m ]fa] = Lim R[m""]f = R[m f* 
e-O e-O 

This follows from (3.4) as f,(a) = 0 and (when let < m/2) f.(xi) = f(xi) for other 
values xi required by the rule sum. 

We now treat the other term in square brackets. This is 

(3.9) T(e) = g(a) (a t, ma) - R[m fl! 

First, we note from (3.4) that, for 0 < I < m/2, 

Rln'plfa = Ia ta + m) a m (m0m < c- < m/2, (3.10) m OMeMm/2, 

R[i,]a = 0 -m/2 < e < 0. 

Thus, we treat separately the cases in which e > 0+ and e -4 0-. In the second 
case, we find 

Lim T(e) = g(a Lim P }ia- 1 + e) 
(3.11) E40- m E-0- 

Lim D(-a, 1 + e) = g(a)r(-a, l)/ma+ 

The first case is more complicated. For 0 < e < m/2, we may use (3.10) to express 
(3.9) in the form 

g___ g(a + e/rn) - g(a)le a +1 
(3.12) T(6) = g Ia (w(-a, f) - fCa) + m) 1 

ma+1 Em m) 

Since g'(a) exists and ca + 1 > 0, the second expression in (3.12) has the limiting 
value zero. Using the identity 

(3.13) (-ac, x) = Xa + (-a, x + 1), 

it follows that 

(3.14) Lim T(e) = g(a)(-a, 1)/ma+ 
e-O + 
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which coincides with (3.11). 
If there is a singularity at b, i.e. j3< 0, a similar derivation leads to a corresponding 

result. Consequently, we are able to state what adjustments are necessary to the 
Euler-Maclaurin expansion (2.8) in order to take into account ignoring a singularity. 
These are as follows: 

THEOREM 3.15. Expansion (2.8) is valid, with Rrm 1 * defined in (3.1) replacing 
R[" -lf so long as coefficients f(- 3, 1) and f(- a, 1) when they occur with ,3 < 0 and 
oa < 1 are replaced by t(-j , 1) and o(- a, 1), respectively. 

Though we do not require it here, Theorem 3.15 is the nontrivial part of a more 
general result, valid for all values of a, f3 > -1. Thus, 

THEOREM 3.16. In cases where R"m v] f involves afunction value at x = a, thisfunction 
value may be ignored in the Euler-Maclaurin expansion (2.8) if at the same time the 
term f(- a, 1) is replaced by D(- a, 1). 

Proof. When a < 0, this follows from Theorem 3.15. 
When a > 0, the function value is zero and f(- a, 1) a(-a, 1). 
When a = 0, a term g(a)/2m is omitted from the rule sum and in the expansion 

the term g(a)f(O, 1)/m is replaced by g(a)v(O, 1)/m. Since t(O, 1) - f(O, 1) = j, these 
two adjustments balance each other. 5 

One may go on from Theorem 3.15 to construct a quantitative theory of ignoring 
the singularity, valid only for this special type of singularity. However, the interest 
in this paper is that the term El-:"If generally defined by (2.8) may be evaluated 
even if (2.8) breaks down. All that is necessary is that (2.8) be reinterpreted in the 
context of ignoring the singularity and adjusting a single term in conformity with 
Theorem 3.15. 

4. M6bius Inversion. We may now proceed to the Mobius inversion of specific 
sets of equations obtained from (2.9), which relate the remainder terms in the dif- 
ferent expansions. There are many possibilities. The simplest is to set v = 1 in (2.9) 
giving 

(4.1) Eb 
fa= 2L 

Czb, 
Mf r-1 

The order of the terms on the right for large r is given by 
(4.2) C~~~~Mr) C_ O' -min (Vb+#i+1 Va+a+1)) 

(4.2) i-,b, a ( 

To apply the Mobius inversion technique, it is therefore sufficient to require that 

(4.3) Pb + 13 > 0; Pa + a > 0 

and the result is 

(4.4) 2CVbs jpEf - '[m 
e 1 

where A. is the sth M6bius number defined by 

M1 = 1, 
= 0 if ] has a square factor other than 1, 

(-1)' if j is the product of r distinct prime numbers (not including 1). 
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Other equations may be derived from (2.9) in a similar way. For example, 

(4.5) 2C~,./ n = - 

P8 
.Pa f 

(4.6) - ~ p84(ElmJ 01f -Ep; 01 f) 

(4.7) - P 1 (E ir8 o _ E' D3.of 

(4.8) =' - ,2( b1)21 bV 
- 

J 1 co 

8 1 (4.9) 2S,?M),6 af1Yj ~ j 
(- 1)28 1 

. 
1/2If_- E[m(2&-l) '+1/21/) 

8-i 

Thecoefficients are given by 

Pi = = j odd, 

(4.10) P 2i ' = 2p/I2, i = 2nk; k odd, 

v* =v,, j= 3k? 1, 

v* = 0, j= 3k. 

The various Eqs. (4.4) to (4.8) have slightly different characteristics. The first two 
require the value of If which, if available, leads to a shorter calculation. The second, 
third and fourth do not require function values at x = 0 and x = 1. This is convenient 
when the interval is [0, 1] and a or ,B are negative. (4.7) would not normally be used 
computationally, and is mentioned only because it is a natural correspondent to (4.9). 

We write out in full Eq. (4.4). This is: 
Db1 

h) (b)(-1)d(q 
+ )! cos [2irmb - 7r(q + 3 + 1)/2] 

acm) = 2 q! (27rm)a+#+ 

va2 
gq 

(a)(q + a)! cos [2irma + 7r(q + a + 1)/2] 

Fmoi _ _ h (b >(b)(-1)f(- (q + p3), msb) 
+ X A.,IR'mf - if - E 

a-i L ~ ~ ~ -0q! (ms)a+#'~~ 

- 1 
g9(a) (a)f(-(q + a), -msa)1 

Q-? q! (ms)a+'+4 J 

The other Eqs. (4.5)-(4.8) have a similar structure, the difference being that the terms 
in the sum over index s are different. As is the case in Parts I and II, these equations 
are identities in the coefficients h"a)(b) and g`)'(a), q = 1, 2, ... , and they are also 
identities in h(b) (or g(a)) if a (or E3) is positive. To establish this, we write definition 
(2.6) of f(-q, x) in the form 

((- q, mx) = 2 o , cos [2iirmx - (q + )r/2]* 
(4.12) -___ - 2q! ___________ 

m r=1 2rml 

Since this may be expressed as 

(4.13) G(m) = E F(rm), 
r-1 
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where 

(4.14) G(m)= f(-q, mx)/m ", 

F(m) = 2q! cos(27rmx - (q + 1)7r/2)/(27rm)1+", 

it may be formally inverted as follows: 

(4.15) F(m) = E AG(sm). 

Thus, 

(4.16) 2q! cos(27rmx - (q + 1)ir/2) - ,ut(q, msx) 
(2irm)'+a El (ms)'+' 

This inversion is validated using the Mobius inversion theorem (I, 5.4) when q > 0, 
since then 

00 00 
~~~2q! <C 

(4.17) Z Z buz F(klm)I < (v(1 + q))2 < . 

I-1 Kohl ~~(27r)'+ 

Replacing x by b and q by q + # in (4.16), we find 

cos(27rmb - (q + 0 + 1)ir/2) As -( + 0), msb) 
(4.18) 2(q + 0)! z +#-(++13 =sb - , 

(2lrm)Q++ - (Ms)'+" 

q+:> 0. 

In other words, the coefficient of h(a'(b)/q! in Eq. (4.11) is precisely zero. 
Thus, Eq. (4.11) is an identity in h(")(b) and in g") (a) when q + , > 0 and q + a 

> 0 and it remains valid if these numbers are arbitrarily replaced by other numbers. 
In particular, h(")(b) and g"''(a) may be replaced by approximate values 1i'(b) and 
-(a)(a 

The effect of using inaccurate derivatives in the MIPS calculation has been de- 
scribed in Section 9 of Part I. This is to increase the number of terms Et :lf which 
have to be calculated and so to lengthen the calculation. However, the overall accuracy 
is not impaired. 

5. Comments on the Calculation. It is conventional, before publishing formulas 
for use in numerical computation, for the author to satisfy himself that the formulas 
are valid or useful by carrying out some test problems. In this instance, a FORTRAN 
coded program has been written. This implements Eq. (4.11) and evaluates approxima- 
tions 2C(m)f to 

b 

(5.1) 2C(m)f = 2 f (x - a)a(b - x)00(x) cos 27rmx dx, m = 1, 2, ... 

each approximation having alleged absolute accuracy e. The code naturally requires 
as input parameters the values of e, a, b, a, 0 and If. In addition, it requires a sub- 
routine for +(x) for all x E [a, b] and a subroutine to provide the derivatives 0')(a), 
0''(b), q = 0, 1, 2, * , qm,1. The routine returns two sets of coefficients 

(5.2) P(<qma) AI, B1, A2, B2, . A, p, Bp, 

9(? 100), 2C(m)f, (m = 1, 2, * * * , S). 
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These may be used in the formula 

2C(m)f 2 j Ba cos [27rmb - 7r(q + )/2]/mQ+: 

(5.3) 

+ 2 L aqcos L27rma + r(q + a)/2]/m m > 
a-1 

to evaluate whichever of the Fourier coefficients are required. The approximation 
error is supposed to satisfy 

2 1C01'f - C("")f < e. 

(For brevity, various details and other options have been omitted from this 
description.) 

This program has been checked quite thoroughly in the cases in which a = 13 = 0 
as in that case there are many functions +(x) for which a simple expression for C(')f 
is known. This is the case dealt with in Parts I and II. 

The testing of the routine for noninteger a, 13, and particularly for a, 1 negative, 
was of particular interest. The main difficulty is that there appear to be no readily 
available special cases in which a simple expression for C("'f exists and no other 
methods designed for this problem. Thus, in general, one had to resort to numerical 
integration using an automatic quadrature routine. This is very time consuming. 
One needs to carry out a series of different integrations for different values of m. 
Each involves an integrand having two infinite singularities and which is oscillatory. 
The results were nearly always consistent. In the cases in which they were not, the 
error was traced to the automatic quadrature routine. 

It is, of course, quite unrealistic to expect a general automatic quadrature routine 
to be nearly as efficient as a carefully constructed special method. In general, it was 
more time consuming to carry out the easiest of these integrations, i.e. to evaluate 
the single Fourier coefficient C"lvf than to calculate the entire set using the MIPS 
method. These time factors varied between 20 and 2000. 

Because of the large amount of machine time required, the testing was not as 
thorough as is usually the case in testing quadrature methods. 

One special case was tested relatively thoroughly. This was the case a = 13 = - 

Here a simple substitution may be used to express the integrand in a form without 
singularities. The numerical quadrature was then much faster. In this case, results 
were consistently accurate and no discrepancies were noted. And the time factor 
mentioned above became about 1. That is to say that if only Chef, m = 1 or 2 were 
required, it was roughly equally time consuming to use the MIPS method as to make 
the transformation analytically and to use an automatic routine. 

At present, the only tests carried out are those described above. The following 
example provides a rough indication of the magnitudes involved in the MIPS cal- 
culation. 

The routine was used with 

a= 0.2, b= 0.9, a= -0.4, A=-0.7, +(x)= 1, e =10-8. 

The early cosine Fourier coefficients are of roughly unit magnitude and 2C' IOO)f3 

0.46. Ultimately, 
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C(m) O(m0.3) as m -- ax* 

The routine found s = 15. (At this stage four members of the sequence E,'8"f were 
smaller in magnitude than 10 8) 

Thus, on the basis of exact derivatives p(")(a), 0")(b), q = 0, 1, 2, 3, 4, and about 
50 function evaluations of f(x), the routine provided the values of the first fifteen 
Fourier coefficients and a set of ten numbers, which, used in (5.3), provided approxi- 
mations of alleged accuracy 10' to any of the Fourier coefficients. 
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