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On a Diophantine Equation Related to Perfect Codes 

By Ronald Alter 

Abstract. A necessary condition for the existence of perfect double Hamming-error- 
correcting codes on q symbols, for q a prime power, is that the Diophantine equation 

(n) + (1) (q -1) + (2) (q -1)2 = qk 

have a nontrivial solution in positive integers. In this paper this equation is considered 
for all q, and by applying Newton's method for approximating the roots of a polynomial, 
it is established that it has no nontrivial solutions for all n, odd k, and q of the form q = 2s2. 

1. Introduction. Let Vn be the n-dimensional vector space of all n-tuples whose 
entries are taken from the ring of integers mod q (q a prime power). By the distance 
between two points of V., we mean the number of places in which the points disagree. 
A perfect double Hamming-error-correcting code on q symbols is a subspace S of V,, 
subject to the following conditions: 

The distance between any two points of S is at least 5. 
Every' point V,, is within distance 2 of some (hence a unique) point of S. 
Clearly, #(Va) = qf, and, since S is a subspace, #(S) = q-lk for some k _ n. With 

regards to coding theory, n represents the number of transmission symbols and k is 
the number of check symbols. 

It is known that a necessary condition for the existence of perfect double 
Hamming-error-correcting codes on q symbols is that V, form disjoint spheres of 
radius two about the points of its subspace S. (For this sphere-packing development 
and more details and information about perfect Hamming-error-correcting codes, 
the reader is referred to Berlekamp [1].) 

If SQ represents the number of points in each such sphere, then #(S) -S = #(V,). 
But 

2 L 
S= (q- 

thus 

(1) jE 
n 

(q - = q k 

Writing (1) as a quadratic equation in n yields 

(2) (q - 1)2n2 _ (q2 - 4q + 3)n + 2(1 - qk) Q. 

Clearly, (2) always has the trivial solutions in positive integers k = n = I and 
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k = n = 2. By fixing q, (2) becomes a Diophantine equation in n and k. This equation 
has been completely solved by various authors, including the present one, for all k 
and n when q < 10. (For a discussion of this, the reader is referred to Alter [2].) 
J. H. van Lint [3] used (1) simultaneously with another Diophantine equation which 
is also a necessary condition for the existence of perfect Hamming-error-correcting 
codes and proved 

THEOREM 1. For n > 2 and q > 3 (q a prime power), there are no perfect double 
Hamming-error-correcting codes on q symbols. 

Because of the above theorem, (1) is no longer an equation of great importance 
to coding theorists. However, if one could show that, for the Hamming metric, when 
q is not a prime power, the total number of code words is still a power of q, (1) would 
then be an important equation in the study of perfect codes over a nonprime power 
alphabet. Nevertheless, independent of coding theory, (1) is an interesting Diophan- 
tine equation, for, among other things, very little is known about exponential 
Diophantine equations. 

In [2], using a variation of the Thue-Siegel-Roth Theorem, it is proven that (2) has 
only finitely many integer solutions. In the present paper, using Newton's method 
for solving equations by constructing an approximating sequence to the roots, the 
following theorem is established. 

THEOREM 2. The Diophantine equation (2) has no nontrivial solutions in positive 
integers for k odd and q of the form q = 2s2. 

2. Newton's Method. Returning to (2) and letting n = x/(q- 1), it follows 
that 

(3) x + (3 - q)x + 2(1 - q) 0. 

(If r is a root of (3), then r/(q - 1) is a root of (2) and thus must be an integer.) To 
apply Newton's method, let 

(4) f (x) = x + (3 - q)x + 2(1 - 
qk) 

Then 

(5) f'(x) = 2x + (3 - q) and f"(x) = 2. 

Clearly, f(x) is a monotone increasing function of x for all x _ (q - 3)/2, since 
f'(x) > 0 for all such x. Also, since f"(x) does not change sign, there are no points 
of inflection in the interval [(q - 3)/2, co). 

Make the initial guess 

(6) xO = q\/2 + 2- 3 

Then it follows that the sequence 

(7) -n1 -n 
j(X) n= 0 )2 . ~n+1 - f (x,,) n=O,1 

converges to the positive root r of f(x). 
The following computations, which are necessary for the application of this 
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method, are easily verified. 

A(xo) _ Iq 6 (o) 2 \2 q 
' 4 

=) x 0 f(xo) - q/2+ q 3 - 6q + I 

(8) f'xo) 2 8-/ 

(q2-6q+l1)2 k/2 +q2- -6q+1I 
f(x)= 128q k f (xl) = 2 \/2 q + 4 V\2 qk/2 

k/2 +q- 3 q6-q +1 (q2- 6q +1)2 
_ ~~~~~~~~~~-/2 q - 1q _ _ .. 2 -V~q + 2 8 V2qk/2 - 16 V2 qk/2(16qk + q2 - 6q + 1) 

It is easy to see from the last two terms in the expansion of x2, that the convergence 
to the positive root r of (3) is quite rapid. In fact, it follows that 

(9) f(x0) < 0 f(r) < f(x2) < f(xj) and thus XO < r < X2 < xI. 

3. Proof of the Theorem. There are two parts to this proof, (i) k > 3 and 

(ii) k = 3. 
(i) Letting k = 2t - 1 and q = 2s2, it follows that 

xO = 2'sk + S2 -2 + i m + .5 for some integer m. 

q2 -6q+1 1 
xI = m + .5 + e, where, fork > 3, 0< = /2 < < .09. 

8 2 8V-\2 

Hence it follows, for k > 3 odd, that 

(10) m + .5 < r < m + .59. 

Thus, r is not an integer and this completes the first part of the proof. 
(ii) Here k = 3 and (4) becomes 

(11) f(x) X2 + (3 - q)x + 2(1 - q3). 

Once again Newton's method is used, however this time a closer initial guess is 
made. Letting 

(12) x2 = 2 q 2 + + 

the following can be established. 

I(xo) - 31q + 46q - j'(xo) = 2 V2 q3/2 + 
q-7 

I 28q42q/' 

(13) I V2 q + 2 + 8(2q) 12 + 16(2q)'2(16q2 + q- 7) 

/ 31q2 + 46q -49 02 
f(x) = ( 1 6(2q) 12(6q + q 4 7)) 

From (13) it follows that 

(14) f(xo) < 0 = f(r) < f(xi) and thus x0 < r < xi. 
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Since q = 2s2, it follows that 

X0 = 4S3 + S2 - 2 + - + + - = M + - + - _ ts -2 8J 8 2 I'6 8 2 16s 

and xl < M + a/8 + 1/2 - 6/16s holds for some integer M and where [y] = greatest 
integer < y and a E A where A = {0, 1, 2, 3, 4, 5, 6, 7}. Now letting a run through 
the members of A and using 

(15) M + - +-- < r < M+ 8+ - - 6 
8 2 16s 8 2 16s' 

it follows for s > 3 (for s < 3, the problem has already been solved) that r lies 
properly between two consecutive integers and thus cannot be an integer. This 
completes the proof of Theorem 2. 

4. Remark. On examining Theorem 2 for k even and q of the form q = 2s2, 
one can easily establish that n- 1 or 2 (mod 4); however, it is not clear how to 
proceed from here. 
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