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Matrix Representations of Nonlinear Equation 
Iterations-Application to Parallel Computation 

By John R. Rice* 

Abstract. A matrix representation of iterative methods is presented which includes 
almost all those based on polynomial methods. A simple lemma and corollaries are estab- 
lished which show that the order of convergence of the iteration is the spectral radius of 
the matrix representation. A number of old and new methods, particularly those adapted to 
parallel computation, are analyzed using this representation. 

1. Introduction. We consider solving the single equation 

(1) f(x) = 0. 
The purpose of this note is threefold. First, we exhibit a matrix representation of 
iterative methods which includes almost all of those based on polynomial approxi- 
mation or Taylor series expansion. This representation can be written down by 
inspection in many cases, including the "standard" iteration methods. We next 
present a simple lemma and corollaries which show that the order of convergence 
of the iteration is the spectral radius of the matrix representation. Finally, we consider 
iteration methods particularly suited for parallel computation and single out two 
particularly efficient ones. 

Recall that a computer with parallel processing can perform many computations 
simultaneously. In particular, f(x) can be evaluated for a number of arguments in 
the same time that it takes to evaluate it for one argument. Note that parallel compu- 
tation sometimes can be used to speed even one evaluation of f(x), e.g. 

f(x) = x2 + cos(3x + 1) * sin(3x + 2) + sin(6x - 5) * cos(3x - 1) 

can be evaluated at almost the same speed as g(x) 4 cos(3x + 2). We assume that 
an adequate number of processors is available for any parallel computation specified 
in this paper. 

2. Matrix Representations. We consider iterative methods to compute a 
sequence of n-tuples { xk, k = 1, 2, * , n} , of values each of which is an estimate 
of the root x* of (1). We denote the n-tuple by X' = (xl, * *, 4), the xM need not be 
distinct. In order to exploit parallel computation, one considers iterations of the 
form 

(2) Xk , e(X), k = 1, 2, * * n, 

where S0k iS some iteration function. These computations usually can be performed 
simultaneously, and the speed of evaluation of Xi+l from Xi is independent of n. 
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We consider polynomial interpolation methods defined as follows: 
1. For each k, a subset of the n-tuple X' is selected. We indicate this seleQtion by 

the row vector T, = (tkl * *, tk.) which has t,i = 1 if x; is selected and has tki = 0 
otherwise. 

2. A polynomial P (y) in y is obtained which interpolates the points (x,, y, = 

f(x,)) selected. (This is classical inverse interpolation.) 
3. The value x"' is Pk(0). 

These methods are then represented by the matrix T with rows Tk. Two simple cases 
are illustrated below: 

Secant Method. We have a sequence of pairs xl, x2, and x'+1 is determined by 
linear interpolation through xl and x2. We simply take x"' to be xl. The matrix 
representation is 

1I 0, 

and one might symbolically visualize that 

(4+, x1l) 
X 8 I 

(XI X2+) TS() 
x2J 

but the required "operator" 0 is undefined. Recall that the error el -x 1 of 
the secant method satisfies e'+1 = Ke1e' and observe that ei+ e'. Note that the 
spectral radius of Ts is 1.618 which is the order of convergence of the secant method. 

Newton's Method. We may interpret Newton's method as the limiting case of 
chord interpolation as the two points of interpolation coalesce. Thus we have a 
sequence of pairs of identical points xl x2. The point x'+1 is determined by the 
interpolation of value and derivative (which is the limiting case for linear interpolation 
at coalescent points) and since x+' = xv+', the matrix representation has two identical 
rows: 

TN= [ 

Recall that the errors e' = -x* xl satisfy 
t 12 i i+1 + 

el- K(e') Kele2, e2 = = K(ese&) 

and observe that the spectral radius of TN is 2, which is the order of convergence of 
Newton's method. 

We note later some composite methods and such a method is represented by a 
set of matrices, one for each step in the composition. Thus, if one alternately used 
Newton's method and the secant method, the matrix representation is Ts, T. Observe 
that, with matrix products, 

S* TN 2 21 

which has spectral radius 3. It follows from Corollary 3 that this is the order of 
convergence of this composite method. 
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3. Order of Convergence. A discussion of parallel computation leads one to 
distinguish between the time that a computation takes and the effort that it takes. 
Thus we define two kinds of order for an iteration as follows: Set 

ek= -Log x - x* |, k = 1, 2, i, =; 1, 2, 

= 
. 

E - (el, eo, * * *, ~~el), 

and the temnporal order is 

IJEi,+l I (3) p = Lim lIEl 

where is a convenient vector norm. The exact choice does not affect the later 
analysis so we do not make one here. Let p be the total number of evaluations of 
f(x) and similar quantities (e.g. f'(x)) made in (2). The computational order is w = p ZD. 

The definition (3) is standard for the order, but it leads to certain technical com- 
plications since the limit need not exist in all cases. Thus, we alternatively define 
the temporal order by 

(3a) p = Lim (I IE'i I]''. 

If the limit in (3) exists, then (3a) gives the same value. This paper shows that the 
limit in (3a) does exist and shows how to compute the order p. 

Note that we say a method converges if I IE' II tends to infinity. This does not 
imply that x- x* converges to zero for all k. We have chosen to select the "best" 
component x4 as the one which measures the convergence and its order. 

We first establish a lemma which relates the order of convergence to zero of a 
sequence of recursively defined quantities to a matrix T used in the recursion. This 
lemma has application to other areas of numerical analysis besides the specific one 
in this paper. For simplicity of notation, we introduce the index set 

Ik = {i I tik = } k 1, 2, **, n, 
anid consider the following recursion 

i+1 (4) Vk = a I1([ + 6(v,)]v;, k = 1, 2, n, 

which defines the sequence of vectors VW. 
LEMMA. Suppose there are constants 3'. and a number M so that 

j3(vi)j jv' I for Ijv' < M. 

Let PT be the spectral radius (largest eigenvalue) of T. Fturther suppose that either 
lal < 1 or there is a k*, 1 < k* < n, so that Ih has at least two nonzero components. 
Then there is an e > 0 so that V? 1 < e implies that there is convergence and the order 
p of the convergence satisfies 

(5) P = PT. 

Proof. It follows from the second supposition that there is an e1 > 0 so that 
jj r Ii < e1 implies that some v' converges to zero. We assume that e < M, e < l 
and define 

e Log |vkI, E = (ej, e n). 
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We have from (4) that 

ek = Log a + Ze. + e Log( + (vD)) 
jEIk f jEIk 

or 

E__ A TE1 TW 

II.I = 
-- --+-_ + IIEill 

- 
1E ll IIE"Il I IEil I 

where 

W = (Log(l + 6(v;))), , A = (Log a, , Log a). 

The first assumption of the lemma implies that 

JITWII<IVima6 <V max P* 

and hence I ITWj I / I IEtl j converges to zero since I IEjl converges to + C. Similarly, 
we have that 1 4A 1 /I IjEj11 converges to zero. We have now established that E IEI I /jI E Ijj 
behaves like I I TEl jj I/I E jj as i tends to infinity. 

The vector W depends on i and we denote (IjA 141 + I ITWI 1)/ i E'I I by sE and we 
know that ci tends to zero. Even though I IE1j tends to infinity, we might have 

I TE I I = 0 if E' does not contain any component of the subspace associated with 
the eigenvalue PT. For the moment, we assume that E' has such a component for all i 
sufficiently large. Then we have 

I IlI I IITE''I 1(1 - (I -1/PT) ? I I '--1 I TE'lI (1 - C/PT)i_;_ 

-(PT)i | E 1l( _ I/PT)Yi 

Fix j and we have 

Lim IIE'l111" = Lim [PlT(i+l)/i IITE'IIll' (1 -elPT) ] 
i-ax0 i -- Co 

= PT( - e,/PT)- 

Now j is arbitrary and since Ej -O 0 as j -> o, we have 

Lim IE'lill' >= PT. 
j-,cO 

We likewise note that 

IIEll < IITE'II (1 + ,i-II/PT) 

and, since E' contains components in the subspace associated with PT, we have 

|E'l | | <PT IIE''II (1 + ei-1/PT). 

Thus 

hE'll < o7'- hE'll (1 + e,/PT)j 

and a similar argument shows that 

Lim IE'll11' < PT- 
ODx 
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This concludes the proof except for the following point. 
It is conceivable that there is an E' so that for all i sufficiently large Et is in a 

subspace complementary to the subspace associated with PT. Round-off effects will 
introduce components associated with the eigenvalue PT in any actual computation. 
However, the phrase "with probability one" has been included in the lemma's 
conclusion to express this observation. 

In order to apply this lemma to iterative methods, we need to derive a recursion 
relation for the errors e*. This can be done neatly and in generality using Newton's 
interpolation formula and divided differences. To simplify the notation we set 

g(y) = - I(y), g )(y) = dvg(y)/dy", Yk = X(Xk) X 

The points entering into the determinations of xk+1 are determined by Ik and we 
temporarily fix k and denote the elements of Ik by ji, 12, j,. We have 

(6) g(y) = g(yij) + g(yi1, YiJ(y - yi,) + ... * + g[yit, ,Yi' 

(y - Yiv) 
... (y - Yj,,) + g[Yi, Y,i, Y](Y - Y.1) (y -Yip 

The final term in (6) is the error of interpolation made in using the other terms which 
constitute Pk(Y). With x"' Pk(O), we have 

(7) kx1 - x*= | lg[yi,, y** , OYyi ...* Yi 
Note that the superscripts i have been omitted on the y's. This equation is somewhat 
more familiar if we note that 

Yim f= -i)(X x,") 
and replace the divided difference by a mean value of the pth derivative at a point alk. 

We obtain 

.4+1 - X*I -g(V)(fl TI It'(ti)I Ix - x;Il 
This may be rewritten in a form so as to apply the lemma as follows: 

(8) x4+1 - x*j - a TI (1 + a(Ix* -x1 ))Ix* - x;I 
jE I*k 

where 

a 19g1"(O)M If'(x*)IP, 

1 + a(Ix* - xi 1) - {1 + g (P+l)(3)f (j9)(x* - v (O)} 

I1 + f"s(t)(; -x*)If (x*)I 
We note that all the mean values flk, tk and , lie in the interval spanned by the x' 
and x*. We now have immediately from the lemma the 

COROLLARY 1. Assume that f'(x*) 0 0 and f ()(x*) exists and is continuous for 
j = 2, ,n + 1 and that the spectral radius of the matrix representation T of the 
iteration is greater than 1. Then there is an e > O so that Ix* x I < E, k = 1, 2, 
n, implies that the iteration defined by T converges with order p which is the spectral 
radius PT of T. 

It is perhaps not obvious that this corollary does not imply that all components 
of XV converge to x* with order PT, but rather only that some do. Useful methods 
are likely to have the same order of convergence for all components of X. 
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We note that a slight modification of this argument can be carried through when 
inverse interpolation is replaced by direct interpolation. We have 

COROLLARY 2. Assume that the polynomial interpolation method uses direct rather 
than inverse interpolation. Then Corollary 1 is still valid. 

These two corollaries include Theorem 1 of [1]. The present shorter and simpler 
proof is due to the fact that the difficulties inherent in Hermite interpolation are 
taken care of by the use of standard results on divided differences. 

We also note 
COROLLARY 3. The order p of convergence of a composite method TkTk_l ... T2T, 

is the spectral radius PT of the product of the matrices, i.e. of 

T = TkTk-l 
... T2T1. 

Thus, as noted earlier, the composition of Newton's and the secant method has 
order of convergence equal to the spectral radius of TSTN, which is 3.** 

4. Analysis of Old and New Iterative Methods. This section considers a num- 
ber of iterative methods which are either of practical interest or of an illustrative 
nature. 

a. Standard n-Point Newton and Secant Methods. Both of thesp are included and 
the matrix representations are given for the case of 4-point methods (using cubic 
polynomials). 

Newton Secant 
1 1 11] 1 11 1 

T = 1 111 T= 1 0 0 0 
1 1 1 10 1 0 0 

.1 1 1 1O 0 1 0 

p= 4, p largest zero of t4-t3 t2 t- 1 1.976, 

w= 4"14 2112 1.414, p. 

Note that T for the secant method is simply the companion matrix for the polynomial 
tn _ j7-I t'. 1-0 

b. Recent Parallel Computation Methods. The first attempt to use parallel compu- 
tation for solving nonlinear equations appears to be [3]. The approach there does 
not make effective use of parallel computation in that the order of convergence is 
not essentially increased, but the computational effort is. The situation is illustrated 
for the second method described in [3]. We choose N = 5 and the scheme is as follows 
(given an initial pair of points a0, bo so that f(a ,) > 0, f(bo,) < 0). 

1. Choose 5 points xi equally spaced in the interval ak, b,. 
2. Pair xi with a, or b, so that the signs of the values of f(x) are opposite. 
3. Compute yi by the secant method from this pair of points. 
4. Select the pair (out of the 12 points now generated) of points ak+,, b,.+1 so that 

f(x) changes sign between the pair and f(x) is minimized on the pair. . 

** Theorem 2 of [1] implies that the order of convergence is 3.24 = (1.62)(2) and thus we note 
that this theorem is incorrect. 
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It is intuitively plausible that the order of this method is the same as for the 
secant method. The use of parallel computation has only reduced the constants 
involved in the decay of error, not the order. This method is difficult to analyze due 
to step 4, however, one can decompose it into a composite method with matrix 
representation 

T- 2 
f2d -d2 d + d2] 
12- d3-d4 d3 + d41 

where 0 < di ? 1. The matrix T is the product of T732T1, corresponding to step 1, 
step 2 plus step 3 and step 4. We note that T, is 7 by 2, T2 is 12 by 7 and T3 is 2 by 12. 
The matrix T77 is not constant, but for all possibilities one finds that T is of the above 
form for appropriate values of the di. A simple analysis shows that the spectral 
radius of T is less than or equal to 2 and the computational order is thus at most 
21/ = 1.072. 

A class of methods of higher order are described in [2]. This class has two param- 
eters m and r and the matrix T is of order n = ni + r - 1, defined as follows: 

for i= 1, 2, *.. r, 

t = I for i + j ? n, n ,7 - 0 for i + j _ n, 

and for i - r + . n , + r - 1, 

I for i - r, tj = 0 otherwise. 

This is illustrated for ni = r 3, where we have 

1 1 1 1 

T= 1 1 1 0 0 p, 3.32. 

1 0 0 0 0 

.0 I 0 0 0, 

Thus, x4+' is determined by quartic interpolation onx, x - l 2, .. 5; xi+1 is 

determined by cubic interpolation on x, j = 1, 2, 3, 4; x3+1 is determined by quadratic 
interpolation on x,, j- 1, 2, 3, and x4+1, x5+1 are taken to be x1, x, respectively. 
Note that this class always includes at least one of the points of X' in X'+'. Note also 
that the notation here differs from that of [3]. 

A composite method simpler and more interesting than those of [3] is given in [11. 
It is denoted there by (1, 2) o (2, 1). It is the composition of the methods represented by 

T, I 1 Q 0 T2 = 1 1 1; 

1 0 O 1 0 0 

we have 
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3 1 17 

T = T2T1 [3 1 1 

which has spectral radius of 4.56 and thus the average temporal order is p = 2.14 
and the average computational order is wco 1.66.t 

c. Two New Methods for Parallel Computation. A little reflection shows that for 
a given value of n (or size of T), one wants to make the spectral radius of T as large 
as possible. It is easily seen that the largest spectral radius is achieved by Newton's 
method. This method requires that derivatives be available and thus one is naturally 
led to ask for the largest spectral radius which does not require derivatives. Two 
attractive methods from this point of view are illustrated for the case n 4. 

Simultaneous (n - 2) degree Coupled (n - 1), (n - 2) degree 

0 1 11 0 1 1 1 

1 0 1 1 1 0 1 1 
T- T=, 7= 

11 0 1 1 1 0 1 

'1 1 1 0 UI 1 1 1 

p-n - p In - I + (4 + (n - 1 
)2)1/2 ]/2, 

p (n - , p 

d. A Combination Secant and Hermite-Secant Method. We generate a sequence 
of 4-tuples of only two distinct points. Given two distinct points, two new ones are 
determined by (i) the ordinary secant method and (ii) interpolation of value and 
derivative at each of the two points. The rows of T that represent these two computa- 
tions are (1, 1, 1, 1) and (1, 0, 1, 0) and a square matrix may be obtained by adding 
any two convex combinations of these rows. These two rows simply add eigenvalues 
of zero to the matrix T. The result is 

1111~~~~~~~~~~~~/ '1111 1l 

p_ 3. = 3'4 1.32. 
I 0 1 0 

Lit O 1 0, 

e. Another Composite Iteration. (This example is taken from the Ph.D. qualifying 
exam at Stanford University [4].) Explicitly, we have in the usual notation 

Xn+= Xn- f(xn)//f(Xn), Xn+2 = Xn+1 - 
Xn+1)1Y(Xn ) 

In order to analyze this method with the current technique, we consider the composi- 
tion of three methods represented by 

(xn, xn) -* (x?+l, Xn)1 T, 

t The values 4.83 and 1.69 of [1] are incorrect and are to be replaced by 4.56 and 1.66, respectively. 
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(Xn+l, Xn) 
-* 

(xn+2, Xn+0)9 
T2 = (, 

I1 oJ 

(xn+2, xn+1) -* (xn+2, xn+2), T3 = [1 0 

We have T = T3T2T1 = (2 ') which has spectral radius 31/2. 

This method corresponds to replacing the second equation by 

Xin+2 = Xn+1 - f(xn+1) / f(xn+) - X)] = Xn+1 f(Xn+l) 

where in is a mean value. This results in a "high-order perturbation" of the original 
method as we have 

9n+ 2 = Xn+ 1 T_f'Qnt) [11 f"(Qn)(n xn) X 

Although it is not established here, such a "higher-order perturbation" does not 
affect the order of the method. 

We close with a comparison of the three most promising methods for parallel 
computation, namely Newton, simultaneous (n - 2) degree and coupled (n - 1), 
(n - 2) degree. We note that none of these schemes are really competitive with the 
secant method as far as computational order is concerned. The temporal and com- 
pitational orders are given in Table 1 for these three methods. 

TABLE 1. Comparison of Orders for Three Methods Adaptable to Parallel Processing 

Coupled (n - 1), (n - 2) Simultaneous n - 2 Newton's Method 
Degree Method Degree Method Degree (n - 1) 

Temporal ComputatiocaI Temporal Computational Temporal Computational 
n order order order order order order 

3 2.414 1.342 2 1.260 3 1.442 
4 3.303 1.348 3 1.316 4 1.414 
5 4.236 1.335 4 1.320 5 1.380 
6 5.193 1.316 5 1.308 6 1.348 
7 6.162 1.297 6 1.292 7 1,320 
9 8.123 1.262 8 1.260 9 1.277 

11 10.099 1.234 10 1.233 11 1.244 
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