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A Finite-Difference Method for Parabolic Differential
Equations with Mixed Derivatives

By Jan Krzysztof Kowalski

Abstract. In a recent paper, P, Jamet constructed a positive difference operator for a
parabolic differential operator whose coefficients are singular on the boundary, and
proved the existence of a unique solution of the boundary-value problem for the differential
equation using discrete barriers. In the present paper, Jamet’s results are extended to the
parabolic operator with mixed derivatives.

1. Introduction. Let G be a bounded domain in R*' and P = (X, ++* , Xn, £)
denote an element of G. Let L be a differential operator of the form

n 2
Lu(P) = 3} aii(P) 35— (P)
a.1) Pt ax; ax
Z; b (P) — (P) — c(P)u(P) — d(P) = (P).

The coefficients a;; = a;;, b;, ¢ and d are smooth functions in the interior of G,
but they may be singular as P approaches the boundary G of G. The existence of the
solution and the convergence of its approximations depend on the type of the singu-
larities. We assume that the operator L is parabolic, i.e.

12 VPEGY G, &) # (0, - ,0 > ay(Pkt >0,
. $,i=1

cP) =0, d(P) > 0.
Let T, be a nonempty subset of dG; I'; = dG — T; f be a bounded function

defined on G which is smooth in the interior of G, and let g €& C(G). We consider the
boundary-value problem

(1.3) Lu(P) = {(P), P EG, u(P) = g(P), PE&T,.
We want the solution u to be continuous in G\U T';, bounded in G and of the class
C(G).

In [3], P. Jamet investigated problem (1.3), however, without mixed derivatives.
In the present work, Jamet’s fundamental theorem (Theorem 2.1) is applied to the
problem with mixed derivatives.

II. Finite-Difference Operators of Positive Type. Let » = (A, ---, h,,7)be a
parameter, m,-integer, and for each 4,
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G ={(x1, " X VEGix; = mihy,i=1,--+ ,n;t= met}.
Let G, and 8G, be two complementary nonempty subsets of G,. We assume that

max d(P,8G) — 0 ash— 0.

PEIGH
(We denote by d(B, B’) the distance between two sets B and B’ in R**.)
To each point P € G, we associate a set 9U(P) C G, which satisfies
P&E (P) and max max d(P,P)—0 ash—0,

PEGH P'EN(P)
and which is called the mesh-neighborhood of P in G,.

We say that G, is simply connected, if VP € G, 3 a sequence of points P, - - - ,
Pk, SuchthatPo = P; P; e Gh,o § ié k - I;Pke 6G,,andP,-“€91(P¢)f0r
0<izsk-1

Let v be a function defined on G,. We define the finite-difference operator

Q.1 Lw(P) = D,  A(P, Pu(P').
P'EN(P)

If, for all P € G,,
2.2) AP, P')> 0 for P’ % P; EP)= », A(P,P)=0,

P'EN(P)

then the operator L, is said to be “of positive type” or “positive”.

The following maximum principle holds:

Let L, be of positive type, G, be connected and v be any function defined on G,
and such that VP € G,, L,o(P) = 0; then

max v(P) < max(O, max U(P))'

PEGH PEIGH
Now, we introduce some notations and definitions. For any given subdomain G’
of G, we define:
Gi=6GNG, G={PcGNG:9UP)CG}, oG, =G — Gi.

Definition 2.1. Let G' C G. We say that L, is consistent with L in the norm
CuGY, if

Vo € CYG"), max |Lp(P) — Le(P)| — 0 as h— 0.
PEGH
Definition 2.2. Let G’ C G, H be any set of parameters h, {G,},cx be a family of

netsand § = {v(P, h)} be a family of mesh-functions defined for each 2 on G, € {G,}.
We say that the family & is equicontinuous in G’, if

Ve>0d9>0VhE HVP, P E G,
d(P, Py < 1= |v(P, B) — v(P’, h)| < e.

Definition 2.3. Let G C G. Let {v(P, h)} be a family of mesh-functions defined
on G, € {G,}, and let u be a function defined on G’. We say that v(P, k) converges
uniformly to u(P) on G, if
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max [v(P, h) — u(P)| =0 as h— 0.
PEGH

Now, let us consider an infinite set H = {A} of vectors 4 with zero as an accumula-
tion point and the corresponding family {L,} of operators.

Definition 2.4 Let Q € 9G. A function B(P, Q) is a strong (local) discrete barrier
at the point Q relative to the family {L,}, if there exists a neighborhood Ny of the
point Q in the relative topology of G such that:

(2.32) B(-, Q) € C(No),

(2.3b) B(Q, Q) = 0, B(P, Q) < 0 VP € N, — {0},

(2.3¢c) VP &€ Ny, L,B(P, Q) + E(P) = 1 for h small enough.

Now, we consider the following system of linear equations

2.4 Lw(P, h) = {(P), P& Gy, (P, h) = g(P), P& G

It follows from the maximum principle that, if L, is positive and G, is simply
connected, then the system (2.3) has a unique solution v(P, ).

We shall assume that L, is positive and G, is connected. With these assumptions,
P. Jamet proved the following theorem, [3].

THEOREM 2.1. Let § = {v(P, h)} be the family of the solutions of (2.3) for all h
small enough. Let us assume

(i) There exists a function ¢ & C(G) such that Lye(P) = 1, VP € G, and for all h.

(ii) For any G’ C G’ C G and for any sequence {«(P, h,); h, — 0} C &, there
exists a subsequence which converges uniformly on G’ to a solution of the equation
Lu = f.

(iii) At each point Q & T, there exists a strong discrete barrier relative to the
Jamily {L,}.

Then, problem (1.3) has at least one solution u(P). Moreover, if this solution is
unique, v(P, h) converges to u(P) as h — 0, uniformly in G — N(T';), where N(T,) is
an arbitrary neighborhood of T,.

In the subsequent sections, we investigate when the assumptions of Theorem 2.1

are satisfied.

III. Construction of the Finite-Difference Schemes for the Problem with Mixed
Derivatives. Let 4, 7 be positive numbers and G, be the rectangular net with the
step & for the space variables (x,, - - - , x,) and = for the time 7. At each point P € G,
we define a vector of positive integers [7,];-1,...,n-

At the point P, € G, we define a set

n

MNo(Po) = U {P = Py +e.mh, P= Py — eimih}

i=1

U U U (P = P+ e;mh + e;mih-sgn a;;(Py),

i=1 jmi+l
= P, — e;m;h-sgn a;;(Po) — e;m;h}
V) {Po, Py — en+l7'}s
where ¢, is the versor of the x;-axis (1 < i < n) in R*", and e,,, the versor of z-axis.
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By 91,(P,) we denote the sum of all segments joining the point P, to each of the
points of 914(P,). Let

Gy = {P € G (P) C G}, M;= max my(P),

PEGA®
(B3.1) Ty={P=0@ - ,x ) E G — G
min [t = ] < rand Vi min |x; — x}| < hM,.-}.
Pwm(zy,..., zn, t)ET, PET,

We choose the sets G, and 3G, arbitrarily, provided I';, C 9G, and G} C G,. At
each point P € G} we take 9UP) = 9(P), and at the points P €& G — G, we define
9U(P) arbitrarily, provided 9U(P) N Gy = & ; this choice guarantees the connectedness
of G, for h small. At each point P & G, — G we define the operator L, arbitrarily,
provided conditions (2.2) are satisfied at that point. For P € G we take

Lyw(P) = E a; (P ;¢ + 21 ;Ex a?.-(P)v.m - in a;{(Pw,;-;
fml fmit il fmitl

3.2) =1

+ 2 B:(P)w,; + v,5)/2 — c(Pw — d(P)v;,

where
v.:(P) = [(P + e;m;h) — v(P)l/m;h,
v.(P) = [b(P) — v(P — eim-’h)]/m.'h» v = @),

v.:0:(P) = (P + e,m;h + e;m;h) — 20(P) + v(P — e;m;h — e;m;h))/h’ m.m;,
v.-;(P) = (P + e.m:h — e;m;h) — 20(P) + v(P — e;m;h + e,m;M)l/ K m;m;,

vi(P) = [v(P) — (P — e,., 7/ 7,

al;(P) = [a;;(P) + |a:;i(P)|}/2, aij(P) = ai;(P) — aiy(P); i,j=1,--,nm
and
(3.3)  aiP) = AiP) = ai(P) — 12," ”’;1‘;" {a:i (P, B:(P) = bi(P).

I=1;71% )
If the operator L, is positive, then its coefficients satisfy the following system of

inequalities

4.P) = 22 o)) > 0.

If mh |b(P)| = o(A4(P)) for P near the boundary G, then the upper system is
equivalent to the system

(3.4) ai(P) = 2 ‘:— la:(P)| > 0.

jml;ise i
Now, we shall prove the existence of the solution of system (3.4). Let

B = [b,]i.=1.....n De an arbitrary matrix and assume that 0 = k = n — 1L, k < i,
j = n. We denote
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bu b1 by
b by
* R R R EE TR R R R PR
B == |eeseeecoens . B i = b N
b b bk—l.l cer b1k k-1,
k1 kk
b cor bra-r by
by, by e by by, by e bll
P R R R I R R E R RRR .
B; = , B;; =
. 1 1]
bk—l,l be-1,k-1 bio1k bi1a be-1.8-1 bk-l.l
bn M bi,k—l bak b te b.'.k—l b.'i

where |B| = det B,

Let B*(m, p) be the minor of B* after striking out the mth column and pth row,
let B*(m) = B*(m, k). We introduce the analogous notation for the minors of B} ,
B*, and B%,.

LemMA 3.1. Using this notation, the following equality is valid:

(3.5) B'Bl; — B..B!; = BB

Proof. We carry out the proof by induction. For / = 1 the formula (3.5) is valid
(we take B° = 1). Suppose that the theorem is true for/ = k — 1 = 1.
We compute the left and right side of the formula (3.5) for / = k.

k~-1
Left = B"[Z (—=1)**"b;nB"i(m) + b.-,-B"“]

mml

k-1
- B’&[Z (—1)*"b,;,,B"(m) + b.-kB*"]

m=1
k-1
= 2 (—1)*""b;[B*B*;(m) — B*(m)B";]1 + b;;B*B*" — b, B";B*".

We compute now the term in square brackets, using the Laplace formula.

k~1
Bf‘,-(m)[z (—1)™*b,,,B*(m, p) + (— 1)’"**bk,.B"(m):|

p=1

B*B*,(m) — B*(m)B";

k-1
- B"(m)[z (—1)™**b,,,B*;(m, p) + (—D"‘*"Bh(m)]

p=1
k-1 :
= ;} (—1)™*"b,.[B*(m, p)B*(m) — B*;(m, p)B'(m)].

We introduce a matrix C(m, p) = [c,,] with the elements:

1=5r<p p=r=k—-—1 r=i

1 é s < m bn br+1.a bva
m .5._ S é k — 1 br.c+l br+1.a+l bp.an
s=7j b,; briy,i by;

Then
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B'(m) = (—1)*"'7[C(m, p)i7',  B'i(m, p) = [C(m, p)I'",

B*(m, p) = [C(m, p)I'", B (m) = (—=1)*"""IC(m, p)Ii
Using the inductive assumption we get
B ,(m)B*(m, p) — B*(m)B*;(m, p) = —B""'(m, p)B'{'(m).
Hence,

k-1 k-1
Left = Y (—1)*"b;n Zl (—1)™***"b,,,B*'(m, p)B;"(m)
£

mm=1
+ b”BkBk—l _ b”‘Bk B!,
But
k-1
Right = B""[Z (—1)™**'p,, B*'(m) — buBt; + b.-fB"]

mm]

Z( 1y .mB"*‘(m)Z( 1)**™b,,,B*"'(m, p)

mem]
— b,,B* 'B*, + b;;B*B*"' = Left,

which concludes the proof of the lemma.
For each P & G we set

b:;(P) = a;;(P), i=j,
—Iaii(P)Is i,

I

THEOREM 3.1. If

Iy >0IM>O0VPEGVE, - »£) Zi:lb.,(P)se; 2 Zz

fm]

and |b(P)| < M,

then the system of inequalities (3.4) has an integer solution and M; given by (3.1) are
bounded.
Proof. Let P be a fixed point. We transform (3.4) to the form

E b.','[l:; > 0, where B = l/m,-.
=l

Fori = 2,3, -+, n, we multiply the first inequality by b,, and the ith by b,, and
sum them. Using the inequalities b;; > 0 and b;; < 0 for i # j, we get

Z pi(bibsy — byjbin) > 0.
im2

Let bg) = (bllbn‘ tlbll)/bll and, for k = 23 3’ TR (i 1 and is.] g k + l’
let %Y = (biPbY — bi¥b{)/by’. Using Lemma 3.1 we deduce that

(3 6) b(_lg+1) = k+1|:H b(l)]
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For k = 1 formula (3.6) is true. Suppose that it is valid for k = m — 1 = 1. Then

T = [BNB” — Bt"iB:?r[II b‘”} / by = B™ B"'“[If b‘”]—z / by

1
(m—-l) H b(l)
-1, m—
m m m+l —_ [fI b(l)] Bm.+l
m—1 LA
vl T bzv]
i=1

1
therefore the formula (3.6) is true.

It follows from the assumption of the theorem that there exist two positive
numbers M, and C, (independent of P) such that Vk Vi, j = k, 'bE’,f’ > C,,
[b¥| < M,. Moreover, for i # j, b%*" = (bPb{¥ — bﬁ’;’b"")/b"" 0, because
b®¥ > 0 and the other three numbers are nonpositive. Therefore, for each k, we get
the following system of inequalities:

be',"u, i=kk+1,,n.
For k = n — 1 the system consists of two inequalities:

(3.7) BTty b, > 05 b ey F b P > 0.

We put g/ = 1 and set out to find the rational numbers uf, --- , u._, and C, such
that (3.4) is satisfied for u; = Cyu} and 1/p; integer. From (3.7),

(n— (n—1)
bn’:llr)»l < ”'[L_ b -

b(n-;l)_ lb(ﬂ—_li

and

b(n-l) Ib(n—l)l b'(.::) > -gp—

I R A TR Rl YA
For

(n—1)

o= E['—’Zm,—iE(:«!M-“r 1) + 1]/5(3-1‘-42+ 1),
bn-l,n—l CO CO

the following inequalities are valid:

Ib(n—l) ( M0 ) ]/ ( M > |b(“_—112,
> o Mo > 1ouZial o Co :
p=[b;21nl 3Co-,-1 t1 E3Co+ = b +3M0+Co

n—1,n—1
< |t (3 Mo 1) + 2]/E(3 My | 1)
p= b("—ll;— Co Co

b(n—'l) 2C b’(‘:—l) C
é l(u—l) + 2 (n—1 - 0 N
bn—l n—1 31‘40 Ibnm— 3MO

We can take u/_, = p. Then

Co 2C,

’ _—0 = =
Hn-1 > M, + C, Vooy and  pny < - C M, Vn—1-



682 JAN KRZYSZTOF KOWALSKI

Moreover,
_ - - - C _ Ch
b,(.: 1)_ (n=1) (1: 1) (1: 1)_ ] — (v-»_ 1) 0
1,n lﬂn— + b -1 n”ﬂ = |bn 1,n + bn 1,n—1 3Mo + Co |bn l.nl > 3Mo + Co B
and
} B 2C ] -
(n—1) (n~-1) 1 (n ] (n—-1)
bn n—l“ﬂ— + b |bn n—1 [b(»li"_ + 3Mo + bnn
1, 2C, C
— p™ _ pn-D 0 =9,
b = 1baial 330, > 3
Let
. (o3 co)
Ko-r = mm(3Mo + Co°
Then

Z b Vul > Koy, 1=n-—1,n.
Suppose that we have defined u/_,, +-- , uf,, such that D2, bi*u! He > K
and »{ > puf > v, >0forl=k+ 1, -+, n, where K, »;, »; depend only’on /, M,
and C,. Now, we must define u, K,, v,, v{ such that

> bPul > K, 1=k - ,n and v > uf > > 0.

8=k

This system is equivalent to the system

n b(k) n b(k)
_zk:b(k)ﬂc<”k<_;1b(k)”'u l=k+1,--+ ,n.
s=k+1 s=k+

The following inequalities hold

n

> bk M,
o = Z lb’:k) “£<_C—’:0 Z vl

sa=k+1 =k+1
n b(k) b,ﬁf)) , n b(k+l) , Kiur
— —_— g = — . > .
a-kz+l (b(k) blf"l:) K a=k2+l b(k) K MO
Let
'=E[a5( 1) z]/f( +1)-
He k Kk+1 + + Kk+l
Then
____Ifit‘_____ < 0 < g&,ﬂ_ _ " b(k) ’ Kk+1
or + 3M, + Kiny = M = Ok + 3M, < ";1 b(k) MHs — 3Mo »
therefore
K1 ’ M, < 2Ky

— k*l = 0 ’
Mo + Ker® T Go Z, vt

Ve =

3M,
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and

n n b( K n C K
b(? : > b(k)[ l,k : k+1 ] _ (k > _CofBk+r
2wz al > P + 3M, + Koo ‘E |bes’ | ui 2 M, + K,

smk s=k+1 =k

and, for ]l > k,

n n (k) Lid
2K,. +
> bPul 2 b§:’[ Fo Ll g 2] Sy Ko

(k)
smk smk+1 b 3Mo smk+1 3

We can then take

Kii _ CoKiwy )
3 73Mo + K.

We have the estimates
Co> K> Co*"/BM, + 3C)™,  w > [Co/BM, + 3C)I"*,

5(n—k)(n-—k-|-1)(Mo>
2 Co

For pf, «-- , u., defined as before, we take

1 3M,
== 1 E( E( g 1)) 2} s
" #f k-x..c.r.l?»-l [ T Ky + +

where lIem denotes the least common multiple of the numbers in brackets for k = 1,
n—1;K,= Coa,= [b271)|/bi"3") . Then the numbers m; satisfy the inequality

n—1 n—1,n-1

< HE[g?,f: (}Z‘l“)“]

Vi k=1 =k+1

e e )

Co k=1
—k—-1
E(3M0(3MOC;: 3C,) " 1) n 2].

P <

The estimate is independent of P, and the theorem is proved.

In the particular case, if we can take for each point P € G, the same numbers m;,
satisfying (3.4), then we can consider, instead of the square net, a rectangular net
with steps o, = m;h (i = 1,2, - - -, n). Then the mesh-neighborhood of each point P
consists of the mesh-points which lie nearest to P. In this case, the operator L need not
be uniformly elliptic, as the matrix [b,,] need not be positive definite near the bound-
ary.

However, if the coefficients of L are singular on the boundary, then the operator
L, given by (3.3) is not always of positive type. In this case we define following P.
Jamet:

zi+hi/2
a+(P h) — expf‘ : bi(xla Tt Xio1s Yy Xyttt 5 Xy t) dy
i\ ’
A'(xl’ Tt s Xim1s Vs Xiggs t 00 Xy t)

zi—hi/2

YT by, i, X Xisly *°° 5 Xny ¢
.(P h)— expf (1, s Xi—1s Vs Xi+1s s *ny )dy
A:(xl’ Tt s Xim1s Vs Xyttt Xy t)
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and

(3.8) a;(P, h) = A;(P)ai(P, h) + o73(P, )]/2,
Bi(P, h) = AP (P, h) — a3(P, 1)]/h;.
We substitute the o; and g; as defined in (3.2) for those i, for which A4, is singular.
The operator corresponding to (3.8) is always positive, because
0,5 + B:@,: + l’.s)/2 = A.‘[Ol:l’..' - a—;v‘,]/h;

and the coefficients o and «7 are positive.

LeEMMA 3.2. The operator (3.2) with the coefficients (3.8) is consistent with L in
the norm Cy(GY) for any G’ C G’ C G.

Proof. For G’ there exist the numbers N > 0, ¢ > 0 such that |,(P)/4; (P)| £ N
and A4,(P) = efor P & G'. Therefore

wip. 1y = expl ek o) = 1+ b 2B+ oy
ai(P,h)y=1— %—”i% + owd).
Hence,
3.9 ai(P, h) = Ai(P) + O(Y),  Bu(P, h) = by(P) + O(hy).
Because
Uiy T 05,7 = Vyui — ‘Z—:U.a.‘ - 'z—:l’.i.:’
and
v it 0 = 7",:—:0,.-.; + -Z—fv.;.: = V,i-is
we have

n n

Ly(P) = Zl [4:(P) + OD.cs + 2= D aii(P,iss

1=1 jmi+l

n n

= X aPre+ X P + 01 22 — Py — a(Py;

f=l j=i+l 2

= Y [a:(P) + O, ;.5

i=1

+ X3 X (@ (P, Fv.00) + a5 (PO + .40}

t=j =41

+ X 0:P) + o(h;)]‘ﬁ%f"—* — (P — d(PYr.

Using this equation, we deduce that for v € CY(G")
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max |Lw(P) — Lv(P)| = O(h + 7).
PEGH’

We take h;/r = const, therefore maxpeq,  |Ls0(P) — Lo(P)| = O(h).

Moreover, if a;;, b;, ¢ and d & C%G), then in any G’ C G’ C G the difference
quotients of the order p of «;, B;, ¢ and d are uniformly bounded for all P € G and
for all & sufficiently small.

IV. Sufficient Conditions for Uniform Boundedness of the Solutions. In this sec-
~ tion we study the existence of a function ¢(P) which satisfies condition (i) of Theorem
2.1. The existence of such a function guarantees the uniform boundedness of the
approximations o(P, k). The following criteria are given in [3] (we assume that G, =
G? and L, is defined by formula (3.2) together with (3.3) or (3.8)):

1. Suppose ¢(P) > m > 0 in G, then we can take o(P) = —1/m.

2. Suppose d(P) > m > 0 in G, then we take o(P) = —(K + t/m), where K > 0
is chosen so large that ¢(P) < 0 in G.

3. If there exists an i such that 4(P) > m > 0 and |[b(P)| < M in G, then
o(P) = K(exp(px;) — K’), with p > M/mand K, K’ sufficiently large, satisfies condition
(i) of Theorem 2.1.

V. Estimates of the Solutions of the Finite-Difference Problem. Let L, be a
finite-difference operator of positive type which has the form (3.2) for all P &€ G°.
Let § = {o(P, h)} be a family of mesh-functions defined for each % on G, € {G,}
and such that L,u(P, k) = f(P), V P € G}; 5 be the family of all difference quotients
of order p of the functions of &; G’ be an arbitrary interior subdomain of G (i.e.,
G' C G’ C G). Let the numbers m, be the same for all P & G. Let the coefficients
a;, b;, ¢, d € C"™(G) and their derivatives of order (n 4 1) be Lipschitz-continuous
in G’. We intend to show that the condition (ii) of Theorem 2.1 is satisfied.

We shall firstly prove the uniform boundedness of the sums 4*** Y s, w(P, h),
where w are difference quotients of order <n + 1 of the functions of &, §*, . To
avoid complications in the proof, we will develop the argument only in the case n = 2.

Let 4 be so small that G} C G3. Then, at each point P & G, we have

Ly = a1+ a1, +0,1.3) + a-120,1,5 + 0,1,2) + 020,23

(5.1)
+ B +v,7)/2 + B2 +0.3)/2 —cw — dvy = f,
where
- h - hy - -
ay = a; + |a12|s az = a, + !aml’ Ci12 = Qi Q.12 = Gy
hz hl

and o;, B; are defined by formula (3.3) or (3.8).
Moreover, we shall assume that d = 1 in G’. There exist constants m and M,

such that for all P € G} we have
0 < m <ai(P, h) < M’ |aii(P)| < M’ IB’L(P)‘ < M’ i9j= l’ 2;
P < M, (P <M, |(P,h <M forvEF

for  small enough. We assume that M is also an upper bound for any of the difference
quotients of e, i, ¢, f of order =n 4 2. We denote Ljp = L,v + v..

5.2)
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ian Y v'd + VAU VUL,
< 2K Y {29°Ci/C, + (288C; + 2C; + 2CY) |Vanl*/C,
+ 29 [Vl (Cs + CO}A + |[VAUI™)
+ max{1, 2"}r* 3 2 |Van| 2Ci1 + |V, U|™).

If we now choose |7(P)| and |V ,n(P)| to be bounded over {,, then we have that
2l 4 [V,U|H™ 24|V, U,,| € L(Q) for s = 1, 2. Our constant J, is now estimated
by the inequality

C2J, £ 4A4{2™(Ci + (144C; + C; + C5) + CoCs + CH}(mu() + TT)
+ 2A4C; max{1, 2" }Cim(D) + T (my(2)™),

where 4 = (max{max|n|, max|V,n|})*.
(b) If m = 2, we have

CUIVAULIB S 6Ci{k 2 ' VAU, + # 20 [Vanl* |VaU*/e}
+ Cit* 32 0" + 4K 20 (Co [Vanl 1 |V UI* + Cin [V, UD
+ 2CH° 30 0 [Vanl A + VA UP)
+ Ciah® 2 ' IVaUa /2 + Ci* T 0*(1 + [VaUY) 2.
Now choose ¢, = C,/24C; and ¢; = C,/2C, to get the estimate
C.Js/2 S 144(C3/CHR® Y. |Vanl® VA UJ?
+ Ci® 20 9" + CiF' 320 ' + VW UPY/C
+ 41* 3 (Co |Vanl- VA U| + Chn |V, U|
+2CH° Y 0 [Vanl (1 + [V UP).
(c) Now apply the Holder Inequality to (10) to get
G T (L + VW UPD™"h X a™ [VaUa ™™
S (0 X {(12Gs [Van] + 2CdA + [V U™V [|1n(Va U, |
+ & X {1 + [VRUPY™ 2N E X O [V UL DY
+ CE Y 0t + 4Gk 3 [Vanl n(1 + [V U™
+ 4CiH* 30 0 [Vanl (1 + [V U™

Now apply the Schwartz Inequality to the first two terms on the right side of the
above to get, taking ¢, = Cy(h* X (1 + |VAUHYYH)™"/2and ¢ = «,

B 3 0™ (VAU ™™ £ Q/C)XE X (1 + VAU ™ i 30 o
+ @& XA+ |VaUPpHHyTm
(12) (X {(12Cs [Van] + 1Ca)(1 + [V U2y
+ & 2 {n(1 + [VAUPVYR
+ 4Ch* 3 |Van| n(l + [V UD™? + 4CiH* 30 0 [Vanl (1 + [V U™,

(1n
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hhs 3 [Cw) + COw)]

t=1o

= hyh, Z {_auww 1.1 — anww 1,1+ wila-12w),2

+ wi(a-1aW) 3 — a_12WW, 1,3 — Q_12WW, 1,5 — Qy12WW 1,2
— a12WW, 1,3 + wileaew),s + walaaew)s + walanw),,
+ wiaanw)s — Gww, + Biww,y + Biww, + Biww 1)/2
+ W(B:w).2 + w(B:w).5)/2 — (Boww,s + Baww,3)/2 + 2cw’}
+ hfatiww, + anww’ + atiwiw, + a,uwwfi;

+ aoww’ + alhwws + BT W w 4+ Boww'1/2) 2

fmiy o

Hence,

so’

by 2 Z [C(w) + C(w)]

=i =70

= —2hh, i OZ {auww.x.T -+ Ol-lzw(W.l.i + W.T.z) + a1aw(W,1,2 + W.T.'z')
+ anww o5 + Biww,: + wp) + Baw(w,, + w3]/2 — cw'}

i ’
. 1 i i i i
+ b Z {71" [O‘I(I(W+ )2 - a11W2 + (e — 624;1)”’“;r ]
i=io 1

-+ [ai:zWHW.z + C!—leWTEi + a:i.zWHW.E +.C¥+12WW+.;]

imio’

+ ww™ @ + ﬁl)/2}|

t=iy
1o/

1 i us s
+ Yy {;‘ [oha(W* ') — anw® + (@ — azi)ww'’]
2

imio
+ [a:{ZWHW.l + a—lzwwfii + 0l+12WWT1i + a:;2W+,W.T]
i=jo’

+ ww @ + 32)/2}1.

=11

The following inequalities hold:

o’
hy Z [a-tizwﬂw.l + 01—12WW ]|:-”

=11
i=io

1=1,

{Z [ty — aXiw" W' + (e — ali)w" wl + alnw" W iIR }|
=i

=5 Z DT CHE Y e (A S S AR W I S U S (R B

feto §mi1,d0’

+— DI DI (A S S (A W E

imig,i0’ i=iu.io’
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1o’
) S
By Y [oawwhl + atiwiw g1liz)

= %‘1 )> o ORI 4 W e+ )
+ M E Z [(w+i+i)2 + w?].
Therefore,

> Z [Cw) + COw)]

S=io §=jo

S —2mh, Z Z WL;.W + h Z [ (WH)Q - aan:”::::::'

imio i=7o 1 j=jo

’Zo [ ")2 — agzwzll’:;: + h2 Z M Z [w2 + (w-n')z]

h2 imio f=io =iy, te’

> % MT W+

t=io T=miiide’

M Z DIRIRT (A S e (C B S UM M S A S SR

imio f=i1,i0’

Nl'—

+ 2h,[W* + (w1}

+ M Z Z (@ 4+ B Iw*Y + WY + (WY + W'

+ 2m[w’ + WY1}
+M > X WY + WL

imiy,i0’ fmir1,do’

Summing from k = ko to k = k}, we get

Thihy D gj 2 [e(w) + Tw)]
S — 2tk 2, 2. D, whliw + fx(Z Soauw — 3, Zauwz)
Qo Ria Rio

+1(E Sauw' ~ T T an?)

Ra: Rao

A Y W A Y W+ M Y, W
81 8o T,

Now, leti, < i £ i}, jo £ j =< ji. By summation by parts with respect to k, we get

(5.9

(5.5 7 E w! + wh) = —27° E wwer + [(W**)? — willbke,

k=ko

Using the identity w,; = (w, + w;) — 2w;, we deduce, for iy < i < i}, jo < j = J,
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ko' ko'
Y wwg = wwtt iR — 27 D ww,
k=ko k=ko
1 3 b2 =
+
zZ —= > WA+ =27 3 ww

2 kmky ko’ k=ko
Taking this inequality into (5.5), we get
ko’ ko’
W W) S 4 Doww+2 3, W
k=ko k=ko k=ki ki’

hence

Thlhazoz E(W3+W%)§4h1hz Z; waz"‘"%hz Esz.wz'

Multiplying this inequality by /2 and adding (5.4), we get
LUDIDIDY [C(w) + Con + 3 i + w?)]
é 2Th1hz Z OZ: Z W(ng - W{) + TX(Z Ea11W2 -_ Z Zauwz)
° Ry, Rio
+ i (E E O!MW2 - E Z azzwz)
Rax Rao
+ rh,(A + 3)(2 Z w? + Z Z wz) + Mt Z w.
8, 8o T,

The next step of the proof is to estimate rh.h, D D, D o, (W?, + W + W, + w?;)
in terms of thhy 2, 2 2 q. [C(W) + C(w)]. We have

(5.7 Thihs D g_‘, > ICw)+ Cw)l= D+ E+ F+ H,

{5.6)

where
;2 . . . R
D = thh, Z Z Z [a':;w,l + (Ol:;2 + aiiz)w.lw.z + (@12 + a:iz)w.iw.z
Qo
- i 2 - .
-+ a;;W.z + anwi + (@ i + a—;z)W.IW,E
' + (@12 + aliwaws + auw’sl;
E = thyh, E Z E wla aw, + ai2,1w,2 + Q-12,2W,1 + Qy12,3W,2 + Qy12,2W.T
Qo
+ ag2oW,2 + a1, IW,T T+ @12, iWF T @ia5W T

T+ a2, W,3 T+ aii2,5W,1 + g 3w 3]

F = driuhy 30 20 20 wiow™ + Buow™ + Bosw™ + Boaw’;
H = 2thhy, 3, >, >, cw 2 0.

Qo

Using (5.2), we deduce
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+i +iNf1
D =z thh, Z Z Z [Otuw 1+ 3l + a—n)(X wh + Aw?,)
- +iyf1
— 3l + 01+12)(X W?T + )\W?z)
7.2 -2 1, —4 - 1 , 2
+ azw + auiws + 3@, + 0‘-12)(5\' w1+ )\W.E)
+1 —-i 1 -
— 3l + 01+12)(5\' W?l + )\W?E) + azgw?E]
= rthihom D é‘: > W+ Wi+ w4+ wh),

because for 4 small enough, ot} — (a5, — a*i,)/A > m;
|E| < 3M7hih; D, ; 22wl Awal + [wal + (wsl + |wal)
6M
-K— Thyhy E OZ Z w + § Mxrh,hy Z :2‘ Z (W?l + W?z + W?I + W?E)

for any positive number «;

|F| £ 2Mrhh, 3, Z 3w

Using those estimates we deduce from (5.7)

(m — %MK)7h1h2 Z QZ Z (W?l + W?z + W?i’ + W?E)

(5.9)
= rhiby X 30 30 1€ + Co0l + 2M(1 + %)fhlha PIDIDILS
° Ol

Lemma 5.1 follows directly from (5.6) and (5.8) and the obvious fact that the
preceding argument is valid for any / and not only / = 0.

LEMMA 5.2. Let G' C G” C G'. Suppose that functions y and z defined on G
satisfy for any rectangle Q, C Gj, an inequality of the form:

Thihy Z Z Z y

Qi-1

69 55 Ted - L Ted)+ (5 T - T o)

Ry, 1-1 Ry, 1—1

IIA

TRYI0 0 ENRED ) P ERENEVE 15 35 LR
1 -1 Qi

where My, M,, M,, M, M, are positive constants and where ¢, and ¢, are positive
bounded functions defined on G}. Then, we have the estimate

(5.10) Thyh, }:GZ >V < Krhhy, D, GZ > 24 K,
|3 »’

where the constants K and K’ depend only on the constants M;, on the bound of the
functions ¢, and ¢, and on the domains G' and G”'.
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Proof. The proof of this lemma is a simple modification of the proof which is
contained in Courant, Friedrichs and Lewy [1]. It is based on a double summation of
inequality (5.9).

LEMMA 5.3. If conditions (5.2) hold for n = 2, then the sums thihy 30, > g0 W
for all w, which are difference quotients of order <5 of the functions of ¥, are uniformly
bounded.

Proof. We will study separately each of these sums.
1. thih 2, 2 D 6u 0% We put w = v in formula (5.3). Since |o(P, k)| < M and
|Lyo(P, B)| = | {(P)| < M, it follows from Lemma 5.1 that

(m — $M)rhihy Y :/: D W+ W+ Wi+ W)

< 2M°V(G) + 1-)\<Z DSanwt — > 2 auw")

Ry, 141 Ri1

+ i (Z zaggw2 -~ Z Zagzwa) + 'rhl(A + %)(ZSIZ w? -+ Z E wz)

Ra, 1+ Rat 84

+ 2M(l + %)Thlhg D2 > w4+ 16M,
Q

I+

where V(G) denotes volume of G, o—diameter of G. Taking y* = w?, + w?, + w?; + w?;
and z = w, we get the inequality of the form (5.9). Applying Lemma 5.2, we deduce
that the sums 7h,h, 2, 2 O g, 0% are uniformly bounded.

2. thihy D 2 D6y U, We take wy = v,,. It follows from (5.1) that

Lyw, = f1 — anawi1 — a+1z,1(W:,'z + w13 — a_u,l(WT.'E + Wx.z) - aaz,xvt;.'i

- 31,1(”’:‘ + Wl)/z - B2,l(vt2‘ + vf%)/Z + C,lvH-

Therefore, using (5.2), we have
|LhW1|‘lW1| =M |W1|‘[1 + M+ |W1,1| + |Wr.‘2| + |W1,2| + |Wr,‘§
+ wizl + sl + 3wl + [wi'] + 7] + [o.2D]

Since
wi | K
il = A+ W/, Dal-lwael S 50+ 5w

[wil-[wi] S 30 + (1))
and thh, 3 2 Doau Wi, thihy 2 O, D q, V%, are bounded, we have the inequality

Thiky 3 GE > Lawi]s [wi] £ M)
2.

+ 3 Mrhhy 30 30 30 Bhaa + O 00 + @197 +olus + @1,

Likewise,
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Thihy Z GE Z |th.2|‘|v.2l = M)
~

-+ £2 Mrth,h, Z GZ Z [0?2_2 + (U:in.l)z + 0,22.1 + (Ufzi.i)z + U?z.? + (Ufli.i)zl-
=
If we substitute these two inequalities in (5.3) and take

2 2 2 2 2 2 2 2
z" =0 +0vl,, y = v?l.l +0v,,1+ v 0+ Ui F U?z,i + U?z,z + l’?z.i,

we get the inequality
(m - %MK)Thlhg Z Z Z yz
Qi
— Mrthyh, Z; Z (0?1.2 + D?l.f + 0?2.5 + 0?1.2 + U?z,'f + U?I.T)
141

s 10+ A o' = L Do) +2(T Tows’ = S Saws’)

Ry, 141 Rii Ra,i+1 Rl
TR TR 02D >ERTS > >F) REPYY (W) EWAS 525 3500
81 S+ Qi+x

For 7 small enough,

Mhyh, Z 2 (0?1,2 + U?l,i + 0?2,5 + 0?1.2 + U?z.i + U?l.'l')

S+
= ‘rg’hlhz E QZ: Z-V2:
]

therefore, we get an inequality of the form (5.9). Applying Lemma 5.2, we deduce
that the sums 7.k, 2, D, D, 0% ; are uniformly bounded for any ¢’ C G’ C G.
3. thih, 2, D D e, 2. Formula (5.1) yields

o] = |f] + M3l + ool + o5zl + logel + loazl + ..z
+ 2loal + sl + ol + o.zD) + o]l

Therefore, the boundedness of the sums rhh, D, >, D.q, 0% and
thihy D, D D au U, ; implies the boundedness of the sums rh,hy Y D D g, D2

The uniform boundedness of all sums r/,h, 3, . O 6, w* can be proved in the
same way, after differencing Eq. (5.1).

LemMA 5.4 (SOBOLEV’S THEOREM). If the sumsthy - - - h, Eo»' w?(P, k) are uniformly
bounded for all w(P, h) which are difference quotients of order <n + 1 of the functions
of 5, then the family & is equicontinuous in any subdomain G'' C G"" C G'.

Proof. The proof is a modification of the proof of Sobolev’s theorem which is
contained in [4].

We denote

Py = (ithy, +++ , ichy, k°7), Py = (iShy, «+- , iohn, K''7),
R(Po) = {P = (iyhy, *++ ,isho k) 5 S 1, S ' G=1, -+ ,n), kK S k S k"},
@ = Ok =b;, ' — ) = a.
We take b; and a such that for each P, € G}’ is R(P,) C G}. Leti® < i/ < i!’. For
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any function w defined on G,
1'=1
iymiy’
WI:‘."lo = hl Z Wi,

14,0

Applying Schwarz’s inequality, we get

[wlizi]? Z W,

T1m3,0

therefore

i/-1 172
lei,-in"' = |W|¢,-¢,'| + (blhl)l/z( E W?l) .

Squaring both sides of this inequality and applying the inequality (¢ + b)* <
24® + 2b°, we have

$1/—1

(wli'x-ix")z é 2(WI{,-,’,’)2 + 2b1h1 E W":l.

t1mi,°
Summing these inequalities for i < i/ < i{’, we obtain

b $107=1 i =1
#(Wls,-.‘w) 2 Z w® + 257 E wh.
1 f1=1,° $1m4,°
Hence
2 hl nJt 2 2 n 2
Wl = 230 | 30 w' 6 20 wh |-
1m0 f1miy

By induction we get

(wli,-i‘°.in=ia°)2 é 1 [ ‘E (wl|:-|a°) + b2 E (W 1)[1,-1, ]

t1mi,° t1mi°

h h $1''=1 §a’
b b2 Z Z (W + blw 1+ bzw 2 + bfb:w?l.z)s
2 1,=1,° {,=m1,°

and, for n,

.0 .0 2
w(llhl’ R 'uhn’ kT)

Ly e hy RS inrr=1 &
RIS SHRTID ) FSCD 1 AR SO SN |
1

n o t1=1,° tn=1n° p=1

IA

For any function v &€ &,

k''—1

o(P) — v(Po) = T D, v(i3hy, -+, inha, k),
k=k°
therefore
k''—-1 1/2
ID(PI) - U(Po)l é 1/2( vt(i‘l)hl’ ttt i?thn: kT))

lr,-k°

. hy v
< (afz 27——"7 > [v, + Zb,b, » R b,‘iv?.l.z.......]> .

n R(Po)
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The assumption of the lemma implies the equicontinuity of the functions 0 € &
with respect to . In the same way, we can show the equicontinuity with respect to
each variable; therefore the functions of & are equicontinuous.

THEOREM 5.1. Let G C R® and let the coefficients of the operator L be of the class
C*(G) and their third derivatives be Lipschitz-continuous in any G' C G’ C G, and let
Vh £ hy VP € G, Lyw(P, h) = f(P). Then, any sequence {v(P, h,); h, » 0} C &
admits a subsequence which converges uniformly in G’ to a solution of the differential
equation Lu = f.

Proof. If the assumptions of the theorem are satisfied, we can apply Lemma 5.3.
Then, Lemma 5.4 shows that v, v ;, v ;,;, v, are equicontinuous in G} for 4 small
enough. G’ is covered by cubic cells of the mesh; by linear interpolation in these
cells, we can extend the equicontinuous family & of the mesh-functions into an
equicontinuous family defined on all of G'.

The theorem follows by application of Ascoli’s theorem to the families &, §* and
5 and because of conditions (3.9).

VI. Existence of Discrete Barriers. Throughout this section, we study various
types of local conditions on G and on L, which guarantee the existence of a strong
discrete barrier.

Let Q = (x?, x3, t°) € T, and assume that there exists a neighborhood N, of @
such that G, N\ Ng C G for A small enough.

1. Assume that: the coefficients of the operator L are uniformly continuous in
Ng; limp.g [a::(P)ax(P) — ai,(P)] > 0 and there exists a nondegenerate sphere
through Q whose intersection with G is the single point Q and whose center is not on
the straight line x, = x?, x, = x3.

Then, there exists a strong discrete barrier at Q.

Proof. Let us take the origin of the coordinates at the center of the sphere and let

s=xi+ x4+, so=s0) =)+ &)+ ).

Let k£ and p be positive constants and B(P, Q) = k(s™” — s3*). This is the barrier
defined by Jamet [3] for the operator without mixed derivatives, but it can also be
defined in the more general case.

This function satisfies condition (2.3a, b). Moreover, we have

LB(P, Q) = 2kps " *{2(p + 1)(auxi + 2a12%:%: + a20%3)
. — s(au + a2 + bixy + box, — dt)} — cB(P, Q).
In a certain neighborhood of Q we have x? > 3(x})%, x2 > 3(x%)’ and there exists
a, such that V £, 7, auéz + 2a,:8n + 022772 = 0‘0(52 + "72)' Therefore,
LB(P,Q) = kas_”_z{(P + l)ao[(x(l))2 + (xg)zl — s(an + asz + bixy + box; — dt)} .
It follows that LB(P, Q) can be made arbitrarily large in Ny, provided we choose
k and p large enough. In particular, we can choose k and p such that
L,B(P, Q) + E(P) = LB(P, Q) — c(P) + O(h) > 1

in Ny, for s small enough. Thus, B(P, Q) is a strong discrete barrier at Q.
2. If the coefficients of the operator L are uniformly continuous in Ny and L, is
consistent with L in the norm Cy(Ny,), limp_q [a1:(P)az(P) — al,(P)] = 0 (but not

(6.1)
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all coefficients a,; vanish on the boundary) and there exists a sphere through Q whose
intersection with G is the single point Q and whose center is not in the plane
a,(Q)(x; — x9) + ax(Q)(x, — x3) = 0, then B defined as before is the discrete
barrier in Q.

Proof. Suppose a,,(Q) # 0. In a certain neighborhood of Q we have

anxi + 2ap%:% + ax; > 361(0)1)° + 2a1,(0)x3x; + a22(0)(x2)°]
= [au(Q)xg + azz(Q)xg]Z/zau(Q) > 0.

From this inequality and from (6.1) we deduce that B is the discrete barrier.

3. Assume that the coefficients of the operator L are uniformly continuous and
that L, is consistent with L in the norm C,(Ng,). Assume d(Q) > 0 and that there
exists a nondegenerate sphere through Q with radius R > (a,:(Q) + a::(Q))/d(Q)
whose intersection with G M\ Nj is the single point Q and whose center lies on the
half-line x, = x%, x, = x3, 1 < ¢°.

Then, B, defined as in 1, is a strong discrete barrier.

Proof.

LB(P, Q) = 2kps " *[2(p + 1)(anxi + 2a1%:1%; + a32%3)
— s(ay + a5 + bixy + byx, — di)] — cB(P, Q)
> 2kps™7'dt — (ay + ay + bixy + bax,)]
—> 2kps,” ' [RA(Q) — a1,(Q) — a:2(Q)] > 0.

P-q

Then, B is a strong discrete barrier.

The two following sufficient conditions are contained in [3].

4, Assume that there exists a neighborhood N, of Q such that G N N, lies in
the half-space ¢ > ¢°. Assume that the coefficients of the operator L are bounded,
except d which may be unbounded, d(P) > k(t — 1°)°, ¢ < 1, k > 0. Let L, be the
operator corresponding to formulas (3.3) or (3.8). Then, there exists a strong discrete
barrier at Q.

5. Suppose that there exists a neighborhood N, of Q such that G M Ny is a
cylinder parallel to the t-axis. Let us write L = L, — d(3/d%); L, is an elliptic operator
in space variables. Suppose that there exists a function B,(P, Q) which does not
depend on ¢ and which is a strong discrete barrier for the family of operators L,, for
any ¢ such that |t — ¢°| < », where n > 0 1is a constant independent of A,, h,. Suppose
d(P) is bounded.

Then, the function B(P, Q) = KB(P, Q) — (¢ — t°) is a strong discrete barrier
for the family {L,}.

Example 1. Let y(x,) be a convex function defined for all real x, and such that
[p(x)) — $(xiD|/|x} — x’| < M forall x] and x}’ # x{, where M is a positive constant.
Let @ be the curve ¥ = x, — ¥(x,) = 0 in the plane ¢ = 0. Let G, be a bounded
simply-connected plane domain whose boundary consists of a portion of € and of a
smooth curve which lies entirely in the region ¥ > 0. Let G = G, X (0, T), and
G.= GNP = (x5, X2, ): Y > €}. Let Ty, = {P = (x1, X3, T) € 0G} and
T, = 0G — T,. Let
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62 L=andst el eyt 0l b
0xy dx, 0 ox, 0x, at’
where
n — hy la|/h > g, a2 — ha ||/ > q B3/H
6.3) by, by € C*G), by, b, € CG.),

[bi(P) + Hib3(P)/h31* < gk/Y + K,
O<k<h2/h1, K > 0.

Let L, be the operator defined by formulas (3.2) and (3.3). Then, the problem
(1.3) has a unique solution u(P) and v(P, k) converges uniformly to u(P)in G as A — 0.

The proof will be performed for a square net &, = h, = h; by the transformation
of the variables %, = (h/h)X2, ¥(x:) = (ha/h)¥(x,), one obtains the general case.

Under our assumptions, L, given by (3.2) and (3.3) is positive. For instance, the
coefficient

AP, P + eh)

[an(P) — lalz(P)“ + bl(P) 7

>1__q/g.=_q_( _&’.'_>
=h2 1 2Y >0’

since at each interior mesh-point there is ¥ > A,

The existence of discrete barriers at the points geT, —eX|[0,T] follows from
our third sufficient condition. The discrete barrier for {Los} at Q = (x}, x3, 1) € € X
[0, T]is

By(P,Q) = —(x, — x)’ — Y%, wherek < k' < 1.

This function has the properties required for the application of our fifth sufficient
condition.

The existence of a function ¢(P) satisfying condition (i) of Theorem 2.1 follows
from the second sufficient condition in Section IV. Theorem 7.1 implies that the
solution of problem (1.3) with the operator (6.2) is unique. Therefore, we can apply
Theorem 2.1, which concludes the proof.

Example 2. Let G, be a convex domain in the plane ¢ = 0 such that in the neighbor-
hood of any point Q, € 6G,, 3G, admits a representation of the form x, = ¢(x,) or
of the form x, = y(x,), where ¢ and ¢ are convex functions. Let G = G, X (0, T),
T, = {P = (x, X, T) € 0G} and T'; = 3G — T,. Let L be the operator (6.2), where
2

h h
a; — -1 |a12[ > gq, Qze — -2 Ial2| >q :
ho h

'}7 ) by, by G C4(G)9
1

(6.4) 1/2
vV P E G, bi(P) + 2 bz(P) < gk/d(P, G) + K,
0 < k < hy/(h} + )2, K> 0.

Let L, be defined by formulas (3.2) and (3.3) and let v(P, h) be a solution of
problem (2.3). Then, the problem (1.3) has a unique solution »(P) and v(P, k) — u(P)
uniformly in G as & — 0.
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Proof. Same as in Example 1.

VII. Uniqueness of the Solution of the Differential Problem. We denote by I
the set of all points @ = (x9, --- , x% t°) € 0G which admit a neighborhood N,
such that 3G M Ny lies in the plane ¢ = ¢°, and G N N, lies in the half-space ¢ < ¢°.
For any Q & G we denote by S(Q) the set of all points P & G which can be joined
with Q by a continuous curve lying entirely in G along which the coordinate ¢ does
not decrease from P to Q.

LemMA 7.1 (THE MAXIMUM PRINCIPLE FOR PARABOLIC OPERATORS). Let L be a
parabolic operator (satisfying conditions (1.2)) whose coefficients are continuous in G.
If Lu = 0 (Lu = 0) in G and u has a positive maximum (negative minimum) in G which
is attained at the point P, then u(P) = u(P,) for all points P & S(P,).

This theorem is proved in [2].

We deduce at once from the maximum principle the following

THEOREM 7.1. If Ty C IV, then problem (1.3) has at most one solution.

THEOREM 7.2. A necessary condition for the existence of a solution of problem (1.3)
Sor arbitrary g & C(G) is
(7.1 LN \J 1sor =g.

€r.Nnr’

Proof. If (7.1) does not hold, then there exists a point @, € T, M I’ for which
Ty N[S(Qo)]” # . Suppose that g, and g, are functions such that g,(Q,) — £:(Q0) >
8:(Q) — gx(Q) for Q = Q, and g,(Qo) — g(Q0) > 0. If

Lul = f Lu2 = f
and
"1[1‘, = gllr. uzlr, = gzll‘.,

then L(u; — u,) = O and (u; — wy)|r, = (g1 — g2)|r.. It follows from our assumptions
that 1,(Q) — ux(Q) = 2:(Q0) — g4Qo) for Q & T'; N [S(Q,)]”. This is a contradiction.
If IV C T, then the condition (7.1) holds. From now on we will assume I'" C T,
and we define I/ = T, — I".
THEOREM 7.3. Suppose T’ is closed and suppose that there exists a neighborhood
N of T and a function U(P) such that

UE CG, — T, U E C¥G,), where G, = GM N;
(1.2) LUP) £ 0, P E Go;
UP)— + © asP—Q,VOET,PEG —T.

Then, the problem (1.3) has at most one solution.

The proof is contained in [3].

We give two examples as applications of Theorem 7.3.

Example 3. Let G lie in the intersection of the half-space D%, a;x; > 0 and the
slab 7, < t < t,. Let L be the operator (1.1) and assume that there exists a constant
K = 0such that ’

2”_: a;b;(P) "z: a,a;a;;(P) > (i a;x;)_ — K
t=1 1

t,i=1 iml

for all P € G, and for >, a;x, small enough.
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Let T = 0GN {P = (x3, -+ , X, D) 2., a;x; = O}. Then, problem (1.3) has
at most one solution.
Proof. Let

up) = —Kx(t a.~x.~> - ln(i: a;x.-) , where K; > K.

fm=] g1
We have

n

LUP) = 2, a;i(P)a;af<:Zl a,.x..)-2 - Z_; b..(P)a,.( K, + 1 / Z a,'x;) —cU

$,7=1 t=1

n

n -1
= Zl aii(P)aiai[KKl + (K — K,)(E aexa) ] <o,
t - f=]
if > n_, aux; < (Ky — K)/KK,. Then, the assumptions of Theorem 7.3 are satisfied.

Example 4. Let G lie in the half-space t > 0, T = G N {P = (xy, *** , Xa, 0)}.
Suppose that there exists a number ¢ < 1 such that d(P) < ¢ and that there exists i
such that a;,(P) > e for ¢ small enough.

Then, problem (1.3) has at most one solution.

Proof. Let U(P) = —x? — In t. Then

LUP) = —2a,,(P)+ dP"' S —2+¢1<0

for ¢ sufficiently small. Thus, the assumptions of Theorem 7.3 are satisfied and the
solution of problem (1.3) is unique.
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