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On the Convergence Rates of Variational Methods. I. 
Asymptotically Diagonal Systems* 

By L. M. Delves and K. 0. Mead 

Abstract. We consider the problem of estimating the convergence rate of a variational 
solution to an inhomogeneous equation. This problem is not soluble in general without 
imposing conditions on both the class of expansion functions and the class of problems 
considered; we introduce the concept of "asymptotically diagonal systems," which is 
particularly appropriate for classical variational expansions as applied to elliptic partial 
differential equations. 

For such systems, we obtain a number of a priori estimates of the asymptotic con- 
vergence rate which are easy to compute, and which are likely to be realistic in practice. 
In the simplest cases these estimates reduce the problem of variational convergence to the 
simpler problem of Fourier series convergence, which is considered in a companion paper. 
We also produce estimates for the convergence rate of the individual expansion coefficients 
a. . thus categorising the convergence completely. 

I. Introduction. Variational methods for the solution of elliptic partial dif- 
ferential equations have a long and fruitful history in mathematical physics [1], [2]. 
More recently, the finite element method, as one particular variational procedure, has 
been widely used in engineering problems and its convergence properties have been 
studied. 

There are, perhaps, two dominant features of any proposed algorithm for this 
type of problem: 

(1) The rate of convergence of the numerical solution (to the exact solution). 
(2) The ease of use of the method; that is, the cost of setting up the equations, and, 

in particular, the difficulty of treating awkward boundaries or boundary conditions. 
The finite element method is notably favourable with respect to (2), and at least 

acceptable with respect to (1), when compared with alternative finite-difference 
formalisms. 

It is well known that what may be called "classical" variational methods in which, 
typically, the expansion is made in terms of a set of orthogonal functions, such as, 
e.g., { Sin nx}, can lead, in favourable cases, to extremely rapid convergence. How- 
ever, no general analysis of the convergence rate problem for such classical expansions 
appears to have been made. In this paper, we present such an analysis. Although we 
make no specific reference to the expansion set used, the conditions placed on the 
systems analysed are motivated by those typifying the classical expansions. Our aim 
is to understand and to be able to predict the convergence rates to be expected, with 
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an eye to condition (1) above; we do not take cognisance of condition (2). Such an 
analysis may be expected to be of value in two ways. When actually computing a 
variational solution to a system, a knowledge of the asymptotic convergence rate 
enables one to predict the number of expansion functions (the value of N) necessary to 
obtain an approximate solution of the required accuracy. The second, and more 
important, application arises in the initial choice of the expansion set. "A priori" 
convergence rate estimates facilitate selection of a realistic expansion set before 
commencing the computation and so help to eliminate the present trial-and-error 
evaluation of such sets. 

The case for such an analysis was originally made by Schwartz [3] and illustrated 
by the examination of a particular system (having physical significance) and a limited 
class of expansion sets. In the present paper, we seek to provide the basis for a general- 
isation of this approach. 

The procedure for finding numerical solutions to a differential (or other) equation 
by a variational method has two stages. First, we look for a functional defined over a 
Hilbert space containing the exact solution and possessing the property that it is 
stationary at such a solution. Throughout the present paper, we shall use as an 
example the inhomogeneous equation 

(1) ef= g 

defined over a space R, and require that the operator S is Hermitian with respect to 
the inner product used. For this equation, we can easily verify by differentiation that 
the functional 

(2) F[o] = (co, ?co) -(co, g) - (g, co) 

fulfills our requirements. 
Secondly, we choose a complete, and perhaps orthogonal, set of functions { h, } in 

the Hilbert space, in terms of which the solution F may be expanded. We write 

(3) bihi 
i-i 

where the b, are generalised Fourier coefficients of f. As an approximation to this 
solution, we take the finite sum 

N 

(4) fN = E a(N) hi. 
i-1 

Substitution of (4) into (2) leads to the well-known equations 
(4a) L (N)a(N)) _ (N) 

where 

= (hi, SCh ), 
(N) N g 

= (hi, g), = 1, N. 
Where no ambiguity is likely to arise, we shall omit the superfix N. 

The conditions under which this procedure converges to a solution of (1) have been 
considered by other authors, for example [1], [2]. We assume that convergence is 
assured and seek to estimate the rate of convergence for a given choice of an expansion 
set {hi}. 
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Error Analysis. Throughout this section, reference is made to Diagram 1, in which 
the variational coefficients a"N) are displayed in a triangular array, together with the 
Fourier coefficients bi of the exact solution. 

DIAGRAM 1 
Expansion coefficients of the Expansion (Fourier) 
approximate solution w.r.t. a coefficients of the exact 
finite subset of the expansion solution w.r.t. the 
functions. These are determined complete set of expansion 
by a variational procedure. functions. 
(1) (2) (3) (n) al al al ... al ... b 

(2) (3) (n) a2 a2 . .. a2 . . . 

a'3) .. an) b a3 . .. 3 . . . b 

"Horizontal" 
a(") convergence bn 

0 
"Vertical" 

"Diagonal" or Fourier 
convergence 0 convergence 

The error in our Nth solution is given by 
N co 

eN = fN E (bi -aN))hi + E bihi. 
i-i i-N+1 

If we assume the hi to be orthonormal with respect to some weight g, we have 
N 0 

I 2eNIIl = E (bi - a(N))2 + E b2 
(5) Xc1 i-N+1 

- S(N) + S2N) 

Since both S(N) and S(N) are defined as sums of squares and therefore positive 
quantities, convergence in this norm occurs if and only if both sums converge to zero 
with increasing N. Clearly, the convergence of S2'N) depends only on the rate at which 
the Fourier coefficients of f tend to zero; this convergence is denoted by a vertical 
arrow in the diagram. Rapid convergence in this direction is seen to be a necessary 
condition for rapid convergence of the variational procedure and its consideration is 
therefore likely to be a major factor in the choice of a suitable expansion set { hi }. 
Determining the convergence rate of SIN) is a problem lying purely within approxi- 
mation theory and it may be resolved for a large class of systems on the basis of certain 
qualitative information concerning the solution f. We consider this question in detail 
for one-dimensional systems in a second paper. The problem of convergence of S(N) 

may be considered as the compound of two different types of convergence problems. 
First, we require that the variational coefficients aN) tend to the corresponding 
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Fourier coefficients bi with increasing N, i.e. 

ibi -a (N' I as N --*c 

Secondly, we want 

[b 'i' a O as i co 

Since the series Ib,} 0, this will occur if a"'i } 0. We refer to Diagram 1, where 
these two convergence problems are, respectively, termed "horizontal" and "diagonal" 
convergence. 

By considering bounding rates of convergence for these problems, it can easily be 
shown that the resulting convergence rate of I IeNv I I is approximately that of the slowest 
of these separate convergence rates. For example, we take the case: 

(6a) lb! < k/ri 

(6b) 6b, - a N)i ? K/i(P-) NQ 

i.e. the vertical convergence rate is O(F 7) from (6a); putting N = i in (6b), the diagonal 
convergence rate is O(FV), and with i constant the horizontal rate is O(N-'). Then, by 
bounding the sums S'f and S(N), it can easily be shown that 

lieN!! = O(N-') or O(N-'+'"2) wheres = min(p,q,r). 

Similar results hold when one or more of the series converge exponentially. All three 
convergence problems must therefore be investigated to determine the net convergence 
rate of the solution. 

Under certain conditions, however, it is possible to prove that variational con- 
vergence (horizontal and diagonal) is rapid, and hence that it is the Fourier con- 
vergence rate which characterises the overall convergence. As an extreme example, we 
consider choosing an expansion set which is orthogonalised with respect to the 
weight S, i.e., (hi, sh3) = 6i,. 

(For a positive definite operator ?, we can always orthogonalise an arbitrary 
expansion set in this way using a Gram-Schmidt process.) For such a choice, it is well 
known that the variational coefficients computed for the system (1) will be identically 
equal to the corresponding Fourier coefficients; this result is computationally obvious 
since the operator matrix L is a unit matrix. Thus, at the Nth stage of approximation, 
we obtain 

a(If) = bi, i = 1, *., N, 

and an error 

lleNliS = E b2. 
i.N+1 

The rate of decrease of the error term depends solely on the convergence rate of the 
Fourier series. 

In principle, one may, therefore, always estimate the convergence rate, in the 
energy (e) norm, by estimating the coefficients bi with respect to this set. In practice, 
this merely begs the question, first, because the appropriate orthogonalised expansion 
set is not known explicitly, and second, because one would often like the convergence 
rate in a fixed norm other than the energy norm. For any fixed choice of expansion set, 
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the operator matrix will not, in general, be diagonal; the convergence properties of the 
problem in a given norm then reside in the structure of the matrix L'N), and in the 
right-hand side vector g(N); both of these are reflected of course in the properties of the 
exact solution f, that is in the coefficients b;. In many practical examples the matrix 
the matrix L, although not diagonal, does have a particularly simple structure. 

Definition. A matrix L is said to be asymptotically diagonal (A.D.) of degree p if, 
for fixed j and all i, 

jLit,I 
-L,j" 

=< 
cj i-11 

Ci, 
p > o. 

It is uniformly asymptotically diagonal (U.A.D.) of degree p if, in addition, for 
some finite C, 

C? < C, vj. 

It should be noted that these properties are invariant under a diagonal transformation 
of L, since, if L' = DLDT and D is the diagonal matrix (di), we have 

ILijI = = ILiIl 
(IL'iil IL' i 1)1,12 (IdiLiidil ldjLj jdi 1) 

2 

(ILijI ILij 1),2 

It follows that the properties are invariant under a renormalisation of the expansion 
set {h;}. 

As an example of an asymptotically diagonal system, we consider the solution of 
the elliptic equation over a closed region C: 

Lf- [V2 + V]f g, f(C)=0, 

with expansion sets {hnj defined as the (orthonormal) solutions of 

[V2 + W- X.]h h = O, hn(C) = 0, 

where W, V are point operators. In this case, we find immediately 

L=j = Xj3j + (hi(V - W)hj). 

Thus, for fixed j z i, the behavior of the matrix element Li, is given by the Fourier 
coefficients with respect to the set thi} of the fixed function (V - W)h,. The con- 
siderations of paper II then lead to the result that the matrix Li i is at least A.D. for a 
wide class of functions V, W. Similar results follow for a very wide class of problems of 
practical interest. More generally, we know that for any positive definite operator 2 
there exists at least one expansion set for which the matrix L is suitably asymptotically 
diagonal (namely, the set defined above which makes L the unit matrix). 

The class of asymptotically diagonally systems is in fact very wide: 
THEOREM 0. Given that the operator ? maps R -* R, and the set i hi } is orthonormal 

in R, then the matrix L is A.D. of degree at least 1, provided that IL Ij is bounded below. 
Proof. We have L i-(hIi, h j) = (h,, f) where, for fixed j, f i = ?hi is a fixed 

element of R. Hence, L. is the ith Fourier coefficient bi off, and the series E 

therefore, converges. Whence the theorem follows, provided that, for some 'y, 
IL,,l > -y. Q.E.D. 

The last restriction on L,, is satisfied quite generally for partial differential 
equations. 
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In the following sections, we develop the theory of U.A.D. systems and obtain 
estimates of the convergence rate of S'ff'. These estimates yield sufficient conditions 
under which the convergence of the variational procedure may be characterised by the 
more easily determined Fourier series convergence. In particular, we show that, for 
A.D. systems of sufficiently high degree, the convergence of IeNI Ie is directly related to 
the convergence of the coefficients gi and also, that for such systems, the sum 5'N) is 
negligible and S,N) dominates in the error expansion. We further derive relations 
between the convergence of gi, bi, and the structure of LN, and characterise the 
convergence of the variational coefficients a(') with respect to both i and N. 

IL Theorems for U.A.D. Systems. In this section, we prove a number of 
theorems related to the solution of (4a). No reference will be made to the variational 
origin of these equations; the theorems are therefore valid for any numerical method 
(such as the method of moments) leading to such a set of equations with L symmetric 
and U.A.D. 

First, we prove that if L belongs to a particular subset of U.A.D. matrices, and if 
there exists a lower triangular matrix T which diagonalises L, then T is itself U.A.D. 
and of the same degree. We note that, for positive definite matrices L, a suitable 
diagonalising T will always exist.F(See [4], or consider the Cholesky decomposition 
of L-l.) 

In this paper, we shall assume that the operators under discussion are Hermitian, 
but not necessarily positive definite (see Theorem 5 for an exception to this). We do 
not, therefore, assume that the diagonal elements of the matrix L are positive; for a 
given expansion set, we normalise for convenience so that L, -i 1, and introduce 
the diagonal matrix J: Ji Jii = sign (Li,). This matrix relates to the triangular 
decomposition of L` in the form L` = TTJT. 

For nonorthogonal systems, the operator matrix L may not be asymptotically 
diagonal. However, the variational solutionffN is invariant under a nonsingular linear 
transformation of the set {hi, i = 1,*-, AN}; we may therefore transform to an 
orthogonal set before estimating the error. 

THEOREM 1. Let L be an N X N symmetric matrix having 

Lij = J,j= ?1,--for i 1, ... , N, 

and satisfying 

ILj1i < Ci-U, for all i j, with p> 1 andO < C ? C(p) [defined in theproof]. 

Also let T be a lower triangular N X N matrix such thai 

TLT TL= J. 

Then if we write T = I + X, we have that X is also lower triangular and satisfies 

lXiii I Ki z, 0 < K < K(p, C). 

Proof. Let us write L = J + U + UT, where U is a lower triangular matrix (having 
zero diagonal). Then, the transformed matrix 

- = TLTT = TJTT + T,(U + UT)TT = J. 
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Thus, TJTT = J- T(U + UT)TT. Writing T = I + X, 

(I + X) J(I + XT) = J (I + X)(U + UT)(I + XT), 

i.e. 

(7) Xj + jXT = -(U + UT) - X(U + UT) - (U + UT) XT XL XT. 

We may write this as Z = F(Z), where 

Zi = XiiJi for i > j, 

= Xii Ji otherwise. 

Since both Z and Eq. (7) are symmetric, we can look on Fas a function in a 2N(N + 1)- 
dimensional vector space, with components Z;; = Xi 3J, i > j. We seek a region in 
which the solution of (7) lies, i.e. we require a region R such that F: R -* R and over 
which F has a Lipschitz constant which is less than unity. Consider the region R: 
Zi i I < KFi where K, q are constants. From the conditions on L, we have I Ui i _ 
Ci-. Also ZiiZ < Ki-a implies IX,I < KFi. Substituting into (7) for the case i> j: 

i-l i ; 

lFiil < I Uiil + E I XiiI I Uikl + E I xikX I ukil + I Ua I xikI 
k-1 k-i+l k=l 

+ l I |Xikl ILkmI IXimI 
k-1 rn-i 

< 
CI-F 

+ 
KCiUQjfV+l 

+ KC 
j-aj-V+l 

+ 
KCi-+j-i+' - ~~~~~~(p-i 

i j 

+ K2i-FFj-, Z ILk.. 1! 
k-i rn-i 

Each term is maximised with j = 1, hence 

IF,il < [Ci-v+a + KC( -) + KC-F'+a + K2 + K2c]..Q 

Similarly, for the case i = 

lFiil < 2 KCi-v+ + K2 + K C Fa+1 i-a 

A sufficient condition for_F: R,-iR,is that 

IFijI<KIFa, for all i, j. 

This holds if 

[Cia? KC(- + KCi-U+Q + K + (p_1)] c K 

and 

I V+ K2 + 
2 

1) - 2 [2KCi p + K2 + < _ 1_QiI _ K for all i. 

These clearly imply 
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(a) 1 q < p and p Z 1. 

It follows that the inequalities will hold for all i if they hold for i-1. In addition, the 
second inequality will hold if the first one does. Hence 

(b) K2 1 + c + K[( 2p l )C + C O. 

(a) and (b) are sufficient conditions for F: R -+ R. A Lipschitz constant for F will be 
given by 

O9F, 0 F 
M=sup 

|-j- _sup 
max E 

R az;sa R0 i,i;i2j l,n;l>n In 

For the case i > j, (7) gives 

j-1 . i i i~ 
F = - U;i XiAUjk - E Xikcj -ki UikbXik - XjiLkmXij. 

k-1 k-i+l k-1 k-i mr- 

Thus, 

OFi =O _ -E LimXi, for I = 1, n =- j 
O9Xln, tLn r ir 

rn- 

UjnZ- LnmXirm for I = i, n < i 

- -UniZ- LnmXjm for I = i, n > j, 

= -UUin- ZXikLkn for I = j, n ] j, 
k=i 

- 0 otherwise. 

Summing these terms, 

O9Fi i mu inf j __rninjir 

Z21i 
< 

| 
L Xim +Z Ujn + Lnm Xjm + > Unj + LnmXim 

I ,n 9I n ml1 n=l m=l n= j+l ml1 

+ E Uin + E XikLkn 
n=1 k=l 

Kjr + KCj D + : [Cj-P + Kj- + KC( )j-np+l 

+ 2 [Cnn' + Kcj-.+ln-p] 

n~~~~~~~~ i +q 

+ Ci- + Kia + KC( n 1)1P+] 

Clearly, the Lipschitz constant which results may be minimised by choosing q as large 
as possible. The maximum value of q consistent with inequality (a) is q = p, and this 
choice leaves (b) unaltered. Also 
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zn+l < < n+ ? 1 = j < 
n-i n-1 n-1 

Thus: 

E ?Fi| < Kj-p + KCj-f2p + Cj-f+l + KjFP' + KC(p _ o 

+ (C + KC) + CiV+i + KiF+1 + KC( : Di-P+. (p-1 

This is maximised for i = 1, j = 1, and 

(8) jm,ax; a; < 3K + (2p - )C + 3( p KC. 

When i = j, 
t-i 1 i 

Fi - F- Xik Uik - - I XikLAm Xir,, 
k-1 2 k-i m-i 

from which we similarly obtain the bound 

max E |FiL < 2K + C + (2p l)KC 

which is clearly smaller than (8). Hence, 

M = sup max 1 n F, < 3K + (2P 
- I 

C ( 3 K 

So a sufficient condition for M < I is 

3K+(2p I)C+3(p3 1)KC< 1 

which implies that 

3K2[1 + (p " 1)C] + K[( p l)c - ] <o. 

Comparing this with inequality (b), both will be satisfied if 

3 K2 p + c +K[ p ( 
I 

)C- 1] + c < O 

which in turn will hold if K lies between the zeroes of the L.H.S., provided that these 
zeroes are real, and that at least one of them is positive. 

Reality of the zeroes requires that 

[(2P-)c - 1] - 12C[I + ( c 1)C] > O. 

This will be true if C < C(p), where 

C(p) = 2(p - 1) [((8p - 7)2 + (8p2 _ 8p - 1))i/2 -(8p - 7)] 

and this is a condition of the theorem. 
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For at least one (and in fact both) of the zeroes to be positive we must have 

1-(2p )c>0, 

whence 

C < (p-I) 

This inequality is also always satisfied as a result of the condition C < C(p). We may 
take K(p, C) to be the larger of the two zeroes. Q.E.D. 

In the next few theorems, we use Theorem I to characterise the error norm |leN||,. 
To simplify the statement of these theorems, we define the following class of 

systems: 
Definition. Let gf = g be an inhomogeneous equation, and let Lb = g be the 

corresponding infinite linear system, with {hi} as expansion set. We shall call this a 
"nice" system of degree p if for the given choice of t hi }, every submatrix L(N' satisfies 
the conditions of Theorem 1. 

We note that the requirement Li. = i 1 can be obtained by suitable normalisation 
of the functions hi, and is not a real restriction since asymptotic diagonality is in- 
variant under a diagonal transformation. 

THEOREM 2. For a "nice" system, the error in the Nth approximate solution, defined 
by 

N 

eN =N ff>-f aN'^vh, - f 

satisfies the bounding inequality 

IJeNf -.< k I |a"'1, where 0 < k ? k(p, C). 
i=N+1 

Proof. Let us orthogonalise the first N expansion functions with respect to the 
operator L, using a Gram-Schmidt process. That is, we define 

i-1 

where T is a lower triangular matrix such that 

(hi, Ahi) = iiJ 

The transformed operator matrix is 

;N) = TL() TT = j(N) 

The Nth approximate solution is invariant under this orthogonalisation and may be 
written 

fN Z (N)Ahi = &N) A h (in an obvious notation), 
1- 

where a(N) is the (trivial) solution of 

j(N)0V ) C((N ) and (N) ( (,, g). 
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Let us now add h+l to the expansion set. The operator matrix becomes 
11 (N) ~(N) TT 0 '(N) TA(N)', 

t(N+l) {T 1 L y JNiT I KT 
lO 1J y 

() 
JN+T 

0 1J 1 y(N) TTT JN+ J 

where Y(N) = (hi, ?hN+l) and hence the system 

(N') Ty'N) (N + 1)' -- N) 

I(N) T,T T I (N+ 1) g Tr jN+j , LaN+1 J 9N+ 1) 

This implies 
(9) j( (N) (N + 1) + (N) 

(9) a + ~~~~aN+1 TT 
(N 

(N) 

and 

(10) (N)TTT (N+1) + JN+laN+l = gN+ 

The (N + I)th approximate solution may be written: 
N 

fN+l a i hi + aN+1 hN+1. 
i-i 

Hence 

eN+1 -eN fN+I - JN 

a(N.+1)fi + a1N++V )hN+l - a( 

j(N) Nfi (N+1) j(N)(TY(N)) ff (N+1)+ -. 
J 

(N *fN. 
j(N) ~ h-aN+l J T1) h+aN1 Ni 

Using (9) and J2 = 1, this becomes 

- aN+1 2 [hN+l - JN) ()fi] 

Therefore, 
f ~~N 

IleN - eN+1II l avjl I IIhN+lII + Z (Ty(N))ij lIhill 

Using the ? norm, IIhN+lI IJhill= 1, and hence 

IIeNIIe - I 
|eN+111. 

? J|eN - eN+11143 ? I-aN+l 1I.{i-+ I |aTy(NIIN . 

But 

11Ty(N)III < |Iy(N)|| {||j11j1 + jXlj11} using Theorem 1 notation 
( N N 

< CN-'+'1 + max xi J ,x 

From Theorem 1, IX; I < Ki-F, so 
N 

I XIi < ( 1Kj-+( maximised byj= 1. 

Thus 

I I TyT|N|< C + (p/(p - 1))CK and I|eNlIz| - I|eN+111. ?| j k IaN+1 I 
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with k ? 1 + C + (p/(p- 1))CK. For M> N, 
M M 

I eN I I- |Iem||I - i { llei-el. - Ileilll} ? j klai)lJ. 
i-N+1 S-N+1 

As M-* co, IleMli., ->0, and in the limit 

I eveNs Ic:! k la(i) Q.E.D. 
i -N+ 1 

We have now shown that, for the class of problems under consideration, the con- 
vergence of the error norm is characterised by the diagonal convergence of the system. 
However, the diagonal elements Id')I are not readily computable, so we proceed by 
relating them to quantities which are. The next theorem shows a connection with the 
column of free terms g. 

THEOREM 3. For a "nice" system having 

gi - (hi, g) < Cti-' with r > 1, 

it follows that 

a (2V + 1) 
I < a N r 

N-P 

and hence that 

I IeN|j| ? a'N-r+l + 'N-P+1, 

where a, 3, ao', ,3' are positive constants. 
Proof. From the proof of Theorem 2, Eq. (9) gives 

a J= 
j)(N) - a(N+1 J T (N)y 

Substituting into Eq. (10), 
(N T. j 

(N) TJ(N)Ta (N+) j(N)lT, (N) + JN+laN+l) =,gN+l. (TT()).j()(N T NN) 1 2VT + 

Hence 

(N+ 1) _ gN+ 1 - (T_(N))T. j(N)g(N) 
JN+1aN+l J(TY (N))T. JNTY 1 - JN+lT f)TN 

gN+ I - (TY(2))T. J(N) (Tg(N)) 

1 - JI (lT(N) T (T (N)) 

since 
(N) = (, g) = (in, g) = Tg(N). 

Therefore 

a (A+1) I < 1gN+l I + I I(TY(N))T. J(N)(Tg(N))jj1 aN+1 _ 1 - I l(T_(N))T. J(N)(Tr (N))1 

< (1) I | + IITTY1(N) I 1 liTg(N) I 1 

= 1 - I I Tr(N)II| IIT| (N)II| 

< IgN+l + IITI| II7I |T| y(N)II. 1j1g(N)201 

1 - ||Th||1 |ITI. | I|yTN| l I|y(N)II| 
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provided the denominator of (11) is positive. 
We now bound the norms as follows: 

ITII1 1 I + IIXII1 < I + ( : )K, 

hITII. < 1 + IIXII. < 1 + K, 

I IYIN 11X _ (N+ )X C 

Y(N)11 ? C(N + 1)Y"+1 < CN-"1. 

Hence, the denominator of (11) 

> 1 - I + (P K[I + K]C2N-2P+1 

> 1 - KCN-2p+ 1 

(using an inequality from the proof of Theorem 1) 

> 1 - KC > 0. 

Therefore, 

a N+ 1) I (1 -KC) [Nr + K( _ N-)v] < aN -r 
+ 3N-V 

where a <_ e/(1 - KC) and A ? (KA/(1 - KC))(r/(r - 1)). 
Using Theorem 2, 

co 

hIeNhls < k E [ai-t + i-v] 
i-N 

< kar I) N-r+l + kop N-p+l 
(r -1) (p-i 

= atNr+l + f3'N-p1 Q.E.D. 

This result enables us to predict the asymptotic convergence rate of the variational 
procedure, provided we know the convergence properties of the terms gi = (hi, g), 
i.e. the convergence rate of the generalised Fourier coefficients of the function g. 
It is frequently unnecessary, however, to compute these coefficients in order to deter- 
mine their convergence rate. Given certain qualitative information about a function 
(such as its continuity, its differentiability, and its boundary behaviour) the con- 
vergence of generalised Fourier coefficients, with respect to a given expansion set, may 
frequently be predicted "a priori". This problem is considered further in a separate 
paper (II). 

We conclude this section by considering the case in which, either through physical 
considerations or otherwise, we have qualitative information concerning the true 
solution of our equation and are thus in a position to predict the convergence rate of 
the coefficients b,. The next theorem relates this "vertical" convergence to the con- 
vergence of the error norm. 
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Having determined the error convergence in terms of properties of a known 
function g, it may well seem unnecessary to obtain a similar result in terms of 
properties of the unknown solution f. 

However, the step is of importance in considering the extension of these results to 
homogeneous systems (e.g. eigenproblems) for which, of course, no right-hand side 
function g exists. For an inhomogeneous system, the convergence rates of the b, and 
gi are related; we display the relation later. 

THEoRM 4. For a "nice" system having 

bi = (hi, f) - Ki-', with q > 1, 

it follows that IgNI 9 yNa + UNR' and hence that IleNI. 9 'yNtrq+ + 6'N'+ 
where y, 3, 7y', S' are positive constants. 

Proof. 

gN = (hAr, g) = (hN, 2f) 

= hN, S E bih = E b(h, h,) 

co N-1 Co 

- ~I b&LNi = JNbv + b bL,v + E b,LAi. 

Thus, 

gNA! < KN + ( q l)CKN- + CK 
\q -(p + q -1 

< K(1 + C)N-a + (qq )CKN-P 

yN ' + 6N-'. 

From the proof of Theorem 3, 

IaA , II (1 - KC) 

Hence 

Ia.' l (1 - KG) N0 + [1 vKG 
+ ] 

and so 
CD 

I leNj .e < k j a~') I 
i -.V~ 

k'yq -N0q+1 + kp, -K + _+ 

- (1 - KC)(q - ) - I I KC 

5 7'NIq+ + 5'N"1+. Q.E.D. 

An important conclusion from the above theorem is that the Fourier (vertical) con- 
vergence rate will dominate, provided p > q. 
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III. A Theorem Based on the Variatio Principle (2). The theorems of Section 
II made no reference to the variational functional (2). If we assume that this functional 
exists, and in addition that the operator ? is positive, we may rederive Theorem 4 in a 
stronger form: 

THEOREM 5. ? is a positive Hermitian operator, and the solution of (1) is given by 

J: min F(w) F(f). 
wEER 

In addition, for the suitably normalised expansion set hiI the matrix L is U.A.D. 
(P, C) with L i-1 and p > ' and b = (h, f) < Ki- ; q> ; P + 2q> 2. 

We do not here require any restrictions on the constant C; further, the restrictions on 
p, q are weaker than in Theorem 4. Uiider these assumptions, 

12(II < -2(z+l + SjjjV-(v+2q-2) II EN! 2 =< y"N 
Proof. We have for any element fv = f + EN, 

F(N) = F(f) + (EN, LEN) = F(f) + IENI .X1 

The minimum of F(fN), and hence of IIENIj, is therefore no greater than that given 
for any choice of the coefficients a,N). We choose 

a(N = b;, i = 1, 2, , N, 

and hence find 

IIENI 12 < E 
i.j-N+1 

co coD coD 

< I bi12 + 2 l E bil |bll ILiL 
i-N+1 %-N+1 j-i+1 

< K i 2q + 2K 2C E -a j-p-a 
i-N+1 i-N+1 ji-i+l 

K2 -2a+l + 2K2C (v+29-2) 

K 2q-I (P + q-1)(p + 2q-2)* 

This result is slightly better than that given by Theorem 4. 

IV. The Fourier and Variational Convergence Rates. The proof of Theorem 4 
bounds the coefficients gi in terms of the Fourier coefficients b,; both Theorems 4 and 
5 bound the norm I ENI 1. in terms of the convergence rate of the b; and the degree p of 
L. Both the bi and the variational coefficients a(N) are, of course, uniquely determined 
by L and g. In this section we derive several theorems relating the convergence of bi; 
and of a<N) to b i; to the convergence of L and of g. We first give a bound on the coeffi- 
cients b;. 

THEOREM 6. For a "nice" system having 

g, = (h,, g)< ei- r with r > 1, 

it follows that, for all i and some D, 

bibI < D-' where s = min(p, r). 
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Proof. The coefficients b satisfy the infinite set of equations 

Lb = g. 

In terms of the triangular matrix T of Theorem 1, we set 

b = TT C, 

so that 

c= JTg, 

whence 
i i 

lcu - Sj jT1,j jgij = IZ L.X~,I jgij +I jg, 
j-1 j-1 

< KC E Ff7 + eri- 
i-1 

< Ker i-v + ei r> 1. 
=r- 1r> 

We now, similarly, bound bi = ci + J; X1ic1 to obtain the result 

ibi r Ker + e,-r + 2K 2erp i.2p+l+ KC(p + r) 

Hence, for some D, 

ibi < Di-' wheres = min(p,r). Q.E.D. 

Comment. We may feed this result back into Theorem 4; we then recover Theorem 
3. This suggests that the bounds we obtain are the best possible so far as the predicted 
convergence rates are concerned. We see also that the Fourier (vertical) convergence 
rate dominates the convergence in the S norm provided that p > r (see Theorem 4). 

Finally, a similar procedure allows us to investigate the convergence of the in- 
dividual variational coefficients adN): 

THEOREM 7. Under the conditions of Theorem 6 it follows that 

|bi -as<N) 1:5 D N- (2v-1)i-(r-1) + D2N-a' IV N; i = 1, 2, * , N, 

where q' = min{p + r - 1, 2p - 1, 2p + r - 23. If r 2 2, this implies 
q' = min{p + r - 1, 2p - 1}. 

Proof. We remark that the finite matrix TN is a submatrix of T. We also have 

=2 T4 J(V)TNgN, a = TNJ TN 

b = TT JTg, 

whence it follows, after some reduction, that 
co N co co coIN i- o 

bi - a,jN) _-= , Ji Xigi + _E Xki Jk Xk,gi. 
j-N+1 i-i k-,+l j-N+1 k-i i-1 k-N+1 

Inserting the bounds on X, g and bounding the series as before, we find 
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~~N) I < Ke, ~K2(Br N(2p 1)U( 
b;- a I -< p _ 

N-(P+ 
' 

+r (2p - 1)(r - 1) 

+ 2p- K 1 e N-(2pr-2) + K2Or N-(2p- ) + ( +2p + r 2) (2p- K)(r 

whence the theorem follows by inspection. 
Comments. (1) In view of the form of the second term in the theorem, no essential 

information is lost by the following simplification: 
COROLLARY 1. For some D3, ib. - aN) I < D3N-"'. 
(2) The uniform nature of the bound (with respect to i) implies rather surprisingly 

that diagonal convergence is as rapid as horizontal convergence. 
(3) We have provided in Theorems 6, 7 upper bounds on bi, bi - aN). If, in 

addition, we assume that the bounds on b. are sufficiently tight we may obviously 
bound the relative error in a,',": 

COROLLARY 2. Iffor some subset mm} of the integers {i}, Ibm! I D4m-' where s is 
given in Theorem 6, then 

bm - am | S D5m,P+ 
bin 

Further, for all N > m, 
(N) 

bm -a. |bw,a_ |< Liff Na 
bm 

where q" = -q'-s > 0. Hence, for all values of m C {m}, ac4N)/bm 1, N oo. 

V. Convergence in the Natural Norm. Theorems 6 and 7 essentially characterise 
the convergence problem. From these, we can bound the error in norms other than 
the energy (2) norm considered so far. As an example, we compute the natural norm 

I I|NI I = (EN, EN) 

under the assumption that the set I hi } is orthogonal in R. This norm is given by (5); 
we recall however that the normalisation implied there for the hi is not that used in 
Theorems 1-7. We define an orthonormal set of functions hi: 

(12) hi = 7yh1; (hi, hi) = ei3; (hi, hi) = a., 

where the h i have the normalisation of Theorems 1-7 and -yi satisfies 

(13) (hi, ?zhi) = 'Y.i 

In terms of the expansion coefficients a"), bi appropriate to the set hi}, (5) becomes 

N co 

(14) I IN I =' E lb, - a(Af)|2 b . 
i-N+1 

Whence from Theorems 6 and 7, we obtain the following result. 
THEOREM 8. The conditions of Theorems 6 and 7 apply and in addition 

2 < ri7. 
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Then 

12 < O r + D r N2j + I 

+lI 2s -'y -I 

Proof. As before, we bound the terms in (14), using the results of Theorems 6 and 
7 and Corollary 1. 

Comment. The two terms correspond to S1(N), S2(N) respectively; hence, since 
q' > s we see that for the systems considered, S2(N) dominates the convergence rate. 

VI. Conclusions. In this paper, we have been concerned with characterising the 
convergence of a variational calculation in terms of parameters which are easy to 
compute. We believe that, for systems of the structure considered, the bounds are 
realistic; they may be used in practice to give a priori estimates of the convergence rates 
for a given expansion set, and hence to influence the choice of this set. 

Although our results are obtained only for U.A.D. systems, it is our belief that they 
can be extended to a much wider class of A.D. systems; we hope to report on suitable 
extensions at a later date. 
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