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Matricial Difference Schemes for Integrating Stiff 
Systems of Ordinary Differential Equations 

By IV. L. Miranker* 

Abstract. In this paper we give a description and analysis of a class of matricial difference 
schemes. This class of schemes is based in part on a generalization of the feature of classical 
numerical methods of being characterized by approximations at a single point in the complex 
plane. The schemes introduced here are effective for integrating stiff systems. 

1. Introduction. In this paper we give a description and analysis of a class of 
difference schemes of matricial type. The special nature of this class of schemes 
makes them effective for the integration of stiff systems of differential equations. 

The system 

(1.1) x = Ax 

of ordinary differential equations has for its solution 

(1.2) x.+1 - exp(hzA)xn 

where h is a mesh increment and xn = x(nh). A difference approxiniation to (1.1) 
has a solution u(t) which may be written as 

(1.3) Un1 = K(h A)un. 

K(z) is typically a polynomial or rational fulniction of -. The control of the error 
en = ln - xn depends on K(hA) being stable (boundedness of the norm of the powers 
of K(hA)) and the closeness of K(hA) to exp(hA). Existing methods usually handle 
these two features in the following way; K(hA) will be close to exp(hA) if it is close 
on the spectrum a(hA) of hA. Since v(A) has some arbitrary configuration in the 
complex plane, making K(hA) close to exp(hA) is accomplished in two steps. First, 
K(z) is chosen close to exp(z) in a neighborhood of z = 0 (e.g. K(z) = 1 + z for the 
forward Euler). Then h is reduced until h X v(A) is shrunk into the neighborhood 
of z = 0 where K(z) is close to exp(z). The stability of K(hA) is accomplished by 
making IK(z)l _ 1, typically in a set containing z = 0 (e.g. in the 7 = x + iy plane 
this set is x2 + y2 - 2x _ 0 for the backward Euler). Then h is reduced until 
h X v(A) of A is shrunk into this neighborhood. 

The methods introduced here are not restricted to operate in this classical way. 
Rather the single point, the origin, is replaced by a set of points in the complex plane 
and the approximation of K(z) to exp(z) is arranged at this set of points. To be 
effective, the set of points at which the approximation is to be made should have 
certain characteristics (to be described later) relative to the spectrum of A. Generally, 
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these characteristics can be determined at the expense of additional computations. 
A favorable situation for this procedure is provided by stiff systems. 

A definition of a stiff system is one for which the stiffness 

(1.4) s = max lXl/min 1XI 

is a large number. The max and min are taken over the nonzero X E a(A). 
Since a classical method of numerical integration when applied to a stiff system 

is enormously handicapped by the requirement that jhXl is small for the large I XI in 
order to gain stability and accuracy, it becomes feasible to expand the computation 
to gain information about a(A) for exploitation by the method discussed here. 

There are a number of schemes in the literature which deal with integrating stiff 
systems, (see references [1H5]). A general approach to stiffness is through the ap- 
proach of A-stability, (see [7]). Here, an A-stable scheme, such as the backward 
Euler, is used. In the initial transitional region, h must be small to get any accuracy. 
However, as the solution smooths out as time increases, h is increased. The A-stability 
of the method guarantees not to excite the modes with large x which have become 
quiescent, while the smallness of these modes allows accuracy to be maintained. In 
this connection, there are the results of G. G. Dahlquist [7] and C. W. Gear [8]. 
Dahlquist's result places a strong limitation on this approach, since he shows that 
A-stable methods of order greater than two do not exist within the class of linear 
multistep methods, considered by him. 

In Section 2, we describe our integration schemes and give a stability and error 
analysis for them. In Section 3, we describe the results of calculations based on one 
family of our schemes. Included is a comparison with an effective classical method. 
In an appendix, we give an error analysis of a scheme due to W. Liniger and R. 
Willoughby [1]. This scheme is a scalar version of the class of schemes presented here 
where, moreover, the set of points in the complex plane (referred to above) consists 
of two points on the real line, one of which is the origin. Even for this extremely 
special case, enormously effective computations were performed for large nonlinear 
systems (see [1D. 

2. Statement of Results. Consider the system of ordinary differential equations 

(2.1) x = Ax, t > O. 

Here x is an m-vector and A is an m X m matrix. Let h denote a mesh increment 
and let x, = x(nh). Then 

(2.2) Xn = eAh xS_ 

Now let** 

(2.3) L(z) = , (aci + z,3j)e(ri' , R(z) = ? (ey, + zbi)e('ri)' 

and let 

(2.4) C(z) = L(z)[R(z)]F'. 

* Unless otherwise specified all sums are taken from 0 to r. 
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For any solution x of (2.1), hizavr. 

(2.5) [L(h A) -- A( R (1h A)], r= 0 

identically. This follows froml (2.4) by inserting (2.2) and (2.3) into (2.5). This suggests 
the following difference schemle 

(2.6) . a,u-+ --h E f3 n -- 
P(hA.)[ n- 

+ I T 3j Aun< 0 

ni = r, r + 1, *I . , for determining, the in-vector valued ; mesh functioni u,, as an 
approximiation to x,,. Here, P(Z) is ati apprioximiiationi to C(z) to be specified. 

Let H be the shift operator 

(2.7) HJ(r) f- + /1). 

Let S -- 2(If) and GR -- 5I.(H) be thc- operators correspo nding to L(Z) aild R(Z) 
respectively, i.e. 

(2.8) 2(H) = (aj + h A ,)H ', SI (H) -- V (y, + h AS)Hi)H 

Then (2.5) and (2.6) can be written respec tively as 

(2.9) [.(H1) - C(hiA)61,(H)]x,., 0, 

(2.10) 1 t(H) 0 P(Ii .A(H)].in - = 

By subtracting (2.9) fronm (2.10), the er ror e,, = Ui, - N, is seeni to satisfy the followving 
eqLiation 

(2.11) [42(H) -- P(Ih A)tk(f)en r - [P(h A) - C(/h )i4(R(H)Ar.,- 

Of couirse, 

(2.12) )J((I ).n- R(h A)n,. 

In order to estiniate e,, we first solke (2.1 1) for en. 
Let 

(2.13) S(H) = 41(H) - P(Ih A)Jt(H) - sHti. 

Thuis 

(2.14) s -s,(.) a, -4- hA13, - P(h,4)(y + IiA3ij). 

Usinig (2.12) and (2.13), we mlay rewrite (2.11) as 

(2.15) S(H)en-r = [['(hA) - C(hLA)]R(hlA)XVn-r 

Further let 

(2.16) S() s2r- 

Finally, define cr,, j 0, 1, . foall-iLlly throUgh1 

(2.17) [z S(-')]' - 

Now multiply (2.15) by Cr. and suLIm the result o%e!- n fronm r to N. The left 
member resulting fronm this proccduire is 
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.N N r 

EjjN -nS(H)en-r =E rN,- E s, H en- 
n-r n - r s O 

(2.18) - rOROeN + (u1Ro + aORI)eN-l 

+ . . . + (Nr-TrSO + + + TN -2rSr)er 

+ multiples of eo, 0 er-0, 

Using the relations (2.16) and (2.17) between the s, and the a, simplifies (2.18) to 
N 

(2.19) E =N-nS(H)en-r =e + multiples of eo, , er-I 
nz-r 

Thus this summing procedure solves (2.15) and gives 
N 

eN = , UN-An[P(h A) - C(h A)]R(h A)xn r 
(2.20)nr 

+ multiples ofe . eo er- 

Now, to get an estimate of eN, we need a stability and an accuracy statement. 
The stability statement is given by the following two lemmas. 

LEMMA 1. If Ej s,(X)zn-i obeys the root condition for all eigenvalues X of A, then 
the determinant of S(z) obeys the root condition. 

Proof. Let f(A) = E sj(A)zni. Suppose the determinant If(A)l vanishes for a 
value of z, then 1f(A) + 4J - pIj vanishes. Then jA = ,u + f(X), for X any eigenvalue 
of A, or f(X) = 0 for that value of z. Q.E.D. 

LEMMA 2. Let the determinant IS(z)l of S(z) obey the root conidition. If the determi- 
nant of so is not zero, then the matrix [ZrS(Z- 1)]- Iis analytic in a neighborhood of z = 0. 
Furthermore, the matrices aj, j = 09 1, * , given by (2.17), have uniformly bounded 
norms. 

Proof. Since TS(z"") = -O s,z' and Isol i? 0, it is clear that [z'S(z-')]-1 is 
analytic in a neighborhood of the origin. Since IzrS(z)Y11 = zmr IS(Z 1)I, the root 
condition locates the roots of the polynomial IzrS(Z? )I outside the open unit disc 
and those on the boundary of the unit disc are simple. (Note that the apparent root 
at the origin occurring from zmr is annihilated by a corresponding pole of IS(z1)j.) 
Since 

(Z 
r 
S(Z~- l= (matrix of polynomials]/ zlS(z- )I , 

it suffices to show that the power series for the reciprocal polynomial IzZS(Z? )I' has 
bounded coefficients, given that its only roots are outside the open unit disc, with 
those on the boundary being simple. Let mr q and let 

IztS(z')K' = [E taz]' E u,z 

Then 

u- 2ri ZE ) 

where the contour of integration lies inside the unit disc and encircles the origin. 
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If we move the contour through the unit disc and out to infinity in all directions, the 
integral will vanish if q > 1 and we are left with the sum of the residues. If there is a 
pole at 0 on the unit disc, it is simple. Let the residue from it be (RG. Then 

-0 -0~~~~~Q- =(P | (n j n ) = Z tR 

which is independent of ti. 

If there is a pole at t of order p -+ I outside the unit disc, let the residue from it 
be GI,. Then 

R 

= DP0? _ r 
P t 0(ntlEtR)]= [(r"IQ 

n+ 

where the polynomial Q is given by 

Then 

P I\ (RL = D()Dhe'(nQ(j)) 

.10 

Then 

1'S ? (it + p)P Fl, I | 

where the factor F is independent of n. Since J?, I > 1, this residue vanishes as n - . 
Since there are at most a finite number of residues to be accounted for, the coefficients 
zt, are bounded uniformly in n and the lemma is proved. 

If S(z) satisfies the hypothesis of Lemma 2, then (2.20) may be used to get 

(2.21) |e,.l ? const |I[P(hA) - C(hA)]R(hIA)|l Z lix,.,|I, 

where we have assumed that the initial errors, e,, e', , e,-, may be neglected. If 
we assume that Nh = 1, this becomes 

(2.22) I levi < const h-' I[P(/ A) - C(/Q A)]R(hi A)I |. 

Now we turn to the question of accuracy. We must introduce hypotheses so that 
we can estimate [P(hA) - C(hA)]R(hA). 

Let 

(2.23) L(z) = z' + O(Z ̂'), R(z) = z1 + O(z'+') 

as z -> 0. This hypothesis amounts to stating that the difference scheme (2.6) in the 
limiting cases P = 0 and P = has order of accuracy i - I and i - 1, respectively. 

Let P(z) be chosen as the polynomial w hich has contact T, with C(Z) at the nonzero 
nodes hz,I i = 1,. .. , p, i.e. 
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(2.24) P(m)(hz ) - C(m)(hz,) = 0, Mf = 0, * * *, Tj - I . 

Now divide the eigenvalues of A into p + 1 clusters, ko, , k,. Let z0 = 0. All 
eigenvalues in k, are closer to z, than to all z7, j 5: i, i = 0, 1, * , p. Ties are resolved 
randomly. Let 

(2.25) di = max AJX - zi,I i = 0, ,p. 

From (2.3) and (2.23), we have 

(2.26) JL(z)I < const min (Jzl, JzJ'), JR(z)J const min (Izl, IzlT) 

for Re z < 0. 
Now using the spectral representation theorem (see [10]) (for simplicity we treat 

only the case that the eigenvalues of A are distinct), we have 

[P(hA) - C(/hA)]R(hA) 
p 

= , i [P(hXi) - C(hXi)]R(hXi)zii(hIA)*** 
,-0 _1Eki 

(2.27) - i 
[P(hXj)R(hXj) - L(hX,)]z0i(hA) 

1s j ko 

+ j , - [hI(X - Zj)]Tr[p(7T)(hXii) - (h,)]R(h j)zii(hA). 
i-I )iEki Tj. 

Here X,, and Xi, arise from Taylor's theorem and represent appropriate values 
corresponding to Xi and z; and the functions P and C, respectively. 

Then 

II[P(hA) - C(hA)]R(hA)jj ? C1 max (Ihdol', Ihdol) 

(2.28) + C2 d I 

Inserting (2.28) into (2.22) gives 

(2.29) l eN I cont [max (jhdol', JhdolJ) + 1hdil' 

The constant will depend on many aspects of the difference scheme and con- 
ceivably could be quite large. For example, as X,, approaches a root of R(z), the 
constant C2 will grow without bound. 

The derivation of (2.29) may be formulated as the following theorem. 
THEOREM. For n = 0, 1, * * , N wvith Nh = 1, let xn be a solution of the differential 

equations (2.1), let un be a solution of the difference equation (2.6), and let en = u - x,. 
If (2.6) is stable (e.g. obeys the hypothesis of Lemma 2) and if (2.6) obeys the accuracy 
conditions characterized by (2.23) and (2.24), then modulo the initial errors II eNj I has 
the boutnd (2.29). 

Remark. Classical linear niultistep methods correspond to the case where P _ 0. 

*** zij(hA) are the polynomials entering into the spectral representation theorem i.e. z,j is the 
polynomial of minimal degree which vanishes on the spectrum of A except that at Xi E k;, Zi, = 1. 



SCHEMES FOR STIFF SYSTEMS 723 

At another extreme, we may use (2.6) and disregard the node z0 completely. This 
would give a more symmetric treatment. 

Example. A simple example of the scheme (2.6) corresponds to r = 1, 1, 
a1 = -I and 6, = 1. All other coefficients are zero. We select one node, i.e., p 1. 
P(z) is taken to be the constant C(hz,). The difference scheme is 

ehzi e - 
(2.30) ain, - U, = l 1 h-n-I 

For this scheme u = 1, v = 1, and r1 = 1. Thus the scheme has zeroth order accuracy 
at the origin and at z,. This low accuracy scheme may be viewed as the forward Euler 
with the mesh increment scaled by (e h,_I),'Izh1. 

For this scheme S(z) = Iz - (I + ((e _ -I)/z1)A). By Len-ima 1, the determinant 
IS(Z)I obeys the root condition if z - I- ((ehz - 1)/z,)X does for every eigenvalue 
X of A. This latter requirement is seen to be satisfied for any choice of z, in an interval 
which itself contains the interval (- co, X). (We are assuming that X < 0.) Thus, if z1 

is chosen as any lower estimate for the spectrum of A, (2.30) will be stable. Let us 
choose z1 = min { X - d for some d > 0. To simplify ideas let us consider the special 
case corresponding to m = 2 and to, say, X, = -I and '1, some very large negative 
number. The difference scheme then becomes 

e;tAXi-d) I 

Un - U- I e - d Au, 

(2.31) 

d A, 

since X, << -1. This corresponds to a forward Euler with a very small mesh increment, 
I /(d- XI). 

Now since 

h(X, AiX-d) Xn =h I + and une=,, + Ajiin 1 

(2.32) e= + - A -de-jen 

T(hA)e- l. 

T(hX) is then the difference bet\\een the exponential eX" and the straight line 
I-(e() X '-3- I)X/(XI - d). At the eigenvalue X1, we have 

(2.33) T(IiX1) = - + e l + td- - h) + d - h))j + 

Renmark on the Nonlintear Case. Although we have only discussed the linear case, 
the numerical method which we are considering may be applied to nonlinear differen- 
tial equations in a variety of ways. Since the method is itself a nonlinear method, 
the analysis which we have given can only be carried over in a formal way to the 
case of nonlinear differential equations. (This has been done in Section 5 of [9] for a 
related numerical method.) One method for applying the problem to the nonlinear 
case is as follows. 

For the nonlinear differential equation 
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(2.34) P = f(y) 

and at the mesh point x,,, we replace y by z = y - y" to get 

(2.35) z = J(y3.)z 

where J is the Jacobian 

(2.36) J(y6) = df(y)/ay. 
The values of z1n-1, zn-2, ... which are needed are chosen as yn-I - yn3 Yn-2 - Yn* 

respectively, and A is taken as J(y.). This procedure is standard in the subject and 
we refer to [1] for a report of calculations on a related method using this procedure 
for nonlinear problems. 

3. Numerical Example. We chose 

(3.1) Un - UnS I+ h[Ot1n + (1 - O)Un-1] 

- P(hA)[u,, - un_1 + h((pfi + (1 - (p)41-0)] = 0 

as an example of the class of schemes discussed above with which to perform some 
calculations. For A we chose the matrix 

lop 0 O 

(3.2) A 0 IOa 0 

_0 0 1 _ 

with p and q as parameters. The function C(z) is 

(3.3) C(Z)- (I - Oz)e' I (I - O)z 
(3.3) C(z)~~~~ = (1 1 I ( - p)z 

P(z) was taken as the linear polynomial which interpolates C(z) at the two points 
-(1 + p/lOO)IOP and -(1 + p/lOO)lO" with p a parameter. 

As a comparison scheme, we chose the second-order scheme 

(3.4) h [U. + [1n X] = - 

Let w. be the exact solution of the differential equation, w = Aw, at the mesh 
point nh. Let En(u) be the vector whose ith component is 

(3.5) E(U) = n- 1. 

Let the length of En(u) be IIEn(u)J and let 

(3.6) E= E IlEn(u)II/N. 
n-I 

E, is defined analogously with v' replacing u4 in (3.5) and (3.6). E,, and E, then are 
relative errors averaged over N time steps for the example scheme (3.1) and the 
comparison scheme (3.4), respectively. Finally, let 

(3.7) E, = Eu/E.. 
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In the following three graphs, we have plotted E., E,, and E, for various param- 
eter values. The initial condition was chosen to be (1, 1, 1). 

The crossings of the horizontal plot representing E, with the curves representing 
E. show with what accuracy the interpolation points must approximate the eigen- 
values of A in order to match a calculation with the comparison formula with which 
a mesh increment, one order in magnitude finer, has been used. 

All qualitative features of the graphs are as the theory above predicts. 

p-l, q=2, e=0.5, #=0.25, N=5 
h lo-2 

Er E 

10-2 Ev at h-2.5 X10 

H Eu E1 
z 

10-34 Ev ath 
h 2 l l X 

E~ at h = 10-3 

-5 -4 -3 -2 -1 0 1 2 3 4 5 p 

Appendix. 
The Liniger-Willoughby Schemne. This scheme is not in the class considered in 

this paper. However, it employs the idea of approximating the solution operator of 
the differential equation both at the origin as is usual and at one additional point 
using a free parameter. The scheme is simple and very effective for stiff systems with 
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p-2, q=4, 8e 0.5, P=0.25, N=5 
h h 10-4 

Er 
~~~~~~Er 

10-2 W- AX EV at h=2.5 x 10-5 

cn ~Eu 
z EEu z 

In 

10-3 Ev at h=2 x 10-5 

Ev at h=10-5 

IC-:4 L I I I 1 1 I I I 1 
-5 -4 -3 -2 -I O 1 2 3 4 5 p 

one cluster of small and one cluster of large roots. It even works well in some other 
cases. The scheme is 

(A.1) Un+1 - Un = phn ? (1 - )h 

with ;i to be specified. In the linear case 

(A.2) x = - Ax, 

so that iin is replaced by -Aun in (3.1).t The scheme becomes 

(A.3) Un = K(h A)u. 

with 

(A.4) K(z) = (1 -tz)/(1 + (1 -)z) 

t Our analysis of this scheme makes use of the positive definiteness of A. 
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p=3, q= 4, e=0.5, q 0.25, N=5 
h= 10-4 

Er Er 

I1-2 E, at h2.5X105 

H ~~~~~~~~~~~~~~~~E u 
z E u 

H 

Ev at h=2 x10-5 

Ev at h 10-5 __I_I 

10-4 1I I I I I I I I I I 
-5 -4 -3 -2 -1 0 1 2 3 4 5 p 

The error en obeys the equation 

(A.5) e. = K(hA)e. + (K(hA) - AeA)X. 

Then 
n-I 

(A.6) en = 
f K'(hA)[K(hA) - eA ]xni, + K"(hA)eo. 
i-O 

The function K(z) is less than one in magnitude for all real z > 0 and all j, 

0 < ,u < 2. The theorem on the spectral resolution (quoted in the proof of Theorem 1 
above) shows that 

(A.7) jIK((hA)jI < const, 

since the eigenvalues of A are strictly positive. Thus, from (A.6) and since the eigen- 
values of A are strictly positive, 
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(A.8) le, I I < const( [ I K(h A) - e-Ah II+ IleoI I]. 

To estimate IIK(hA) - eAhII, we use the spectral resolution theorem again. We 
obtain the estimate 

(A.9) IIK(hA)- eAll < const min [max Ih2X'I + max Jr - )i, 
U i mElr, i e 

where I, and hZ form a partition II over the integers 1, *., m and if i E I, and 
j E I2, then Xi,! Xi. The minimum is taken over all such partitions. r is some positive 
scalar, fixed for convenience. Once r is fixed, .L is chosen so that 

(A.10) K(hr) - e = 0. 

The crux of the scheme is that this may be accomplished for any r > 0 and by a I 
in the interval (0, 1). 

The estimate (A.9) then follows from the following observations. 

(A.l l) I K(z) - e'l < const min IZ2, Ij, z 2 0, 

also 

(A.12) K(z) - e' = (r - z)[K'(2) + e5'] 

so that 

(A.13) jK(Z) - e'I < const-Jr - zj, z > 0. 

The boundedness of the constant here depends on A E (0, 2). Since the fit of K(z) 
to e-' at z = r is only of first order, we cannot permit repeated roots in .12 if (3.13) 
is to hold. 
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