MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971

Infinite. Sums of Roots for a Class of Transcendental
Equations and Bessel Functions of Order One-Half

By N. Liron

Abstract. The roots of Bessel functions of order one-half are special cases of roots of
transcendental equations of the form tan z = A(z)/B(z), where 4(z), B(z) are polynomials
and A(z)/B(z) is odd. We prove that the function f(z) = B(z) sin z — A(z) cos z, f(z) even or
odd, satisfies the conditions of Hadamard’s factorization theorem, and derive recurrences
for sums of the form S; = D g, a5?!,/ = 1,2, - , where the a’s are the nonzero roots
of f(z). We also prove under what conditions on A(z) and B(z) is S; = »~2-%(2] 4 2) or
S = 722l + 2)(222 — 1), where ¢ is the Riemann zeta function. We prove that,
although Bessel functions of positive half-order, J;.1/2, have only real roots, perturbation of
any one of its coefficients introduces nonreal roots for / > 2.

1. Introduction. We are interested in sums of the form

©

1.1) Sy = > a7,

n=l

where the a,’s are the nonzero roots of a function of the type
(1.2) f(z) = B,(z)sinz — A,(z) cos z,

where B,,(z), A.(2) are polynomials of order m, n, respectively, m # n, and f(2) is
either even or odd. Since the roots occur in pairs, -+a, we take only one of each pair.

Two special cases of (1.2), B,(2) = 1, A.(2) = kz, and B,(2) = 2, A(2) = —k,
k a nonzero real constant, have been treated in [1] using Sturm-Liouville theory.

We shall show that (1.2) has a discrete sequence of roots, a,, with o} — «. Asa
special case, we get the Bessel functions J;.,/2(z) and J_;_,,4(2), for I > 0. For J;..,/2(2)
we prove, by using S,, that if / > 2, although J;.,/4(2) itself has only real roots,
perturbations of any one of its coefficients (written in the form (1.2)), introduce
nonreal roots.

2. Main Theorem.
LEMMA 1. Let

2.1) f(z) = B,(z)sinz — A,(z) cos z, m # n,

where B,(z), A.((z) are polynomials of order m, n, respectively, which have no common
root.
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Let z = x 4 iy. Then

(1) There exists a Y > 0, such that if y > Y, f(2) has no roots.

(2) Inany strip |x| £ L < «, there can only be a finite number of roots of f(z).
Proof. Part (1). f(z) = 0iff

2.2) tanz = A,(z)/Ba(2),
(including both sides = ). For |z| > 1,
(2.3) | 4,@)/ Bu(@)| ~ Clz["™™ = Clz[*,

where k = n— mand C > 0.If |z]| > 1, we must therefore have
2.9 |tan z| & Clz[*,
if z is a root. But

tan x - i tanh y
1 — itan x tanh y

tan z = tan(x + iy) =

sin x cos x (1 — tanh® y) 4 i tanh y
cos® x + sin® x tanh® y

from which it follows that

1
2 tanh® y’
i.e., tan z is bounded away from zero and infinity, if y 0. If |y| >> 1, then (2.5)
implies that |tan z| & 1. But if |[y| >> 1, then |z| >> 1, and (2.4) holds for a root, i.e.,
[tan z| > 1 for k > 0, and |tan z| < 1 for k < 0.

This concludes the proof of (1).

Part (2). Suppose we had an infinite number of roots for |x| £ L < . By Part
(1), they would be in a bounded domain, and would have an accumulation point
other than infinity. Since f(z) is an analytic entire function, it follows that f(z) = 0,
by Taylor’s Theorem. This contradiction proves Part (2).

Remark. 1t follows from (2.4) that we do have an infinite sequence of roots,
tending to =~ on the real line, with the asymptotic values nr for k < 0 and
(n + ¥« for k > 0, n an integer.

LeEMMA 2. Let N = order of f(z). Then \ < 1.

Proof. Let M(r) = Max,,,., |[f(z)|. Then, M(r) < (n + m)Cy™*"e", for r > 1,
and C, is the largest coefficient in absolute value of 4,(z) and B,.(z).

log M(r) < logl(n + m)Ci]1 + (m + n)logr +r

.5) [tanh y| £ |tanz| = %+

< C,r, for r large enough and C, > 0.
So that, log log M(r) < log C, + log r, and therefore,

_qs log log M(r) < . log C, _
A= ‘",‘13“” log r =1+ E.T log r
THEOREM 1. Let f(z) = B,(2) sin z — A,(2) cos z, where B,(2), A.(2), are poly-

nomials of order m, n, respectively, one being even and the other odd. Then
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(2.6) 1) = ¢ [] (0 — 2/ad),

k=1

where o, are the roots of f(z) = 0, such that |a;| < |ay| < -+ S |a.| £ -+, qis the
multiplicity of the root z = 0, and C, = {*°(0)/q!.

Proof. From Lemma 1 and the following remark we get that there exists an
infinite sequence of roots of f(z) = 0, accumulating only at infinity. Also, the roots
occur in pairs Z=a. By Hadamard’s factorization theorem [2, p. 22], we can write

2.7 fz) = Co exp{g(z)}z* I[ a1 —/a}), Co#0,

where ¢! C, = {“(0), and g(2) is a polynomial in z of order < A, with g(0) = 0.
By Lemma 2, M < 1, and we get

(2.8) g(2) = az.

Since f(z) is even or odd, we get that ¢ must be even or odd with f(z), and exp {g(z)} =
exp {g(—2)},i.e., az = —az by (2.8), or a = 0, which proves (2.6).

3. Recurrences and Special Cases of S,. Rewrite f(z) in Theorem 1 as

3.1 1@) = bisam(z) sin z — a,454(2) cos z,

where

(3.2) bisom(@) = 7' kf; bz = 2'B.(Z"), by # 0, b, # 0,
and

(3.3) Gyon(@) = 2 ; a2 = 22 4,(2"), a, % 0,a, # 0,

and / + p is an odd integer.
Since we are interested in the nonzero roots of f(z), we can divide by b,z
The two basic cases are therefore:

Min(l,p)

3.4) fz) = B,(Z")sinz — 2" A4,(2*) cosz, r=2+1>0,
and
3.5) ) = 2’ B.(z")sinz — A,(Z) cos z, r=2t+1>0,

with b, = 1 in both cases.
Case 1. Consider f(2) as in (3.4). Write

(3.6) B.(Z)sinz = ) ¢,

8=0

3.7 A cosz = D d7,

8=0

from which we get
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e = (—1)' 3 (—1)'b/@s — 2k + 1),
(3.8) k=0

d, = (-1 D (—1)a/@2s — 2k)!, s=0,1,2,-
k=0
Substitute (3.6), (3.7) into (3.4) to get

(3.9) f(Z) — ic‘zzc+l _ i d,22'+r,
8=0

8=0

and by (2.6) we can write
@ = ¢t TL ¢ — 2*/ab),
(3.10) where Cy =¢p, g = 1 forr > 1,
Co=c¢; —di,q=2i+ 1forr=1,¢; —d; =0,
j=0,1,---,i—1,and¢; — d; # 0.
Take the logarithmic derivatives of (3.9), (3.10), equate, and multiply by zf(z), f(2)
as in (3.9) to get

0.2 (25 + l)C.ZZ¢+1 _ QZ d,(2s + r)zzo+r
@3.11) e=0 +=0

- [q -2 Z S‘z2:+2][zc.zzn+l — Z d'zm-n] ,

8=0 8m=0 8=0

or, after rearranging, and dividing by 2,

©

22 Silers = deial = =2 [+ 1= (g = 1)/2es™*
@Gl R "0

+ X I+ 1 — (g — r)/2ld,..2>,

s=0

with d; = 0 for j < 0. The coefficient of z on the right-hand side is
(@ — Dlco — dyé,,,1]1/2 = 0 by (3.10).
Equate coefficients of z**? in (3.12) to get

l
D S — diekl = =1+ 1 — (@ — 1)/2lciss — drarid,
(3.13) &
l=0,1,2, -+ .

Case 1.1: t > 0. In this case ¢ = 1 and (3.13) becomes

1
(3-14) Z Silei-x — diciok]l = — (U 4+ Dlcysr — divr-c], 1=0,1,2, -+,
k=0

from which we obtain, as special cases
So = % — by + aod;,1,
A b% — 2b, + ’910’ -+ [2a, — ao(% + 2b, — ao)]lsz,l + 2a00,,,.

(3.15)
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THEOREM 2. Let b, = 0,k = 1,2, --- ,p — 1, and b, 5% 0. Define

(3.16) Si=r"@+ 2+ F, 1=0,1,2,--,
where {(s) = Y., n~* is the Riemann zeta function. Then
3.17) F, =0, I £ Min(t — 2,p — 2),

(3.18) Fy = (I + Dlaodi,;-y — b,d1 511, I'=Mint—1,p—1).
Proof. If I 4 1 < ¢ then (3.14) becomes

1
(3.19) 2 Sicier = —( + Depas.

k=0

Ifalso / + 1 < p, we get from (3.8) that for s < /4 1,

by _ (=1
@2s + 1) @2s + 1!
So that if / < Min(z — 2, p — 2), then (3.14) takes the form
z‘: (=08 _ _1+1
=2l — 2k + 1) Qi+ 3’

which is equation [1, (21)], for the parameter k = 0. But in this case [1, (24)], we
have S, = =¥ %@l + 2), i.e., (3.17). If I = Min(t — 1, p — 1), then (3.14) is

¢ = (—1)

(3.20)

1
;) Sici—x = —(U 4+ Dleyy — doal,t—llt

or
(=DM, [_L:i)_'“ ]
T e i e e |

(3.18) now follows from (3.16), (3.17) and (3.20).
Case 1.2: t = 0. In this case, i = (¢ — 1)/2 (see (3.10)), and (3.13) is

1
(3.21) > Sy — dial = =+ 1 = illersy — dial.

k=0

From (3.10), ¢; — d; = O for j < i, and (3.21) is an identity, 0 = 0, if / < i. For
I = i, we have

1—i
Z Silcior — dic) = —(U + 1 — Dlersy — dial,

k=0

or, replace ] — i by /, to get

l
(3.22) g Silersics — divica] = =+ DCivivr — disvist)s
l = 0, 1, 2, cee

As special cases, we have

2
Civ1 — disy Cis1 — diny Civg — Qi42
R eI A e R L T

(3.23) So c; — d; c; — d; c; — d;
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A theorem similar to Theorem 2, for this case will be given in Section 4.
Case 2. Consider now f(z) as in (3.5). From (3.6), (3.7), (3.8), we get

(3.24) f(z) — Zc‘zza+1+r _ Z d,zz'“,

8=0 8=0

and by (2.6), we write

(3.25) f@ = ¢ 11 = 2%/ed)
=1
with C, = —a,, ¢ = 0. Repeat the same process as before to get
Z 22:+l Z Skd;—k — Zzh+2+r Z S;;C,_g
2=0 k=0 2=0 k=0

=2 6+ t+ D — 32 s+ Dd

2=0 2=0
which yields the recurrence relation
1
(3.26) 3 Sileiimis — dial = =+ Dlewey — dial,  1=10,1,2, -
k=0

As special cases we get

1 1
So""‘i“%"";‘a:,o,
(3.27) ¢
_1l 4 2 [3_ 1= 2a %i
S = 3 + P + 3a, + p + % 60 + 28,5,
The problem in [1, Section 6] is a special case of this, with t = 0, @, = —k,

a, = b, = 0for / > 0. In this case, we get from (3.26), (3.8) and b, = 1,

S (D@ =23k _2+2-—k
,z_:', @1 — 2)! Se = 2[21 + D1

which coincides with [1, (36)] for S, = T,(k),s =0,1,2, --- .

(3.28)

4. Bessel Functions of Order One-Half. The Bessel function J;,,.(2), I > 0,
is given by [3, p. 298],

2 \72 )
(4.1) Jie1/2(2) = (1;) [R; 1/2(2)sin z — R,_; 3,5(z)cos z],

where [3, p. 296],

(/2] — —_
(4.2) R = 2 (—1)"(1 n) F(}(_,I,-.:. ,,)n)

n=0

(%z)—l+2n.

Also, [3, p. 40],

© _ k 2k
4.3) i@ = GV i If(l 2 (If/j_) 72 = 2'*?P(z), where P(0) #= 0.

k=0

By (4.1), (4.3) we get
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(4.4) /22" " P(2) = ['R;,12(@)sinz — [2"7'Ri-y,3/2(2)] 2 cos z.

Now, z'R;,12(2) = 2'g1,-14(32%), and 2" 'Ri_1,5/5(2) = 2'7'g11,1/9(:2"), where

@ I—k)I‘(v+l—k+1) "
(4.5) £.,() = ,,Z( X To TE+ D °
are the modified Lommel polynomials [3, p. 303].
Since
2'Td + 3 - -1 1
2l§z,-1/2(0) = "—I(;zgll) and 2! 181—1,1/2(0) = '2_"1%(1%;*-—12 = 218:.—1/2(0),
we get that
_ I'() (7_[)1/2 21+1
f1i2) = 2T0+ H \2 22T P(z)

4.6 ré 2.
(4.6) = ""—_—2111(1(2_?_ %) (g) z' 1”-’zn/z(z)

= B,(z") sinz — z A4,(z°) cos z,
is of the form (3.4), withr = 1, b, = a, = 1,
I'G)

4.7 B.(") = U +D g1.-1232")
and

PN X ¢) B 12
(4.8) 4.z = T4 + %) 8’1—1.1/2(12 ),
where

4.9 n=m= (- 1)/2, lodd, n=1/2, n=m—1, Ieven.

We can therefore apply the results of Section 3 to J;.15(2), I > 0. It is well known
[3, p. 482] that the Bessel function J,(z) has only real zeros for » > —1, and this is
therefore true for J;,1,2(2), I > 0. The following theorem is therefore of interest.

THEOREM 3. If in Jy,12(2), for 1 > 2, we perturb any one of the coefficients in
R,.1,2(2) or Ry, 3/x(2), the resultant function has nonreal zeros.

To prove this theorem, we shall first prove two lemmas which are of interest
themselves.

LEMMA 3. The coefficients bo, by, * + + 5 by, Goy Gy, * + * 5 Gy Of (4.7), (4.8) are uniquely
determined by the following set of linear nonhomogenous equations

(4.10) bo=1, Ci=dia j=0,19"'9l_15

where c;, d; are defined as in (3.8).
Proof. b, = 1 is a condition of (3.4), which is satisfied by f,(z) in (4.6). From
(3.10) we have

4.11) fi2) = Co2 II (1 — 2 /a}) = 2°Pi(2),
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where P(0) % 0,and ¢ = 2i + 1 if¢; —d; = 0for j=0,1,---,i— 1,and
¢; — d; £ 0. From (4.6), 1(z) = z*' "' Py(2), with P,(0) ¢ 0. It follows that ¢ = 2/ + 1,
and therefore i = /, and (4.10) is satisfied. The number of equations in (4.10)is / + 1,
and the number of unknowns (counting b,) is n + m + 2 which by (4.9) is equal to
I 4+ 1, so that (4.10) is a set of / + 1 nonhomogenous linear equations in / + 1
unknowns. For uniqueness, see Appendix.

LemMA 4. Let by (=1), by, -+, by G0, @1, * + * , Gn, be the (unique) solution of (4.10).
Letb, = b, + ¢,a, = a,+ 6,0 S s < m,and b; = b;,a; = a; for j = 5. [If n =
m — 1, see (4.9), then a,, = & = 0.] Let

4.12) fi(z, s, €, 8) = 31; l-::z_o bz sinz — z ki_o a2 cos z] ,

and let Si(s, ¢, 8) denote the sums of the nonzero zeros (1.1) of f.(z, s, €, 8). Then
(4.13) S, e, 0) =7 "@i+2), JjSl—-s—2

and

(4.149)  Si5,0,8) =72V — 1¢Qi+2), jSl—s-—2.

In particular, when j = 0, (4.13) holds for | > 2, and | = 2, s = 0, and (4.14) holds
forl = 2.

Proof. f.(z, s, ¢, 8) is of the form (3.4), with r = 1. It follows from (3.8) and (4.10),
that ¢; — d; = Ofor j < s, and

Joe (=1 e = (=Da ]
(—1)[2(2s—2k+1)!+( l)e—z(2s—-2k)! (=17

k=0 k=0

c, — d,
(4.15)
=¢e¢— 0 (=¢, ifs =m=n-+1).

For e # 8, we can write, by (3.10),

(4.16) fiz, s, 6 8) = (e — 8 [ (1 — z%/ap),
k=1

and by (3.22) we have

i
4.17) 2 slf;(ss € O)Cosik — dyii—i] = —(U + Dlcssssr — dovinls
k=0

j=0,1,2, - .
If s + ¢ < I — 1, then by (4.10) and (3.8),
_ (=" =1
(4.18) Cost — doyr = @ + D! € 0! d,
andsofors + j+ 1 = I — 1, (4.17) becomes
L k[e—<zf—2k+1)a]_ L one— Qi+ 38
@19 X S 6 V| Ty | =0t DTy

which is equation [1, (21)] with the parameter k = §/e¢ # 1. In particular, if ¢ # 0,
8 = 0, this is [1, (21)] with & = 0, and so by [1, (24)], we have (4.13). If 6 % 0, e = O,
this is [1, (21)] with k — o, and so by [1, (28)] we have (4.14). Since s < m, it follows
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from (4.9) that when j = 0, (4.13) holds for/ > 2and / = 2,s = 0, and since s < n
in (4.14), (4.14) holds for I = 2,if j = O.

Proof of Theorem 3. The nonzero zeros of J;,,5(z) are the same as those of
f1(2) in (4.6), and perturbing a coefficient of R;,;/.(2) or R;_y,5/5(2) is equivalent to
perturbing a coefficient of B,(z°) or A4,(z°) in (4.6). We can therefore look at the
function f;(2). Letb; (j = 1,2, --- ,m),a; (j = 1,2, - - - , n) be defined as in Lemma
4. Since I > 2, we have by (4.13)

(4.20) Sos, e, 0) =77k = 3, €0,
and by (4.14),

4.21) So(s, 0, 8) = 77%3;(2) = 3, & # 0.
From (4.20) it follows that

(4.22) lim Si(s, €, 0) = %.

-0

The roots &a;, Z=as, -+ depend continuously on e. If e # 0 (6 = 0), we have from
(4.16) that the multiplicity at zero is of order 2s + 1, but when ¢ = 0 (§ = 0), we
have from (4.6) that the multiplicity at zero is 2/ + 1. Since the roots occur in pairs
=+, we must have

4.23) lima? =0, j=1,2,-++,1—s5s.
€0
But
l—s ®
1=S8660=2au+ 2 a’
k=1 k=l—s+1
and
lim Y o =t
=0 kml—s+l * 221 4+ 3)°
see [3, p. 502] or [4]. We therefore get that Q(e) = D_ili a;” stays finite as e — 0;

If all of in Q(e) tended to zero through positive values, then lim,.,Q(¢) = . So
that, when ¢ = 0 (|¢] < 1), we must have at least one root, a;, for which o} is not
positive, i.e., a; is nonreal. The same argument applied to Si(s, 0, 8) by (4.21) again
yields that if § £ 0 (]§] << 1) we must have nonreal roots, completing the proof.

Remark. From the proef and Lemma 4, it is obvious that Theorem 3 holds also
when / = 2, s = 0. (Fef / = 2, we only have a,, b, and b,, and the theorem does
not apply to b,.)

There are threé cases which Theorem 3 does not cover, if / 4+ 3 > 0; the cases

ndeed (7z/2)"*J,/2(z) = sin z, so we only have b, = 1, and obviously
do not depend on changing b, to any nonzero constant. The other two

following.

THEOREM 4. Under the same definitions as in Lemma 4,

(1) fi(z, 0, —¢, 0) and f,(z, 0, 0, 8) have only real zeros for e 2 0, 8 = 0, and a
pair of imaginary roots for ¢ < 0, § < 0 (|¢ K 1, 8] K 1).
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(2) fAz, 1, —¢, 0) has only real roots for ¢ = 0, and a pair of imaginary roots for
e<0(¢ 1)

Proof.  Part (1). This is the problem of [I, Section 1], with the parameter k =
ao/b, there, and (1) follows.

Part (2). Note that

(4.24) f22) = (1 — 32%)sinz — z cos z.

If we look at the function g(z) = (k, — k,z®) sin z — z cos z, the roots, +=a of g(2)
arise from the Sturm-Liouville system

W’ 4+ o’u = 0,
(4.25) Cu(0) + Du’(0) = 0,
Eu(l) — Fu’(1) = 0, ED + CF # 0,

where k, = CE/(ED + CF), k, = FD/(ED + CF).

By Sturm-Liouville theory, o’ are all real, and therefore f,(z, 1, — ¢, 0) may have
either real or imaginary roots. An imaginary root z = =ix, x > 0, of f.(z, 1, —¢, 0)
should satisfy the equation

(4.26) 1(x) = yu(x),

where y,(x) = tanh x, y,(x) = x/(1 + cx*),c =%+ e.Since | —s=2—-1=1
only one such x > O can exist (for e small enough). »,(0) = y,(0) = 0 and
lim, yi(x) = 1, lim,_.. y,(x) = 0. As y,(x), y:(x) may intersect only once, for x > 0,
it is necessary and sufficient that y,(x) > y,(x) in some interval (0, n°), for the existence
of a positive solution of (4.26). Checking derivatives at zero, one finds y{”(0) = y$”(0)
for j=0,1,2,and y{¥(0) = —2, »;”(0) = —6c, and therefore, there exists a positive
root of (4.26) iff —6¢ > —2,i.e., ¢ < §. This concludes the proof of Part (2).

To get an idea of the asymptotic behavior of the roots which split away from
zero when e (or §) tend to zero, note that by the definitions, lim ., fi(z, s, ¢, 0) =
lim;.of:(z, s, 0, 8) = f.(2). From (4.16),

L s, e 0) = e [T (1 — 2°/a))
k=1

©

l—s
4.27) =" JI « =2 [] (/22 = 1/ad)e

k=l—-s+1

© l—s

l—s
=" JI =276 IT A = ei/2)—=1)"" e]] o™
k=l-s+1 k=1 k=1
Take the limit ¢ — O of (4.27) and use (4.23), (4.6), the continuous dependence of
the roots on ¢, and (3.10), to get

l—s

1@ = i) lim (=D "elc; — a7 J] ex?,

k=1

or

l—s

lim [T g% e = (=)', — a).

e—0 k=1
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From (4.3), (4.6) we get that

(4.28) a —d = Q4+ D)7R'/@nT,
and we get
l—s
4.29) lim [] a;% e = (=11 + D'2'n/Q0PE.
€0 k=1

Again, when ¢ = 0, § # 0, (4.29) holds with e replaced by (— §).

Example. | = 3, s = 1, ¢ < 0. By Theorem 3, we know we must have at least
one nonreal root. By (4.29), lim, cea;’a;? = 1/1575, and from Theorem 3, we
have lim _,a;® 4+ a;° = . If |¢{ < 1, we must therefore have o® = o} > 0, and
—B® = & < 0, and so the two double roots at zero separate to +a (a > 0) along
the real axis, and =8 (8 > 0) along the imaginary axis. For || < 1, a®8° & 1575(—¢),
B? — o’ X 175(—¢), or o® ~ B° &~ 40 le]? + O(e).

We have [3, p. 298],

(4.30) ("'1)1 J_11/2(2) = (Z/WZ)I/Z[Rt—l.a/z(z) sinz 4+ R;,1/2(2) cos z],

and so

I-.l 1/2 .
7?(7(’-_);3)(—1)‘(’5') 2T L@, 1> 00,
2

is of the form (3.5)withr = I, m =n= (Il — 1)/2forloddandn = I/2, m = n — 1
for I even, and the coefficients are given by

4.31) b; = a;, a; = —b;, j=1,2,--,n,

where a;, b; (j = 1, - - - , n) are the solutions of (4.10).
Since r = 1, (3.26) holds with ¢ = 0, and from (3.27), (4.31), we get

4.32) So= —%—25b, S =131+ 5 4 25 + 25 — 2a,.

Appendix. We want to prove that there exists a unique solution by, --- , b,,
a,, - , a, to the set of equations

bo = 1:
J& o —vn ~ _(=D'a,
Al ¢, —d = (-1 [gm - ,,Z,,o (2s — 21:)!] =0

S=0,1,2,"‘,l""1,
m=n=({—1)/2, forlodd, and m = 1/2, n= m — 1 forl even.

Note that we can replace n by m, and add the equation a,, = 0, for / even. We know
that for any / = O there exists a solution to (A.1) given by the coefficients in (4.7),
(4.8). From (3.9), (A.1) holds iff

A.2) fz) = sinz ) bz™ — z cosz Y, a2, b = 1),
k=0

k=0

has a zero of multiplicity at least 2/ + 1 at zero, and actually, for the solution we
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know it is exactly of multiplicity 2/ 4 1, by (4.28). Thus, (A.1) admits a unique
solution iff any other choice of the coefficients, by (=1), by, **+ , Dps @0y @15 *** 5 Gy
would have the corresponding function f(z) in (A.2), with a zero of multiplicity less
than 2/ + 1, at zero. We therefore rephrase what we want to prove as follows:

THEOREM 5. There exists a unique set of coefficients by, -+ , by, @o, *** , G, such
that, at zero, {(z), defined by (A.2), has a zero of multiplicity 4m + 1 (I = 2m) if we
demand a,, = 0, and multiplicity 4m + 3 (I = 2m + 1) otherwise, and such that
bo = l-

Proof. By induction.

(1) m = 0. From (A.1), b, = 1for/ = 0,and @, = b, = 1 for [ = 1, and the
solution is unique, so the theorem holds.

(2) The induction hypothesis is that the theorem is true form = 0, 1, --- , i
We want to prove it for m = i 4+ 1. Note that the first two equations in (A.l) are
always b, = 1, a, = b,, and so
(A.3) by =a,=1 forallm > 0,

Part a. Let Bo, R 6s+l’ oy, **¢ 5 Giy i [ 0]3 and bO’ ttt b|+l’ Qo *

a;., [=0] be two distinct solutions of (A.1) for / = 2i 4 2. It follows from (A. 2)
and (3.9) that we can write

i+1

A4 h@) = sinz E bz* — z cosz Z az" = 2***°R,(2*)
k=0
and
A.5) f2(z) = sinz Z b2 —z cosz Z a2 = 2*"*°Ry(2%).
k=0 k=0

Subtract (A.5) from (A.4) to get

i+1

(A6) sinz Z By — b)™ — z cos z Z @ — a2 = 2**°[R, (") — R,(@)),

and, by (A.3), we must have
(A.7) ao=&o=bo= 50= 1.

From (A.1) it follows that b, — b, = Oforallk = j— 1 = m+ 1iffa, —a. =0
foralk < j—1=<m+ 1. Suppose b, — b, = 0fork =0,1,2,---,j—1,and
b, — b; # 0. j = 1 because of (A.7), and j < i since the two solutions are distinct,
and a;,, = a;,, = 0. Divide (A.6) by z*/ to get

i+1-7 i-i

sin z Z [Biss — bas; 1™ — z cos 2 Z (G4 — @usil2™
(A.S) k=0 k=0
= 2*"TIR(GEY — Ry@)]

Divide through by b; — b; (#0), and the left-hand side of (A.8) is of the form (A.2)
with0 S m<=<i+1—j=<ianda, = 0. From the induction hypothesis, it follows
that the left-hand side of (A.8) can have a zero of multiplicity at most 4m + 1 <
4i 4+ 5 — 4j at zero. But the right-hand side of (A.8) has multiplicity of at least
4i 4+ 5 — 2j > 4i + 5 — 4j, a contradiction. Thus, (A.l) admits a unique solution
forl = 2i4 2.
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Part b. Let Bo, Tty bins @y, +++ 5 ;e and by, -+, bisy,y Aoy * ¢, Gisy bE tWO
distinct solutions of (A.1) for / = 2i + 3. Repeat the same process as in Part a to
get the equation

$+1-7 $+1—7
sin z Z Brs; — busile™ — Z [Gesi — @rail2™
( A .9) k=0 k=0
' = 2" R(ZY) — Ry,

and 1 £ j £ m 4 1. Again divide by b; — b; (0), and get the left-hand side of
(A.9) in the form (A.2) with0 < m < i + 1 — j < i. Since we do not require a,, = 0,
we have by the induction hypothesis a zero of multiplicity at most 4m + 3 <
4i 4+ 7 — 4j for the left-hand side of (A.9) at zero. The right-hand side has, at zero,
a zero of multiplicity at least 4i 4+ 7 — 2j > 4i + 7 — 4j,since j = 1, a contradiction.
This concludes the proof.
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