
Table for Third-Degree Spline Interpolation 
Using Equi-Spaced Knots 

By W. D. Hoskins 

Abstract. A table is given for the calculation of the parameters of a third-degree natural 
spline with n data points (n > 2) using a minimum number of multiplications and divisions. 
In addition, an example is given that demonstrates the method of use and enables com- 
parisons to be made with a method previously described. 

1. Introduction. It has been previously demonstrated in [1] that for the special 
case of a natural spline of third degree, interpolating to equidistant data points, it is 
possible to determine the unknown parameters of the spline explicitly, without the 
need for solving a set of linear simultaneous equations. In the ensuing analysis, it is 
shown that by making use of an alternative, but equivalent, form for the spline, not 
only is the number of required tables halved, but the volume of computation needed to 
produce the spline is reduced. An additional advantage of this preferred form is that 
it involves only local values, and hence less calculation is demanded to evaluate 
interpolated values from the computed spline. 

2. Definitions. The cubic spline S(x), interpolating to the values (xi, y,) 
for j = l(l)n, is defined to be a cubic polynomial in each interval xi < x _ xi, 
(i = l(l)n - 1) such that S(x) E C2. A cubic spline is further called natural, if 

S"(x1) = Sf(x.) = O, 

for in this case the interpolating function is the smoothest, in the sense that the 
integral fJ' [S"(x)]2 dx is minimized. We choose to denote the second derivatives of 
s(x;) on the uniform mesh h by Mi, in which case the cubic spline S(x) is given unique- 
ly in the interval [x,, x,+ ] by 

(2.1) S(x) = (y h - ) (x+1 - x) + h2 ) (x - xi) 

+h M Xi+1 -X + h M l(-X 
Xi + ,- M(x?-x + Mi+ - 

The requirement that S(x) E C2 enforces that the additional constraint 

(2.2) 6 Mj+1 + 4 6 Mj M6_1 = 32y,, (j = 2(1)n - 1), 

called the continuity equation, is satisfied ([2] and [3]). 
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3. Derivation of Formulae. From the definition of a natural spline, the boundary 
conditions 

(3.1) M1 M.,=O 

are applicable and yield, when taken in conjunction with the continuity Eq. (2.2), the 
matrix equation 

h2 
41 0 * 0* -hM2 62Y2 

h2~~~~~~ 
1 4 1 4 Ms 3Y 

1 4 1~Mn-2 2y2 
6 

h 2 
0 ... 0 1 4 -M 2YR- 

for the unknowns (h2/6)Mi (j = 2(1)n - 1). 
The Eqs. (3.2) are tridiagonal and symmetric, thus, the solution is particularly 

simple using a single LU decomposition. Performing this decomposition gives the 
modified matrix equation, 

a,...a 0 ... 0 d2 

(3.3) 0 * M= 
a1 0 d,-2 

~L0 ... 0 1 a0jLsI 

where 

h2 fh h2 h - M =- M2,-Ms,.~ Mn2 2 
6 6 6 6 

with 

(3.4) ai = 4- l/ai l, (J 1, 2, ) 

a0 = 4. 

and 

(3.5) di-, = 52y_- - d/_ Cl = n- 1(-1)3), 

dn-I = 2Y n-l. 

Now, we define 

(3.6) a= a=lb, 

and, by substitution in (3.4), obtain the two recurrence relations 
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(3.7) aj+2 = 4aj+j - a U _ -1, ao = 4, a-, - 1) 
and 

(3.8) bj+1 = ai, 
which enable Eq. (3.6) to be rewritten, using formula (3.8), in the form 

(3.9) a, = al/a,. U (J_ 0). 

The recurrence relation (3.5) may be written, when j = 3, as 

(3.10) d2 = a2Y2 + E {[II (- )] Y'}' 

or with substitution from Eqs. (3.9), 
n-1 \ 

(3.11) ~Yd2 = Y2 + a 2 (21) r 2 
r-3 n-4 

Equation (3.11) can be further abbreviated to 
n-I 

(3.12) an-4d2= E (- 1) an-r-2 62Y, 
r-2 

and then, by substitution into the first of Eqs. (3.3), used to give 

(3.13) a.-a{ M2} = E (-1)ran-r-262yr. 

TABLE 1 

j a, 

-1 1 
0 4 
1 15 
2 56 
3 209 
4 780 
5 2911 
6 10864 
7 40545 
8 1 51316 
9 5 64719 

10 21 07560 
11 78 65521 
12 293 54524 
13 1095 52575 
14 4088 55776 
15 15258 70529 
16 56946 26340 
17 2 12526 34831 
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From the Eqs. (3.13) and (3.1), it is apparent, therefore, that the continuity Eq. 
(2.2) now enables the remainder of the unknown M, to be rapidly calculated, using as 
starting values M1, M2. Further, since the terms (h2/6)M1 appear in the spline Eq. 
(2.1), it is possible to work directly with the unknowns (h2/6)M1, rather than MA, and 
reduce both the rounding errors and volume of computation. 

4. Example. The constants a, are determined from the recurrence relation (3.7) 
and are given in Table 1. 

The example considered is that treated in [1] and characterized by the data j, yi, 
appearing in the following table: 

TABLE 2 

Numerical Example of a Natural Spline 
(h= 1) 

j yi 82y, 4W Mi iMi 

1 244.0 - 0 0 
2 221.0 10.0 73245 1.8065112 
3 208.0 13.0 112470 2.7739548 
4 208.0 3.5 3960 0.0976693 
5 211.5 1.0 13597.5 0.3353681 
6 216.0 - 1.5 - 17805 - .4391417 
7 219.0 - 1.0 -3195 - .0788013 
8 221.0 -1.5 -9960 - .2456530 
9 221.5 -2.0 - 17782.5 - .4385868 

10 220.0 - 0 0 

The method of calculating the parameters is as follows: the quantity (a7/6)M2 is 
computed using Eq. (3.13) and Table 1 to supply the constants a, (division by a7 is 
delayed until the remaining quantities (a7/6)Mj have been determined so as to reduce 
the effect of rounding errors): 

40545(kM2) = (10864(10.0) - 2911(13.0) + * + 4(-1.5) - 1(2.0)], 

40545(*M2) = 73245. 

Finally, the unknowns (a7/6)M3, * , (a7/6)M"_1 are calculated, using 

a7(6 M1+1) = a752 - 4(6 M;) -() Mi-1 j = 2, * * , n - 1, 

and the quantities M, tabulated in Table 2. 
Cubic spline interpolation is then made, if required, using Eq. (2.1) and Table 2. 

5. Conclusions. The method outlined above is a condensed way of solving the 
(n - 2) X (n - 2) simultaneous equations for the unknown parameters of the spline, 
but still possesses the advantage of requiring only (2n - 4) multiplications/divisions 
as compared with the 0(n2) required by the method proposed in [1]. 
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Use of the three-term recurrence relation (2.2) and M1, M2 to evaluate the other 
Mj, though less sensitive than the method in [1] used to calculate the spline coeffi- 
cients, is still liable to increase rounding errors, unless the precaution of using exact 
calculation is followed. However, the Eq. (2.1), used subsequently for interpolation, 
is not sensitive to rounding errors and consequently is preferred, both for accuracy and 
speed, over the form used in [1]. 

Department of Computer Science 
University of Manitoba 
Winnipeg, Manitoba, Canada 

1. T. N. E. GREVILLE, "Table for third-degree spline interpolation with equally spaced 
arguments," Math. Comp., v. 24, 1970, pp. 179-183. MR 41 #2885. 

2. E. L. ALBASNY & W. D. HosNNs, "Cubic spline solutions to two-point boundary value 
problems," Comput. I., v. 12, 1969/70, pp. 151-153. MR 39 #3710. 

3. R. H. PENNINGTON, Introductory Computer Methods and Numerical Analysis, Mac- 
millan, New York, 1965, p. 405. MR 34 #925. 


