
Minimal Quadratures for Functions of Low-Order 
Continuity 

By L. W. Johnson and R. D. Riess 

Abstract. An analog of Wilf's quadrature is developed for functions of low-order con- 
tinuity. This analog is used to demonstrate that the order of convergence of Wilf's quadra- 
ture is at least 1 /n. 

1. Introduction. From the work done in minimal norm quadratures for Hilbert 
spaces of analytic functions by Wilf [7], Barnhill [1], Eckhardt [2], Richter [6], and 
others, it is natural to consider an extension of this concept for functions of low-order 
continuity. In this paper, we consider functions with a uniformly convergent Fourier- 
Chebyshev expansion on the interval [-1, 1] 
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where T1(x) is the ith degree Chebyshev polynomial of the first kind and the prime 
on the sum indicates the first term is to be halved. We also restrict f(x) to have the 
property that ',. 0 1ai I converges, e.g. when f'(x) is of bounded variation on [-1, 1]. 
For error bounds of Gaussian quadrature for functions of this type, see Rabinowitz [5]. 

2. Minimal Quadratures. Let E._O Haf(x8) be an (n + 1)-point quadrature 
formula. We define Rn(f) = fJ1 f(x) dx _ En_O H1f(x.) and note from the expansion 
of f(x) that R,(f)-= 0 akR (T1). Using both the triangle and Schwarz inequalities 
we obtain the error estimate 

k \1/2 k \1/2 X 

(1) IRn(t)I <- I/"af) tZ" R (T1)2) + Z' |aiR,(T1)l 
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where the double prime indicates both first and last terms are to be halved. 
If f(x) satisfies mild smoothness restrictions (cf. Elliott, [3]), then the coefficients a; 

satisfy Iai I < C/i2. In this case, since R&(T,) is bounded for i _ k, the last term of 
the inequality is of order 1/k. Thus, it appears worthwhile to consider, as in Wilf [7], 
minimizing W(n, k) where 

k 

(2) W(n, k) = ," Rn(T1)2. 
t =0 
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We note W(n, k) = 0 for k < 2n + 2, since the problem is solved by Gauss-Legendre 
quadrature. 

To minimize W(n, k), of course, we must solve the 2n + 2 simultaneous equations 
a W(n, k)/OH. = 0 and a W(n, k)/dx. = 0, 0 < s ? n. An analytic solution does not 
seem feasible, so we consider the less restrictive problem of choosing weights to 
minimize W(n, k) with a given fixed set of nodes. In doing so we are able to answer a 
question posed by Wilf (see Section 4). 

Solving 0 W(n, k)/dH., 0 < s g n, leads to the system 
k 

(3) E" R,(Tj)T,(x.) = 0; s = 0, * , n. 
.0o 

Setting 

1~~~~~~~~ a= T,(x) dx = -2/(i2-1), i even, 

= 0, iodd, 

thus (3) becomes 
k k n 

(4) "if ai T;(x,) = 1 "E Hj T-(xj)T0(x10. 

If H*,...*, H* satisfy (4), then ,_0 H*f(x.) is called a minimal quadrature. 
Let gk(x) = ' a1T1(x) andfk(x) = E".-0 R.(T,)T,(x). Then, 

k p 

R.(gk) = i" a1R.(Ti) = J f(x) dx = Rn(fk) - E H,fk(x.). 
_-o S -0 

If H0, * *, Hn is a solution of (4), then (3) the quadrature sum is zero. Further, as 
RrUk) = W(n, k), we have R(gk) = W(n, k) so W(n, k), for any minimal quadrature, 
is the error made in approximating the integral of gk(x). We note here that 
E "-ocaYiTj(x) is the Fourier-Chebyshev expansion for F(x)= Fr(I - x2)/2 on[-1, 1]> 
and since F(x) is continuous and of bounded variation the series is uniformly con- 
vergent. 

Let H denote the (n + 1)-dimensional vector H = (Ho0 , X Hn) and define 
so: F+l _ E+ by qp(H) = (R&(To), * * * R,,(T,)), where Rn(Ti) = ai - EJ_ HHTi(x,). 
It is immediate from Hilbert space properties that there is a unique point H* in 
En' such that I I o(H*)I 12 is minimal. Thus, the existence of a unique minimal quadra- 
ture is guaranteed. 

3. Special Case. When k = n, the minimal quadrature is of course the inter- 
polatory quadrature on xo, .., x". In the case xi = cos(iir/n), the interpolatory 
quadrature is Clenshaw-Curtis quadrature. If we use the well-known orthogonality 
properties for T.(x) in (4) with xi = cos(i7r/n), we obtain immediately InHi = (xi), 
i = 1, * * *, n - 1, and nHi = g,(x1) for i = 0 or n. These are the same expressions 
found by Imhof [4], which he used to show the Clenshaw-Curtis weights were positive. 

4. Improvement of a Result of Wilf. In [7] Wilf minimizes W, = k Rn(Xk)2. 

Let R* denote the remainder for optimal quadrature in the set of functions analytic 
in lzl < 1 and 22 on the unit circle, and let 
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lfl2 = l f f(e'0)12 dO. 

Thus IR*U(f)l l 111 If l 1Wilf was unable to give explicit solutions for the weights 
and nodes, but was able to show that W. is the magnitude of the error in integrating 
x-1 log(l - x)-1 by the minimal formula. He derives the result W. ? O(ln(n)/n) and 
leaves as an open question whether this result can be improved. On [0, 1] the Clenshaw- 
Curtis weights and nodes are, respectively, 

4 
W n i = 1, x*i* n, F 

_ 2 xs= cos ( +=O,* n + 1. 
+ g,+1(xj), i Oor n + 1;2(+1) 

For ease of computation, and since gn+1(x) is uniformly convergent to ir(l-X2)1/2 on 
[0, 1], we shall use instead the weights 

Hi = 
7 I _ (1 -(x)2)1/2, i = 1,*,n, 

= (1 - (X)2)1/2, i = 0 or n + 1, 
n+1 

and we note Ho = x"+, = 0. 
Since Clenshaw-Curtis quadrature is exact for polynomials of degree less than 

n + 2, 
n+1 

W,(X.),; = kfor 0 k n +1. 
s-0 k + 

Then 
n n n \2 

Rn(Xk)2 1 1(k + 1) - J H,x,) 
k-0 k0 O -1 

n -1 + 2 

k 0 8-O 

n n 12 

c w_ 1WOn+ 1 )W - s b H 
k 0 +-1 

For 1 :5 s _ n, 
co 

I Hs WS I = (41(n + 1)) : a iT, (x.) 
i-n+1 

<(41(n + 1)) a <4(2- 1). 

Since wo I l/((n + 1)2-_1), then by inserting these bounds we get 

(5) ~~~ Rn(X") (n + 1)(1 + 4n 2(n 
_ 

1)2 < Ciln. 
o _a 
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Now, for k > n, define 
n ~2V\27 

n 
____r S7r p2k 

(6) Q,(xk) E Hxk. < 1 a- Es (2 ; 2,/nCos (2+ 2)) 

In what follows we will show that Qn(xk) = 0(l/k) for k > n. We first show 
that if n is sufficiently large and k > (n + 1)2, then kQ,(xk) is bounded independently 
of k. We then show by an integral bound that Qn(Xk) = 0(1/k) for the remaining k 
in (n(n + 1)2). 

First let us assume that k > (n + 1)2, then 

(7) y(k) kQn(xk) < E sin ( ) V,(k), 
a- 2n + 2/ 

where V.(k) = k(cos(s7r/(2n + 2)))2k. Then it is easily verified that for n sufficiently 
large (say n 2 M) and k _ (n + 1)2, V'(k) < 0, and thus y(k) is bounded for all such 
k. 

Now we consider a fixed n > M and any k < (n + 1)2. We define 

(8) z(s) = (+ ) sn (2 + 2)(Cos (2 + 2)) 

Then z'(s*) = 0 for tan(s*ir/(2n + 2)) = (1/2k)1'2, and s* is unique in (0, n + 1). 
Thus if m is the greatest integer in s*, and since z(s) > 0 in (0, n + 1) and is maximal 
at s* 

m-1 n rn+1 2V2 
(9) 

E 
z(s) + z(s) < z(t) dt < 2-. 

J-1 a-m+2 k 

Since z(s*) < (2V/27r/(n + 1))(2k + I)-i/2, then 

(10) Qn(xk) _ E Z(S) < 2V2 + 2z(s*) < 2(v'2 + 2ir)* 
k-k 

Thus, combining these two cases with C2 = 2(V/2 + 27r), 
co co 

E Rn(x*)2 ? - (l/(k + 1)2 + 2C2/k(k + 1) + C22/k2) 
(11) k-n+i k-n+i 

= 0(1/n). 

Combining this with (5) we get the desired result, 

(12) W < E Rn (X)2 = 0(1/n). 
k-O 

Reflection on the magnitude of R*I(xb)2, i.e. (1 /(k + 1)-QI"(xk))2, and the number 
of free parameters available leads us to conjecture that 0(1/n) is the best possible 
bound for WK. 
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