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The Square Root of 2 to 1,000,000 Decimals 

By Jacques Dutka 

Abstract. The square root of 2 has been calculated to 1,000,000 decimals on a large-scale 
digital computer and the result has been verified. The calculation was based on a specially 
developed algorithm for square roots which does not appear to have been used in previous 
computations of this type. 

1. Introduction. A summary of extended-length computations of the square root 
of 2 is given in the following table. 

Author Machine Date Precision 

R. Coustal [1] 1950 1032 D 
H. S. Uhler [2] Desk 1950 1544 D 
K. Takahashi and 

M. Sibuya [3] HIPAC-103 1966 14000 D 
M. Lal [4] IBM-1620 1967 19600 D 
M. Lal [5] IBM-1620 1967 39000 D 
M. Lal and 

W. F. Lunnon [6] ATLAS 1967 100,000 D 

The computations of R. Coustal and H. S. Uhler made use of binomial series 
expansions. Takahashi and Sibuya employed an iterative method based on the 
formula x,+1 = x*(1.5 - 0.5nx',) which requires only multiplications and additions. 
In his first calculation, M. Lal employed a special method which yields one digit at a 
time. In the later calculations the Newton method was employed to extend the original 
result. 

This method, which is by far the most widely used algorithm for obtaining square 
roots in modern electronic computers, depends on iterations of the formula 

a,, + N/a,, (1) a,+, = an + N/nan1- 2 n 0, 1, 2, , 

where ao is an initial approximation to \IN. If the initial approximation is suitably 
chosen, the process converges quickly and accurate single- or even double-precision 
approximations to VIN are obtained after only a few iterations. However, if more 
extended multiple-precision approximations to VIN are sought, the computation time 
increases rapidly because of the times required for dividing N by a many-digit number. 
Generally, the time required for floating-point division on modern electronic com- 
puters compared to floating-point multiplication is at least twice as much for double- 

Received May 10, 1971. 
AMS 1970 subject classifications. Primary 65D20; Secondary 10B05. 
Key words and phrases. Square root of 2, quadratically convergent algorithm, Pell equation. 

Copyright ? 1971, American Mathematical Society 

927 



928 JACQUES DUTKA 

precision computations. The comparison is usually even less favorable for division in 
extended multiple-precision computation. Overall, the use of (1) to obtain many- 
decimal approximations appears efficient only if good initial approximations are 
already available and a small number of iterations are required to obtain the final 
result. 

2. A Quadratically Converging Algorithm. The algorithm actually employed 
for the calculation of the square root of 2 to 1,000,000 decimals depends on the 
generation of solutions of the Pell (Fermat) equation P2 - NQ2 = 4 by means of 
recurrence relations involving multiplications, and the approximation of v-N by a 
suitable ratio P/Q. As is well known, if N is a nonsquare positive integer, this equation 
has an infinite number of positive integer solutions which can be obtained from the 
convergents of the continued fraction expansion of \/N. (See, e.g., Nagell [7, pp. 
204 ff.].) In particular, suitable starting values (P0, QQ) for the recurrence relations in 
the following theorem can be obtained from the continued fraction expansion. 

THEOREM 1. Let (PO, Qo) denote a solution in positive integers of the Pell equation 
p2 - NQ2 = 4 where N is a nonsquare positive integer, and let 

(2) Pn+1 = Pn2- 2, Qn+1 = PnQn n = 0, 1, 2, . 

Then (Ps, Qn) is a solution of the Pell equation, and as n -*> oo, Pn/Qn -* v/N. The 
sequence {Pn/Qn} is equivalent to the sequence {aj} obtainedfrom (1) with the initial 
approximation aO = Po/Qo. 

Proof. From (2), 

n_1 = (P2 - 2)2 - NPnQn = Pn(Pn- NQ - 4) + 4 

and it follows by mathematical induction that (Pn, Qn) is a solution of the Pell equation. 
It also follows from this and (2) that 

Pn Vi Qn\/= (Po i QoV\N )( 
2 2 / 

Solving for Pn and Qn and dividing, one finds 

(3) Pn = N + a (2,] where a =FP o - Q0V\N 
Q (2I)J aherea Po + Q0-VN 

Since IalI < 1, it follows that as n --> X, P.,/Qn -+ v/N and the convergence is quad- 
ratic. Moreover, (1) is satisfied with aO = Po/Qo, for 

Pn+1 2p2 - 4 Pn + NQ 2 (Pn/Qn) + N(Qn/P ) 
= n n n=n 

Qn+1 2PnQn 2PnQV% 2 

Bounds for the difference (Pn/Qn, - v/N) can readily be found . For since 

(P, - Qv/N)(P, + QVN) = 4, it follows that 

Pn _ _N_=_- 4 

Qn Q,(Pn + Q. <AN) 

Evidently, Pn > Qn.\N and NQ2/Pn < Q. Hence 
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2 P. 4P, (4) -\<I- _ VN < 2 + P.Q. Q. Q.(Pn NQ.) 
But PnQn = Qn+l and Pn + NQn = 2P,+1. Thus 

(4') 
2 < Pn _-\2N < 

2P 
Qn+1 Qn n+Q 

and the difference between the upper and lower bounds is 4/Qn+2. 

z/ 3. Computational Considerations. Given an initial (Po, Qo) which is a solution of 
p2 - NQ2 = 4, how large must n be in (2) so that Pn/Qn approximates V/N with a 
specified accuracy? 

In (3) let 1/A denote the required accuracy. Then 

Pn N N [i + a -12 [2a 2)N] < I 

Solving for n from the inequality on the right, one finds that 

(5) n > log log(2f3\/N + 1) - log log((P0 + Qox/N)/2) 1 
log 2 

For the computation of \/2, the values 

Po = 6726, QO = 4756, ,3 = 101 ??? ??? 

were chosen. From (5) it was found that n = 17. The integers P17 and Q, each contain 
501,712 decimal digits. 

Although, as has been pointed out above, the algorithm of Theorem 1 is es- 
sentially equivalent to the Newton method for obtaining square roots, it appears 
from a computational standpoint to have certain advantages for many-decimal 
approximations. These may be summarized as follows: 

(i) Divisions in the Newton method are, except for one division as the last step in 
the application of the algorithm, replaced by multiplications. Specifically, at each 
stage a division in the Newton method is replaced by about one and a half multi- 
plications in (2). For, as is well known, to calculate the m X m symmetric square 
array of partial products obtained by multiplying the m(computer)-word number P. 
by itself, it is only necessary to compute m(m + 1)/2 partial products-corresponding 
to the terms in the square array which are on or above the main diagonal instead of m2 
partial products. If m is large, this is about m2/2 multiplications. 

(ii) Pn/Qn is equivalent to a convergent in the continued fraction expansion of \/N 
and thus has the well-known optimum property of rational approximations to \/N of 
such convergents. 

(iii) Integer arithmetic is used at each stage, so that computational operations are 
made more convenient, e.g., there is no loss of significance as occurs in the truncation 
of decimal fractions. Moreover, the fact that (Pn, Qn) is a solution of a Pell equation 
can be exploited to provide checks for the accuracy of the computations at each step. 

Higher-order algorithms which converge more rapidly than that of Theorem 1 
have been considered. But the gain in rapidity of convergence is obtained at the cost of 
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increasing complexity of the recurrence formulas analogous to (2), and such algorithms 
do not appear to be advantageous from a practical standpoint. 

4. Results. The calculation of the square root of 2 by the algorithm of 
Theorem 1 was carried out on Columbia University's IBM 360/91 computer at odd 
times spread out over more than a year. The computer program which was written 
made extensive use of a multiple-precision floating-point arithmetic subroutine 
developed by J. R. Ehrman [8]. The calculation, which took about 47.5 hours, con- 
sisted of the following steps: 

The generation of (P17, Q,,) from (2) with the starting values P0 = 6726, Q0 = 4756, 
the division P17 . Q17 carried out to the equivalent of more than a million decimal 
places, the conversion of this quotient from hexadecimal to decimal form, and finally 
the verification of this approximation to -V2 by squaring it and comparing it with 
2 = 1.999 ... 

The lengthiest operations were the conversion from the hexadecimal to the decimal 
form and the division. The number obtained by squaring the approximation in the 
verification showed one, decimal point followed by 1,000,082 nines, so that the 
accuracy of the approximation is guaranteed to this number of places. 

The computer printout, which has been deposited in the UMT file, is in the form 
of 200 pages, each containing 5000 decimal digits, and a final page on which the first 
82 digits are correct. 

An analysis of the pseudo-random characteristics of the approximation will be 
made and the results published. 
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