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Stability of Parabolic Difference Approximations to 
Certain Mixed Initial Boundary Value Problems* 

By Stanley Osher 

Abstract. We consider the equation 

t- a(x, t)u.. - b(x, t)u. - c(x, t)u = f(x, t) 

in a region 0 ? x ? 1, t > 0, with inhomogeneous initial and boundary data. We are con- 
cerned with stability and estimates on divided differences in the maximum norm for solutions 
of consistent implicit, multistep, parabolic difference approximations to this problem. Using 
a parametrix approach, we give sufficient conditions for certain estimates to be valid. 

1. Introduction. In this paper, we shall consider invertibility, stability, and 
smoothness up to the boundary of the solutions of a general class of implicit multistep 
approximations to heat-type equations in one space variable in regions with bound- 
aries. In an earlier paper [3], we proved a stability theorem for more general problems 
but allowed only constant coefficients. Here, we require mild smoothness of the 
coefficients, and we then estimate not only the solution, but certain of its divided 
differences. 

The results extend those of Varah [11]. In his paper, he considered only explicit 
one-step approximations to the constant coefficient equation with no lower order 
terms. The main results in both involve the kind of normal mode analysis which 
was discussed in [2], [3], [4], [12]. 

The parametrix technique was used by Widlund [8] in his paper on approximations 
to the initial-value problem for more general parabolic systems. Many of the estimates 
for this mixed problem are similar to those he obtained for the analogous initial- 
value problem. 

The invertibility technique modifies some of the ideas of Strang [6], [7] in his 
papers on difference schemes for which the solution is assumed identically zero 
outside the region. 

Our accuracy assumptions at the boundary and the normal mode condition at 
z = 1 seem to be necessary in order to obtain the appropriate estimates on the first 
divided differences up to the boundary. The example (9.1) below indicates the diffi- 
culties involved in weakening these assumptions. 

This last example was due to Bj6rn Engquist, and the author would like to thank 
him for several stimulating discussions on these and related problems. 

2. Preliminaries. We are considering the mixed problem for the equation: 
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14 STANLEY OSHER 

(2.1) Ut - a(x, I)u.. - b(x, t)u, - c(x, t)u = f(x, t) 

in the region, 

(2.2) 0 x? 1, I 0 t T T, T < c, 

with bounded initial conditions: 

(2.3) u(x, 0) =UO, 

and boundary conditions: 

(2.4) aju(O, t) + a2Ua(O, t) go(t), 0 ? t ? T. 
3Iu(1, t) + 62u.0(, t) = (t), 

Each aj, fli is a complex number with 

21tj + ka2I = 1 = j321 + 1J21. 

We assume that f(x, t), uO(x), go(t), g2(t) are all bounded in their regions of defini- 
tion. Moreover, the real part of a(x, t) is bounded below by a positive constant c. 
a(x, t) has the property: 

(2.5) Ja(x, t) - a(xo, to)| ? C(Ix - x0Jl + It -toj'0) 

for some constants C, y, y > 0. (We shall often use the same letters C and c to denote 
different positive universal constants. C denotes a constant bounded above by + 00, 

c denotes a constant bounded below by 0.) We also assume that b(x, t) and c(x, t) are 
uniformly bounded and measurable in x and t. 

We are concerned with the following finite-difference approximation to this 
problem. We introduce a mesh 

x, = vh, v -s,-s + 1, **,O1, , N + 1,*** N + 1, 
(2.6) sI 1, N are nonnegative integers, and Nh = 1, 

tn = nk, n= 1, 2, , T/k, withX = k/h2 = constant, 

and solve 

Z d1,,i(x, t, h)E'v(x, t + k, h) 
(2.7) 

- E ( ? d.,j(x, t, h)E')v(x, t - nk, h) + kf(x, t). 

Ev(sh) = v((,o + 1)h), x = vh, and v takes on all integer values between 0 or 1 and 
N or N - 1. For the Dirichlet problem, a2 = 0, we require that v t 1, otherwise 
v > 0. This is done in order to improve accuracy at the left boundary. Analogous 
statements are true near x- 1. 

Also, t = nk, R < n ? Tik - 1, and for x = vh, v(x, 0, h) = uo(x). The functions 
v(x, k, h), * , v(x, Rk, h) are given by some bounded compatible starting procedure 
as defined in Widlund [8]. Each finite-difference operator is of the form: 

E d,, ,(x, t, h)E' = a, + Z; B,,,k,^(x, t)hU(hD)k 
(2.8) i-a+k2 

= czar + Q,(x, t, hD, h). 
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The aM are real constants, with a-, 1, and hD is one of the operators hDo, hD+, hD-, 
with 

hD ,v = i?(v(x ? h)- v(x)), hDo = -j (hD+ + hD4). 

The elements of these matrices are supposed to fulfill the same conditions as the 
coefficients of the differential equation. Thus, we assume that they are bounded and 
measurable and that those with o = 0 obey a condition like (2.5). We define Q('), 
the principal part of Q,, to be the sum of those terms of Q, for which of = 0. 

In general, we must define the functions v(x, t, h) outside the region 0 5 x < 1. 
We assume that f(x, t) and uo(x) can be extended smoothly to the region - e ? x _ 
1 + e, for some e > 0, and that each v(x, t, h) satisfies the boundary conditions in 
(2.11) below. 

Consider the equation 

(2.9) zR+ 1 _ Caoz? _ alzRl1 as = O. 

Denote the roots to this equation which lie on the unit circle by e '", k 
1, 2, * , ko. Then we assume that for all t, 0 ? t < T, and all spo, 

R 

E e;f d,., -. (0, t, 0) i- d- 1, (0, t, O)e + i i 

(2.10) go 
R 

E e-'1A Pd;,,,j(O, t, 0) d-z ,1(O, t, O)e+P. 
, - 0 

It is clear that we need additional conditions to specify v completely; this we do 
as follows: 

(2.11) If a2 = 0, then we have 
as 

v(ph, nk, h) - E b.(?(h)v(jh, nk, h) 
i-i 

= - -iE b'(')(h)]go(nk), p =O,-l -s+ 1. 

If a2 $ 0, we then have 
go 

v(ph, nk, h) - b,(f(h)v(jh, nk, h) 

o(nk)[P- b (h)j , p = -1, -2, ,-s. 

The conditions on the right boundary x = 1 are exactly analogous. 
ql 

(02 = 0) v(1 + ph, nk, h)- E b j~(h)v(l - jh, nk, h) 
i-i 

= [1 - ? b'I'(h)]gi(nk), p = 0, 1, 2, I, - 1. 

(62 p6 0) v(1 + ph, nk, h) - ? b1)s(h)v(1 - ih, nk, h) 
j"O 
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The following notations will be used: 

jjjv(., nk, h)jjj = sup jv(vh, nk, h)j, 
(2.12) 

Ilv(., *, h)lll = sup lv(vh, nk, h)I. 
v,h 

Definition 2.1. The difference equations (2.7), (2.11) are invertible if, for arbitrary 
right-hand sides in all three equations, there exists a unique v(x, t + k, h) satisfying 
the equations. Moreover, I Iv(, t + k, h)j is bounded by a constant times the norm 
of the right-hand side. This is equivalent to the statement that the difference operator 
I + Q-l(x, t, hD, h) is uniformly invertible on the space of vectors obeying the bound- 
ary conditions in (2.11). 

We shall obtain necessary and sufficient conditions for the difference approxima- 
tion to be invertible, and sufficient conditions for certain estimates on the solutions 
to be valid. We think that these estimates are sharp. 

3. Statement of the Main Results. We make the following assumptions about 
the difference approximation: 

(a) The difference approximation (2.7) is consistent with the differential equation 
(2.1). 

(b) If we construct the matrices 1)'(y, t, t) by replacing hDO, hD*, by i sin t and 
(2i sin t/2)e`tE/2 in Q')(y, t, hD), then the roots x,, 1 S i ? R + 1, of 

(3.1) ~x. i + 0`)(y, , t)) x (ao + 40(1)(, a ) 

(asi + OR(y t, 0 ) 

satisfy IxJI g 1- c lt22 -r< t ! ir, i.e. (2.7) is a parabolic difference scheme as 
defined in [8]. We might also equivalently define 0tl'(y, t, wh) as e-i"Q(l)(y, t, hD)eO". 

(c) The matrix 

ao a, a2 . . aR 

I 0 0 ... 0 

0 1 ... 0 

[0 ..0......... O 

has a simple eigenvalue equal to one, all its other eigenvalues lie on or inside the 
unit circle, and all its eigenvalues em"; on the unit circle are simple. (The Dahlquist 
root condition, which is necessary for stability, is valid.) 

(d) [1 + Q (y, t, t)] 6 0 for any y, t, t. 

(e) The change in argument of I + Q(')(y, t, t) as t goes from -7r to ir is zero 
for all y, t. 

(f) The functions b`)(h) are C2 in a neighborhood of 0 for h 2 0 if a, s 0, C1 if 
a2 = 0. Moreover, the boundary conditions (2.11) are consistent with (2.4). That is, 
if a2 = O, then 1- 1 b'?'(0) $ 0, and s - l b'?)(O)j = 0, for , = 0, -1, * I 
-s + 1. If a, id$0, then for = -1, -2, ... -S. 
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I - Sao by,_(h) = al h + 0(h2), 

-4 E!0 b~o(h)j ai2 

and ,u # ,? O b()(O)j. 
Analogous conditions hold at x = 1. 
Before listing the remaining assumptions, we shall consider two related problems. 

We define the right-half problem to be Eq. (2.1) in the region 0 ? x < co with the 
same boundary conditions at zero, and the functions a, b, c, f, and u0 extended to 
plus infinity, keeping all the smoothness and boundedness properties. We take the 
difference approximation to be (2.7) extended smoothly to the region 0 ? x < X 
with the same boundary conditions at zero. The left-half problem is the complete 
analogue in the region -o < x < 1. 

(g) The set of equations 

d1,j(O, t, O)E'v(vh) = 0, v = a, a + 1, ... 

(3.2) 
0 

Zb'?(O)Ev(O) =v(j.h), u= a- 1, a-2, a s, 

(a = 0 or 1 depending on the problem), for all t, 0 g t _ T, has no nontrivial solution 
{v(vh)}). ... satisfying 2v _ Iv(vh)12 < X . 

(h) The analogous statement is true for the "frozen" left-half space problem: 

E d..1J(1, t, O)E'v(vh) = 0, v = N + a, N - 1 + a, 
(3.3) 

v(1 + ph)Z b"V(0)v(1-jh), p = a + 1, a + 2,*, a + , 
i-a 

a = 0 or -1, depending on the problem. 
The following two conditions involve checking for normal modes. These are the 

crucial stability requirements. 
(i) Consider the set of equations 

zd?,i(0, t, 0) - do,,(0, t, 0) _d1,(0, t, 0) 

_ . d, i ( ?0)1 E'X(vh) = 0, 

X(Ph)- E b (O)x(jh) = 0, 

v = a, a + , , p =a- 1,,a-s, for allt. 

We assume that for IzI > 1, z # ei9k, the unique bounded solution is zero. If a,2 = 0 
and z = e'i , we make the same assumption. (Recall: The numbers eI are those 
eigenvalues of the matrix in (c) which lie on the unit circle.) We next assume that 
if a2 i 0, then for each z = ei'k, X(vh)_ 1 is a solution, but there exists no other 
linearly independent solution having the property kt(vh)l < c v + c2 for some positive 
constants cl, C2. 
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(j) The analogous statement is true for the left-half space problem. 
As a crude example of what these conditions mean, we consider an approximation 

to the heat equation with zero boundary data in the right-half space: 

(3.4) v, -v, + X(v",+ - 2dil + v,_) j=I 2, *-, < )X < Ao = 2vl. 

The function v: = (1 + X/2)'2-' satisfies these equations, and hence no stability 
estimate can be obtained. 

We may now state our main theorems. 
MAIN THEOREM I. Under the assumed smoothness hypothesis, the invertibility con- 

ditions (d), (e), (g) and (h) are necessary and sufficient for the invertibility of the two- 
point boundary value problem. Moreover, conditions (d), (e) and either (g) or (h) are 
necessary and sufficient for the invertibility of the right-half and left-half space problems, 
respectively. 

MAIN THEOREM II. All these assumptions imply the validity of the stability estimate 
below, for the two-point boundary value problem. Moreover, the right-half and left- 
half space solutions obey the relevant estimates under the relevant assumptions. 

We shall state our estimates in several parts. If the boundary functions g&(t) 
and/or g,(t) are identically zero, then we have 

(3.5) 1I(t + ky"/2Drv(., t, h)I| ? C(t Ifl/Ill + lluoll), i - 0, 1. 

(D is applied at these points x for which we may define Du without leaving the space 
mesh.) 

Next, suppose f and uo are both identically zero. Consider the right-half plane 
problem. If a,2 0, we have an estimate, for x 2 0, 

Iv(x, t, h)f < sup Igo(s)Iv/t C max [ec/xh, ecz/S], 
(3.6) OsSSt 

Dv(x, t, h)I < sup jgo(s)l C max [In [ h ecw/h, eC1/t, -In 

Next, if a2 = 0, we have the weaker estimate, for x h, 

Iv(x, t, h)I < C Igo(O)l + Igo(t)l + Ct sup Igo(s)j 

(t-k)l/kR 

+ Csup E go( + k)- >ago(s -k) 
(3.7) .k a-Rk 15-0 

f(t + k)1/2 Dv(x, t, h)f < Ct sup fgo(s)l + C fgo(O)l 

+ Csup (cE/|go(s+k)- (tZ .o apgo(s-gk) (t+k)12I 
I. a-RI._ (tS)12ti 

This estimate is weaker than (3.6) in that it involves the variation of go rather than 
its maximum norm. 

We have completely analogous estimates for the left-half plane and two-point 
boundary value problems. 

Finally, we may treat the general case by letting v(x, t, h) = v,(x, t, h) + V2(X, t, h), 
where vl satisfies the problem with homogeneous boundary conditions, and v2 satisfies, 
the homogeneous equation with zero initial data. We may then obtain the appropriate 
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estimates for v and its first divided differences by adding (3.5) and one of (3.6) and 
using the triangle inequality. 

4. Invertibidity. We shall consider the right-half plane problem first. If all 
the b(?)(h) _ , then the work of Strang [6] guarantees the uniform invertibility for 
jhj sufficiently small, in view of conditions (d) and (e). (Strang assumed Lipschitz 
continuity in x, but his proof works with our weaker smoothness assumptions.) In 
our more general case, we may view the difference operator plus boundary conditions 
as a finite-dimensional perturbation of the invertible operator To of Strang. We call 
this operator To + So, as in Osher [4]. A necessary and sufficient condition that this 
operator be invertible is that the finite-dimensional operator (I + SoTJ1) acting on 
the range of So be uniformly invertible as h -4 0. However, according to Strang's 
construction of Tv', SOTT' acting on the range of S0 differs from the frozen coefficient 
operator for x0 = h = 0 by terms of order ht. Thus, assumption (g) and the analysis 
in [4] imply invertibility of the right-half problem, for jhi sufficiently small. 

Conversely, suppose the operator is invertible. If (d) is violated for some x0 # 0, 
or at c, then we may use Strang's argument [6] to show that the adjoint of (To + SO) 
fails to be invertible on 4,,1 < p < c, and thus, in fact, so does (To + S0) on 1. 
(The boundary conditions play no role in Strang's proof if x0 5 0.) If x0 = 0, then 
we need only consider points centered around xl = Ah + 5, a > 0, A is a positive 
fixed integer independent of h. The argument then follows in the same fashion. 
Thus (d) is necessary. If the index in (e) is not zero, then we may use Strang's argu- 
ments and the theory of Tdplitz operators to show that To, and hence To + So, is 
a completely continuous perturbation of an operator with a nonzero index, and is 
hence not invertible. If (g) is violated, then we let 

(4.1) v = [v((-s + a)h), * * * , v(O), v(h), ***] 

be a solution of (3.2) with 1 norm one. Consider 

(4.2) Vs, = [v((-s + a)h), ** , v(O) , v(nh), 0,. * 0, O..], nh 5, 

as h -O 0, it is clear that 1va5,,kj - 1, while jI(To + So)va hll ?< C6. 
We have thus shown that conditions (d), (e) and (g) are necessary and sufficient 

for the right-half plane problem to be invertible. A similar statement follows for 
(d), (e), (h) and left-half invertibility. 

We next consider the two-point problem. If each of the b<?j(h) 0, then Strang's 
"twisted factorization" in [7] and conditions (d) and (e) guarantee uniform inverti- 
bility. Again, we may write the total operator as To + SO, where So is the finite- 
dimensional boundary perturbation. We need only verify that, if (g) and (h) are 
valid, then (I + SOTO`), acting on the range of So, is uniformly invertible as h If 0. 
This follows because of the nature of the "twisted factorization", and because the 
influence of each boundary on the other decays like CQu"1, where I is some fixed 
nonnegative constant less than one. 

Conversely, suppose the two-point problem is indeed invertible. The previous 
arguments which involved condition (d) are still valid. Suppose (e) is violated and 
the index is positive. Then the right-half plane operator also has positive index, and 
hence has an approximate null vector: 
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(4.3) [v((-s + a)h), * , v(O), * * , v(nh), 0, ?]nh-5<1/2 

and hence, as h -+ 0, the two-point operator is not uniformly invertible. Similarly, 
if the index is negative, the left-half plane problem has an approximate null vector 
beginning at x = 1 + (I + a)h and working backwards. Thus, (e) is necessary. If 
condition (g) or (h) is violated, the arguments which worked for the half-plane prob- 
lems are still valid. 

5. Constant Coefficients. Construction of a Parametrix. We analyze the right- 
half plane problem first. Consider the equation on the right-half mesh: 

R 

(5.1) (I + Ql"(y, t, hD))v(x, t + k, h) = a, (aI + Q"l(y, t, hD))v(x, t - 1k, h) 
js-0 

with homogeneous boundary conditions (2.11). Following the usual procedure, we 
transform the equations into one-step formulas. Introduce the (R + 1) component 
vector: 

(5.2) i(x, t, h) = {v(x, t, h), ,v(x, t - Rk, h)}2 

(T denotes transpose). Then the homogeneous equations (2.7) and (2.10) transform to 

(5.3) i3(x, t + k, h) = &(x, t, h D, h)iD(x, t, h), 

where 

(I + Q_ J-(ao + Qo) (I + QJ1) (aR + QR) 

1 0 0 

(5.4) Q 

0 

0 0 1 0 

Each component of V obeys the boundary conditions at x = 0. By (I + Q-lY', we 
mean the inverse acting on the space of those V which obey the homogeneous con- 
ditions. 

Definition 5.1. The Green's function for the right-half problem is an (R + 1) 
square matrix r(x, qk, xO, pk) defined on the space mesh in x and xo and the time 
mesh for Rk < pk < qk < T, satisfying 

(5.5) r(x, pk, xo, pk) = 6(x, xo)I, 

(5.6) Qr(x, qk, xO, pk) = r(x, (q + 1)k, xO, pk), 
@0 

(5.7) rP.h, qk, xo, pk) = E bO)(h)r(Ph, qk, xo, pk), 
i-a 

for ;4h at the boundary points. 
The Green's functions for the left-half and two-point problems are defined 

analogously. 
Most of the remainder of this work will be devoted to obtaining appropriate 

estimates for this function. 
We begin by considering the equation: 
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(5.8) (Qt'(xo, t, hD) - z)n(x, xo, t) = 6(x, Xo)I 

for jzj > 1. 
We wish to solve this for fixed xo vh and all x = vh, v = 0, d1, =f2, .. 

the solution is required to be bounded for all x, but no other boundary conditions are 
imposed anywhere. Let the element in ,the ith row and the jth column of n(x, xo, t) 
be denoted by nijj(x, xo, t). Then (5.8) implies that if x F6 xo, then 

1 
7nii(X, x0, t) = i-1 fl(x, Xo, t). 

Also,ifx = x0,then,ifi 2 jH 1, 1i = vi lz- I/z'-+ 1;ifi <jorj = I then 
'4i= a ?13/z-1. Then (5.8) reduces to 

(1 + QN))"' [(ao + Q"l)) - z(I + Q2))] + (a, + Q1l)) 

(aR + Q x)1 

(5.9) = 6(x,0x), if j= 1, 

6(X, Xo)(I + Q - 1) ( (a-i+2 I) if j 2 2. 

For our purposes, it will suffice to let the right side above be [(I + Q))- l/zR]5(x, xo). 
We call al i(x, x0, t) = &(x, x0, t). We must now solve 

(5.10) -( - Q-l ])z ?(xI xo , t) = 5(x, X0). IzI > 1. 

This is easily done with the help of a Fourier transform. We have 

(5.11) ?(x, xo, t) 2r exp it((x xo)/h) d[ 
= 1 o z R" + Q?(11 ))z - _ _ _ _ _ 

Next, we consider a homogeneous equation on the right-half space x 2 0 (or 
x 2 h if it is a Dirichlet problem): 

(5.12) [('()(Q, t, hD) - zI]4(x, t) = 0, IZI > 1. 

We may again reduce the solution of this matrix equation to that of the scalar 
equation: 

(5.13) [(I + Q2)z - +Q )] x(x, t) = 0. 

For simplicity of notation, we shall assume we are not dealing with a Dirichlet 
problem, i.e. we have x _ 0 in the above. (The necessary modifications are simple to 
make it Dirichlet.) The general solution is a linear combination of s linearly inde- 
pendent solutions, which we may write 

a 2s 7ei(x/htk-s)t 

(5.14) X(X, t) = E Ck- (a + (1)( ))] d{. 
k-1 27 o [(r + Q~l~t))z - i 
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We may compute this integral using residue theory. For all but a finite number of 
z, we may write 

(5.15) X(x, t) = cr 
jo1 

where the T, are the s distinct roots of 
I R 

(5.16) 0 d-1,r(0, t, O)r - z-d,,,(O, t, 0)r'f 

which lie within the unit circle. See Varah (11] for a more thorough discussion of this 
matter. 

Now we require that x(x, t, z) + r(x, xO, t, z) obey the boundary conditions, or 

(5.17) X(,uh)- j b()(h)x(jh) = -r(Aj) + > b(?)(h)r(jh). 
i-I i-l 

We may use (5.14) or (5.15) and (5.11) to see that this becomes an inhomogeneous 
linear system of s equations in s unknowns. We need the following important lemmas: 

LEMMA 5.2. The equation 
I _R 

(5.18) E zd-.1,i~XO, t, O)ri+ - E z-Od,,i(x,], ], 0),ri+ =0 
j--8 V-0 

in some neighborhood of e's4, jz - ei 'l < e, 0 < e, has two roots T1(Z), r.+i(z), which 
have the property that for Izj >- 1, z 7 ens', Jri(z)l < 1, Jr.+i(z)l > 1, and 

r, (z) Z e) + ?lz - edd1), 
(5.19) z k + 

r8+1(Z) = 1 + (z 4) + O(!z -e 

where the real parts of cke- are bounded below by a positive constant. A branch cut is 
drawn along z = e"Pl + tc, from t = O to t = - CO and we choose that branch of the 
square root which is positive for positive values of the function. 

Proof. Parabolicity and condition (c) guarantee that for Izi 2 1, z 0 e<h, none 
of the roots ri lie on the unit circle. Condition (c) implies that for z = e Tdr, = 1 is 
the only root on the unit circle. Consider the equation 

R 

zR+1 (I + Q.-1()) - E (a; + Qf(t))ZRi = 0, 
(5.20) i-O 

= + ij near t, n = 0, z = e'~. 

Introduce the variable o = e-"Iz- 1. The equation transforms into: 
R 

a (R + 1 )eR (X+1) -d 1_ a (R - p)e" 
- 
# < + e (R+l Ql(k ) 

(5.20') 
R 

- E ei(Q-p)^Q (r) + O(a2 + Ir12 a) = 0. 
ns-0 

The second part of condition (c) guarantees that the coefficient of o above is nonzero 
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Thus, by consistency, Hal = O(IlI2) when r -4 0. The fact that c is a simple root of 
(5.20') for 0 = 0 guarantees an expansion: 

0. = ? e3 + 0(-4), in a neighborhood of 0 = 0. 

If e = t + iO, then parabolicity guarantees Re o- < - 2c e2. This implies that 
Re C, < 0. We may solve for t when o is in a small neighborhood of 0 and obtain 

t= ?Q'.)11 + 0(1H) 

But 

r = e -=1 i + 0 rl)= + 0(fz -eIlk 

the result is now immediate. 
Notice, we may easily show that if ei%* k 1, then cl = Xa(xo, t). 
LEMMA 5.3. For any 5" > 0, 5" > 65' fixed, there exist positive nwnbers 6', C, 

p < 1, such that if,for each k, Iz - ei ki > 5", IzI < 1 - 8', then 

(5.21) r(x, x0, t, z) = K(P-.o)(t, Z), 

41(x, x0, t, z, h) = L(,+t,)(t, z, h), 

where both K(,-.)(t, z) and L(,+,0)(t, z, h) are analytic in z in this region and 

IK(, z) I :!9 < P c $t-l jL(,+V)(t. z. h)l :5 Cpt~? 

Proof. If we perform the integration in (5.11) and (5.14) and keep in mind that 
the roots 'r, lie well inside or well outside the unit circle, then we have reduced the 
problem to proving that (5.17) has a unique solution in this region. This follows 
from assumption (i) and the smoothness of the bj(h). 

We now wish to analyze these functions in a region {z - e' I < c, z 2 1 - S(. 
We perform the integration in (5.1) and obtain 

7- Po 

if v > V0, P(X, X0) = 1 A0(z) + B(,,0)(z), 
(5.22) (r T - 

P-:01 

if v < v0, r(x, x0) = A1(z) + C(P.,0(z). (r1 - s+1 

Ao(z) and Al(z) are analytic functions of (z - eiIlk)l/i in Iz - e;1kf < c, Bj(z) and 
Cj(z) are analytic functions of z for Iz 1 - c, and 

JC,(z)j 9 Kgi-', IB,(z)j ? KIA', K > 0, 0 : ju < 1; 

and 

An_ + Bo = A A + Co. 
-1 a + T 1 -l + 1 

We may use (5.14) to write 

(5.23) X(vh) = c1rT + E cip,(v, z), 
j-2 
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where again each of the pi(v, z) is analytic in z and decays exponentially in v. Equation 
(5.17) now becomes an algebraic system: 

(5.24) BV = W, V= [c1, , cS]r. 

We shall now consider the non-Dirichlet case first. The element in the 14th row, 
first column of B is 

-I. 
a-O 

/ if ijk 1/2 i1 (5.25) = (1 - , bK?),(h)) (-,u - ; b?),(h)i)A e ) + O(lz e 

(oaih (z -~e"") 1/2)( - E b2?)j(h)j) + O(jz - e + h2). 

If B = {B,.d(z, h)}, and -,u- b- Ai(h)j = ,(h), we claim that the matrix 

1(?) I 
(5.26) * Bi(e$ fk, 0) 

has a nonvanishing determinant. If the determinant did vanish, then it is clear that 
the last statement in condition (i) would be violated. This, of course, implies that 

[det B(z, 0)] 
1I (Z - eitk)l/2 $ 0 if Izi I . 

k 

We may then use Varah's argument to show that [B(z, h)]-1 exists if Iz - e'kI ? ch2, 
Moreover, 

(5.27) det B(z, h) - - /2 a h + O(h2fk(z, h) 

Wth tkf(z, h) and fk7(z, h) analytic functions of (z - e' 40k)l/2 near z = e'". 
Now we simplify W. 

go 
T.+l - 2 

b(22i(h)r7+j 
j-O 

;f\1-/2 

= 1- > b(.) ?(h)+ ) [-- , b2?>j(h)j] + O(lz- e #I) 

= h + ( - e ) 1]21-- - b(OI(h)j] + O(jz - e"I l + h 2) 

a.2 Ck (0) 

a- hO(jz - et f 1 + /12) + (z - e$ f k)l/2o(lz _ e; fk + /12) 

_l 
V t kZ -1i/2 

-h- 
Z C0ck(0) 
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Thus, W = [w,.(l), * , w,0(s)]T has the property: 

=vk 1/2 B (, h)r,+; 

(5.29) -h- ( (0f) ) 

O(((Iz - e(:5 )l/2 + ))r +M?)(z, h) + N,("(z, h), 
( - ~\1/2) -o 

where N'i(x, h) = 0 if vP > qo and is analytic as a function of(z - ei)l2, M'i(z, h) 
decays exponentially in vo and is analytic for Iz I - c near elk. Thus, if we solve 
(5.24) for the c,, we have 

A1(z) 
a2 

:)1/2 
Cl = I j r+la s(pk 1/2 

(5.31) a2 cM) 

O(((IZ - ei< )1/.2 + h)3)12 Ke B(z, h) 

(z - e i)12 h- a') ) )det B(z, h) ( h) 

M,0(z, h) decays exponentially in vo and is an analytic function of (z - e i k)l/2. We 
notice that 

h- z -0e'(h"2+ (1z - e 
a h ( Ck() ) + O((h +keiM I)12)2)j 

(5.32) det B(z, h) 

O((h + (jz _ 
et I1)1/2)2) 

det B(z, h) 

Thus, for j=2,*** ,s, 

O(((jz 
-eit')/2 + h)3) + r1 + O((h + (Oz -e 

C1- 

= 
z-e'pk 1/2 (z 

- 
e9k)l/2 

L det B(z, h) 
(5-33) a2 ck(0) 

+ [M(k)(z, h) + N (k)(z h)]( I + O((h + (jz e 1)-)2) a 010 ~~~~~~~~~~~det B(z, h) 
Next, we consider the Dirichlet case, a2 = 0. We then have 

aO 

(5.25') r"- E b2)j(h),r' = 1 - I b(?So(h) + O(((jz - eVkI1)12 + h)) 
ji- 

Also, if 1- b<?f(h) = d,+l(h), then the matrix 

d,(O) I 

(5.26') A B, (ei' 0) 

Ld8(0) _j 
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has a nonvanishing determinant. If the determinant did vanish, then condition (i) 
would be violated for z = e'". Thus, we may write 

(5.27') B-'(z, h) = [B7l(z, h)] 

with the property: 

(5.28') B,(z, h) = gii(e'llk, 0) + O(((jz - ei9* 1)1/2 + h)2). 

We have 
(lo 

(5.29') rj. 1- > b (?(h)r'+1 = Bl(z, h) + O(((jz - e itFk)l/2 + h)2), 
i-1 

thus 

-v; BmB(z, h)A1(z) + O(((Iz - e k )/2+ h 
(5.30-') T.+1(z 

+ M(?)(zs h) + N(0)(z, h), 

and 

= A1 (Z)r8+1 + O(((!z-eik 1)1/2 + h)2) 4. 
(5.3 1) - 1 - (z -e i v )1/2 

+ [M(M)(z. h) + N(U)(z, h)l[1 + O(((jz -et"I)1/2 + h)2)], 

while, forj = 2, **, 

o((( -Z eitkI1)1/2 + h)2)4_- 

(5.32') (z - e'v'b)112 

+ [M~o (zk h) + N (z, h)l + O(((z -eivkl)1/2 + h)2)]. 

Now, we have 

a2 i 0 

~~ h + (z - c~~~~L)1/2 

X(vh, voh, z) = r A1(z) a , - \1/2 

a2 Ck(O) 

+ - ? j)12(((Iz-e + h)3)r+ + M,0(z, h) 1 

(5.34) i rk)l/2(aj 
a _ 1/)\ det B(z, h) I (z - eh -))det B(z, hi)j 

- ?( -ei I1)1/2 + h)3 Po:, 
+ ,pikv, z) I/ hP _ ) 1/2 ( wki?)1/2 + 2,vz i -2 r l h -z -e \ 2(z - e 

La2 Ck(O)) 

O((h + (fz e - /22 

det B(z, h) / 

+ [A1(,,)(z, h) + N(')(z, h)](l + O(+ (z - )1/2))1 VO ~~~det B(z, h) I 
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a! = 0 

X7 ,Z- 71L 8(z)T +(z('h/i)- A + O(((jz - etI)1/2 + h)2)4.-v 

+ [A1'((z, h) + N"2)(z, h)] 

(5.34'f) [I + O(((IZ-ekI))/ + h))) )]. 

t rzo(((lzie'bl 1/2 + h)2)T8+i. 

T 2 _ z (Zeil 

+ [MP("(z, h) + NV(6')(, h)] 

* [I + 0(((Iz - e ip 
1)1/2 + h)2)])pi(v z)] 

We thus have expressions for r(vh, x0, z) and x(vh, x0, z). 
Definition 5.4. 

(5.35) G(x, qk, x0, pk) = 2 " i P dz[(D(x, xo, pk, h, z) + rI(x, xo, pk, h, z)] 

= GR(x, qk, xo, pk) + Gi(x, qk, xo,, pk), 

where the integration is around some circle IzI = 1 + C. 
We shall use this G(x, qk, x0, pk) as a parametrix for r(x, qk, x0, pk). 

6. Construction of the Green's Function for the Half Plane. We begin by ob- 
taining an estimate analogous to Theorem (3.1) of Widlund [8]. 

THEOREM 6.1. There exist positive constants c such that, for r = 0, 1, 2 andfor all 
pk, qk E [0, TI, p < q, and all x, xo on the mesh for which Dr makes sense, 

(6 1) ID "G i(x, qk, x0, pk)|I 

5 ch (q - p + l)-((1+r)/2) exp [Cj32(q - p + I)h/2 -(x _-X0 

and 

(6.2) IDTGR(X, qk, x0, pk)j 
? ChIF(q - p + I)-((1+7)/2) exp [C32 (q - p + 1)i2- (x + x0)# 

for all real l, O < ,B g C/h. 
Proof. We may use (5.9) and the analysis which precedes it, in order to reduce the 

problem to that with 1' and 7 replaced by x and r, respectively, in (5.35). We deform 
the path of integration into the path 

(6.3) IZI = e- if jarg(zet-h)I 2 Ck + 2i h, 4 > 0. 

(Ci > 0 and 132h2 will be defined below.) 

zexp (-ij ]= exp [Chi -0 + /, 0 0 c /is 
1/ , 
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z exp [-isOk] = exp [-Cki - 02 + d2h2], 0 ( + Ck ) = 

Thus, we require fl2h2 ? min((7r - b)Cki koPk - (OPk+1/2). 
We illustrate what the path looks like near z = 1 =e 

z(0) = exp [Cl i62 _ 02 + 32h2] 

z(0) = exp [- C i02 _ 02 + 82h2] 

0 
ZH =- e-8I 

We may use the expression (5.21) to analyze the part of the integral taken over 
ro, the circumference of the circles of radius exp[- 0]. We can use the estimates in 
(5.21) to show that 

(6.4) Jr [D7K(,.,0)(t, z)Z^] dz < h-'e'f8?Cp''-' 

and 

I D D'L(,+,)(t, z)z" dz < h-e--8OCp"+"e 

for &? = min a. Thus, (flh)2 < - ln p(6 ). 
Thus, we need only consider the integral on the remaining paths rk 

LEMMA 6.2. Along the paths rk, we have 

(6.5) max(1r 11, r-2, 1) < e-'hcI2 C depends only on (Pk 

Proof. By Lemma 5.2, we have 

= 1 -(e~'z1)/ + O( Iz - etv hf) 
(6.6) 7-+e kCk 

1 (-Ck i a a+ h + 0(( 0 | + 3h)2). 

We can easily see that the absolute value of the quantity whose square root appears 
is bounded below by ,B2h2Ck(((Ck)2 + 1)1/2 ICkI) '. We need only require that the 
argument of this quantity be bounded away from any multiple of 7r, but 

0 < arg(Cki902 _ 02 + 02h2) < tan-'(-C), 

and 
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-2 < arg('-) < 

Choose Ck so large so that tan-'(- Ck) + arg(e iIk/cI) < 7r. The result then follows 
for jr 1, and, similarly for Jr, 11. (The inverse tangent of - Ck was chosen to have an 
argument between 7r/2 and 7r.) 

Without loss of generality, we may now perform the integration near z = 1; the 
results near any em*V follow in the same fashion. 

We perform the integration first for -, using (5.22). Multiplication by DT is equiva- 
lent to multiplying the first terms in the expressions in (5.22) by K,(zX(z - W/2)rh-, 
where each K,(z) is a bounded and analytic function of (z - 1)1/2. Thus, for these 
terms, we must estimate 

(6.7) f ((z - 1)l/2)T-lh-zQ-vK,(z)l jdzj exp[-jv - vol CoSh]. 

This is bounded by 

C exp [- v - vol c3h]h- exp[(q -p + 1)i32h2] 

(6.8) fel [02 + ~32h2] r dO exp[(-p + q+ )02] 
2 

since dz = O[2Cki - 2]z dO. We next let 0 = y(q - p + 1)1/2, the upper bound 

(6.9) Ch-T(q - p + I)-,/2 exp[-jv - vol Cfh + (q - p + 1)32h2], 

for all 0 < ,3h < C, then follows easily. If we replace Cf3 by ,3, we then have the 
estimate we seek. 

DT multiplies each of the remaining two terms in (5.22) by analytic functions of 
z divided by hi. The results for these terms are thus easily obtained. 

We notice that these estimates are valid for an arbitrary nonnegative integral r. 
This fact is not surprising, since this function is the full parametrix for the free space 
problem. 

We now estimate the extra terms in the Dirichlet problem, using (5.34'). All the 
terms following the rl may be estimated as above. Consider the terms which 
involve, the p2(v, z). We may view DT acting on these first terms as l1/h times 
r<7 O(((Iz 11)1/2 + h)2)/(z- 1)1/2 times an analytic function of z decaying ex- 
ponentially in v,. The result follows for r = 0, 1, 2 using the reasoning above. Similar 
methods are used for the terms involving 02. The MlI(z, h) are analytic at z = 1, as 
are the N"I(z, h) modulo terms of order (z - 1)1/2 which is 0(((z - 1)1/2)2)/(z- 1)1/2, 

and, hence, may be estimated for r = O 1, 2. 
Finally, we consider the case when a2 id 0. Consider first a1/a2 with negative real 

part. Then the terms in (5.34): 

(z 1/2 

(XI (_),1 +- 11)1/2 +12)2) - (Z - 1)1/2 

h / a1 i/2 1 (det( -a1 
( ) 2A _ 

h-( 1)1/2 (det B 
iza))' det B(z, h) 

a(2 Xa(O) a2 XaO) 

are bounded on the path of integration. Thus, we may estimate the terms involving 
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r;, as above. We may combine this argument with the analogous one used in the 
Dirichlet case to estimate the terms involving the coefficients of the pi(v, z). 

If aa/,2 has positive real part, we must consider the influence of certain new 
singularities in the integrand. If A _ 4 1 Xa(O)a1/a2j max(l, 1/(Cl)112) = 300, then we 
may use exactly the same reasoning as above to obtain the bound. The estimate for 

y = z < K 3 follows, since 

Ko exp [Cy2(q - p + 1)h2 - (x + xo)y] _ exp[Cfto(q-p + 1)h2- (x + xo)BoI 

with Ko = exp[C#3T/X]. If a,/a2 is purely imaginary, we merely require first that 
/3 > 1. Then the estimates follow as before for all such fl. For 0 < /8 < 1, we merely 
use the same trick as in the previous case. 

Now we write the Green's function r(x, qk, xo, pk) in the following way, (imitating 
Widlund [8]): 

r(x, qk, xO, pk) = G(x, qk, xo, pk) 

(6.10) q-0 co 
+ , I G(r, qk, y, (v + 1)k)qt(y, vk, xo, pk), xo 2 ah. 

v-p ztiah 

We have, denoting by Ek an operator such that Ekv(qk) = v((q + l)k), 

ip(x, qk, xo, pk) = (Q(x, qk, hD, h) - Ek)G(x, qk, xO, pk) 
q-1 co 

(6.11) + E E (Q(x, qk, hD, h) - Ek) 
v-p v-ah 

G(x, qk, y, (v + 1)k)l)(y, vk, xO, pk). 

Let V1A(x, qk, xo, pk) = (Q(x, qk, hD, pk) - Ek)G(x, qk, xO, pk), and, for m 2 1: 
q-1 

(6.12) f/(m)(X qk, xo, pk) = E E iP/0)(x, qk, y, (v + 1)k)1p(0-1)(y, vkc xo, pk). 

We shall show that Z W(m) converges absolutely and uniformly. It is then easy to 
show that t = E Op(m) solves (6.10). 

LEMMA 6.3. Assume that the conditions of the main theorem are fulflled. Then, 
0 '(m) converges uniformly and absolutely and solves (6.10). Furthermore, there exists 

a constant C such that 

(6.13) Itp(x, qk, xo, pk)j 

< - 

h 
1)(3-,)/2 exp [2C32(q - p + 1)h2- Ix - Xj I 

for all /3 such that 0 < h/3 < C. 
Proof. In order to calculate ip(0), we need 

( 6 .1 z'-(Q(x, qk, hlD, h) - z) 

- [b(x, xo, pk, h, z) + t7(x, xo, pk, h, z)] dz. 

We may multiply through by the operator 
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(I+ Q-1) 0 ... 0 

_ ...o 

without affecting the estimate, because of its uniform invertibility on the space of 
functions which obey the homogeneous boundary conditions. We know that 

0 z (=)](xo, pk, hD) -z)q(x, xo, pk, h, z) dz. 

Thus, we need only consider 

(6.15) 

-+Z(Q- 1 Q 1) -(QO - Q() . (Qa Q R )) 

+ zQ-P| ? O * * * 0 nlt(x, x0, pk, h, z) dz. 

1;~~ r..(Q 0 

All these terms may be estimated as in Widlund [8], except for those corresponding 
to a = 0. Thus, we must consider terms of the form: 

[By,o,,(x, qk) - Bo,(Xo, pk)](hD)2Gi(x, qk, xo, pk) 
(6.16) <C[jIx - 

-XoI' + [(q - p)k] 12] ex C2 ( ) XX (6.16) _ C (-p + 1)3,2 exp[Cf3(q-p+ 1)h2-(x-xo)]. 

The (x - xo)' term is estimated as in Widlund's paper. The [(q - p)k]712 gives no 
difficulty. 

Thus, for this part of &O), which we call i/O) we have 

(6.17) j1O4j(? < C(e)h7 exp [(1 + 2e)Cfl (q - p + 1)h2 - jX xj] i 
(q - p + 1(~/ 

for all , , < ? 3< C. 
Next, we recall that 

0 = (L)()(0, pk, hD) - z),I(x, xo, pk, h, z) for x > ah. 

Thus, we consider 

Z[Q 1- - QOL1I -[Q- Q0;l)] * [QR -QR] 

(6.18) 2Ii z ? dz. 

Again, we need only consider the terms of the form: 
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(6.19) 

[Byo.,(x, qk) - B;,o0.3(O, pk)](hD)2GR 

? c[x + (qk - pk)T2] (q + 1)3/2 exp[C132(q - p + 1)h -(x + xO)V1]. 

The (q - p)k term is again easily estimated. We notice 

X It ex 
((q-p + [)h - (q - p + 1)h/] 

The remainder of the argument follows Widlund's. Thus, we have 

(6.20) 14011 < C(e)h- (37)/2 exp[(l + e)C32(q - p + l)h2 - Ix + xof1] 

for all 1, 0 d_ 1? C. 
We now have Widlund's estimate for &0), since x + xo _ Ix - xol. Thus, we 

may prove Lemma 6.3 in the same manner as in [8]. 
The following theorem is proved using the argument Widlund used to prove his 

Theorem 4.1. 
THEOREM 6.4. Assume the conditions of the main theorem concerning the right- 

half problem are fulfilled. Then, there exist universal positive constants C, such that 

I Drr(x, qk, xo, Pk)j 

(6.21) C )(1+T/2 2- p + 1)h2- jx- 13] 
hr (q - p + I xp[3C(32(q 

for all O._,0 < C/h, r = 0,1. 

7. Construction of the Green's Function for the Two-Point Problem. We now 
consider the two-point boundary value problem, and the difference approximation 
to it. We construct the right-half and left-half plane functions which obey 

(7.1) (Q(")(O, pk, hD) - zI)dbo(x, pk, z) = 0, x 2 a0h, 

(Q(1)(l, pk, hD) - zI)DIi(x, pk, z) = 0, x < 1 - ah. 

(aO, a1, are 0 or 1 depending on the problem) 
We perform the same reductions as before, obtaining scalar homogeneous equa- 

tions for XO(vh) and X,(vh). We may write the general solution as in (5.14), (5.15), this 
time obtaining (I + s) unknowns, I of which correspond to xi. Finally, we demand 
that xo(., pk, z) + XI(, pk, z) + r(, xo, pk, z) obey the boundary conditions, or 

gO qO 

Xo(,h) - E b(i?(h)xo(jh) + Xj(uh) - 1i b(,?(h)Xl(jh) 
j ao j-ao 

- -t(h) + b(?)(h)?(jh), ,I = ao, aO- 1, , aO -s, 
(7.2) i-aO 

al QI 

Xo(l + ph) - E b(',(h)Xo(1 - jh) + Xi(l + ph) - E b(')(h)Xj(l -jh) 
i-al i-al 

QO 

- -t(l + ph) + E b(')(h)v(l - jh), p = an a, + l, , + 1. 
i-al 
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We may get an estimate of the type (6.4) on the path r0, since the Xi terms in the 
first equation and the Xo terms in the second equation decay like Cpi/A, 0 5 p < 1. 
Thus, we need examine (7.2) carefully only on the paths r,, in fact, only on r1, near 
z = 1. 

In the neighborhood of z = 1, we have 

X1(ph) = C1Tr + E cjp(?)(V, z), 
(7.3) i-2 

1+. 

xo(vh) = c,+Ir,+l + E crp)(N - v,z). 
j;a +2 

The analogue of Eq. (5.24) is now 

(7.4) [B11 B12 VI FW VI = [cV , Co. ,c.], 

B21 B22 V2] W2 V2 = [c.+1, ... , 

B1A and B22 are the matrices we obtained in the right- and left-half plane cases, re- 
spectively; W1 and W2 are the right- and left-half W's, respectively. We multiply both 
sides by 

[B-1 Bi 

and obtain 
FI B-11B121FVI 

_ _ Fb W11 
(7.4') I I1 1 I 

LB22B21 I Lv2]LB22; w2 

The first column of B12 is 

(7.5) Bs"' = r. +i b[T.+ - b_(h),r,+1], 

while its remaining columns are analytic and decay like Cpl/h. Also, 

(7.6) B( ") = - 7 y( I 

while its remaining columns are analytic and decay like Cp1/A. 
B`l W1 and B-1 W2 have been obtained by expressions like (5.31), (5.33), or 

(5.31'), (5.32') and their analogues for the right-half plane probleni. We now use 
similar arguments to those in Section 5 in order to estimate B1'B-' and B22B21. 

Assume first a2 5$ 0. Then 

(B llB12)(1, j) 

h +( l1)/_ 
( 

)- 1/2OZ - 1)1/2+I)) 
-N a2 a(l) ) ________z__ + h)3) 

- / \ 1/2 i1 t / / 

(7.7) L~a'h - 0~X(),) h 
- \a())det B11(z, h) La Aa ( h-p;de B(z ))ijO) 

Cli Npf(det Bjj(z, h))-1 ) 
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while, for k > 1, 

(B-'B 2)k i _ I +O((h + (jz - 
1 

)1/2)2)) (Bi1B12)P*= p~l+ det B11(z, h)/ 

+ -N O - 11)1/ ( + O((h + (1Z 
- 1)/2)2) . 

[a' (Z-h ~ / det B11(z, h) 
L a2 Xa(O) 

Next, suppose a2 = 0. We have 

(7.7') (B-1B12)1"i) = 7+iN[5li + O(((Iz - 11)1/2 + h)2) + P ] 

while for k > 1, 

(BffB12)(k) = NCki + O(((IZ - 11)1/2 + h)2)r,_- , 

each pi and C,, is an analytic function of (z - 1)1/2, each jpkij < 1 - c. We may 
obtain analogous results for B-1 B21. Thus, if we wish to invert this matrix and obtain 
the estimates for the contour integral as we did in Theorem 6.1, we need only worry 
about the element in the (1, 1) position in both matrices. In all cases, we merely 
multiply the first row by 

N h - 32(W ))1/2 
[pl + A 21~) ] 

and add it to row number s + 1. The only troublesome equation becomes, modulo 
harmless terms: 

(7.8) (z ~~~~~~~ ~~ 1)/2- rZ 1)/21 

Ih -02( ) 1 h + a2 

-,VI), Y()) 
a 

-: (O)) -f+ 
Ta 

^?(X) A( 

L1 ('r8 (1)ri v(O))[ + AQ d) 1/2 - a2Q-C8l(X] 

(7.8) a~~~~h + a2Q71~~~ 
-a__h 

2 - 1 /2(z- V2 a1h - aQ(O)) a31 +/3 

N-Po N- 

Po1\~1/ 

71 (x 

A.,(z)! [PT027voOxo)A(z) 132~o --+(__- +1 \ /2 ri(x0) - ,1() 

Now, we merely require that 7 _ c > 0, c fixed independent of h, on the path of 
integration F1. Then the coefficient of c.+1 is uniformly bounded away from zero 
and hence, we may invert this and obtain the appropriate estimates. 

We may now obtain the parametrix for this problem, which will be divided into 
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three parts instead of two, and follow the procedure of the last section, in order to 
obtain: 

THEOREM 7.1. Assume that the conditions of the main theorem are fulfilled. Then, 
there exist universal positive constants C such that 

(7.9) ID rT(x, qk, xo, pk)I 

< Ch-r(q -p + I) (l1+T)/2) exp(3C(32(q - p + 1)h2 - IX xooI), 

for all ,O f< ? < C/h, = 0,1. 

8. Proof of Main Theorem II. If the functions go(t) and g,(t) are identically 
zero, it then becomes easy to prove the second main theorem, (3.5). 

We merely write: 

5(x, t, h) = E r(x, t, y, Rk)i3(y, Rk, k) 
yEmesb 

(t-k)/k 

(8.1) + k EI E r(x, t, y, (v + 1)k)(I + Q-1(y, vk, hD, h))-1 
v-R vEmeuh 

(f(y, vk), 0, * * *, 0) , (R + 1)k < t < T. 

Then, we may use exactly the same proof as in Widlund [8]. 
Next, we consider the general case as follows. We write v = -V + v2, where v1 

satisfies the problem with homogeneous boundary conditions and v2 satisfies the 
problem with inhomogeneous boundary conditions and with everything else homo- 
geneous. 

We consider first the function v2(x, t, h) for the right-half problem when .2 a 0. 
(For simplicity of notation, we call it v(x, t, h).) It satisfies 

v(jh, O, h) = O. if j ~_O, 

v(ph, 0, h) = g(O) p - i jb () (h)] 
a2 U _0 

(8.2) p = -1, -2, -3, * ,- 

Go h 1o 
v(ph, nk, h) - i b ?(h)v(jh, nk, h) =-go(nk)p- E jb]?)(h)J 

j-O 0 a2 - 

p= -1, -2, i- s, 0 n :!! TI K, 

and the difference equation (2.7) in the right-half plane for f 0. We may solve this 
as follows. Let 

ui(ph, nk, h) = O, if p O. 

(8.3) w:v(ph, nk, h) = M n -Rk)(p - i jb(h, O, . I, Of 

if p = -1, -2, * -s. 
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Then, 
( t-k)/R 

((x, t, h) = E E r(x, t, y, (v + 1)k)!2(y, vk, hD, h)w?(y, Pk, h) (8*4) V-R v2O 

+ w(x,t,h). 

However, for r = 0, 1, 

E DTr(x, t, y, (v + 1)k)Q(y, vh, hD, h)wv-(y, vk, h) 
u20 

(8.5) Ch2 

jgo(v - Rk) ((q - +)/2 exp[3C32(q - V - X3], t = qk, 

for all f3, 0 < /3 < C/h. 
This follows easily from the fact that 

(8.6) |[I + Q-1(y, t, hD, h)]f1 5(x, 0)1 < Cec/Ih. 

Thus, we have 

a-1 
(8.7) ID~v(x, t, h) sup Igo(s)I Ch2 2-2 ((q _ 

2)(T+1)/2 

* exp[3C2,B ,(q- v)h2 - xg3,]. 

For r = 0, we choose j3, = min(C/h, X/4C(q- v)h2), and we may easily show 

(8.8) Iv(x, t, h)I ? sup Igo(s)I Vt C max[exp [ , exp[ S ]]. 

Next, let us suppose r = 1. We use the same definition for ,, as above. The 
first part of the sum is bounded by 

(8.9) C In((x 
- 

h) exp [ h] 

and this is all there is if (q - R) < xh- /C. In general, we have this term, plus 

(8.10) 1 Xh 2 exp (cx-) 
< exp [- 2]- ds, 

t[V>z/Ch P Xh vk - hC S S 

suppose x2/t > C", C" to be chosen later. We have exp [-x2/t] < C exp [-x/Vt]. 
We may multiply the integrand above by X/(SC",)112, we then have 

(8.11) < C exp [ - Cx/\/t] . 

If x2/t < C", then in the integrand above, we integrate first from s = xh/C to s = 

x2/C", multiply by x/(sC")1 /2, and obtain a constant for a bound. Next, we consider 

(8.12) f exp [-C - ds = c - e-v dy. 
zq/c s s cseY 

Integrating by parts, we get 

(8.13) f - (1 - y In y)eu = -In xexp [Cx L + In(CC")ecc" 
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if C" 1/C. Then y in y ? 0 and we have the estimate 

(8.14) f exp [-a-] - ds < -In exp [- } 

Thus, we have estimate (3.6) in view of (8.9), (8.11), and (8.14). Next, we consider 
the Dirichlet case for the right-half problem. Unfortunately, our estimates for the 
Green's function are not strong enough, in general, to obtain estimates for the solu- 
tion in terms of the maximum form of the boundary data. Thus, we must use the 
usual nefarious trick which follows. Let 

(8.15) w(jh, nk, h) = v(jh, nk, h) - go(nk). 

Then w satisfies the homogeneous boundary conditions and 

w(jh, 0, h) = -go(0), if ] > 1, 

(8.16) w(jh, 0, h) = (-E b(?)(h))go(O), if j = -s + 1,** ,O. 

Also 

[I - Q-l(x, t, hD, h)]w(x, t + k, h) 
R 

- Z (a,, + Q,,(x, t, hD, h))w(x, t - k, h) 
(8.17) H-o 

R R 

= go(t + k) - E a,,go(t - Ak)+ E B,*ao(x, t)hogo(t - sAc) 
gal a2 p--i 

= kf(x, t). 

We may then use Eq. (8.1), with a modification necessary to estimate the second 
term. We know E, h I r(x, t, y, (v + l)k)l is bounded. Thus, it follows 

Iv(x, t, h)l < CO Igo(O)l + |go(t)l + Cot IIgoIllI 

(8.18) (t-k)/k 

+8.18) C0'sup E go(s + k) - Aa;.go (s - uk) 
k 8-Rk o-0 

Also 

I(t + k)1/2Dv(x, t, h)I < C t IIIgoIII + C' Igo(0)I 
(8.19) c (ti/k 

go(s + k) - 0 
a.go(s - ,uk) 

( 2 
1 k sR 

(_ -S)"12 

Finally, we consider the general two-point case. We may merely decompose it 
into the sum of two problems where one side of each has homogeneous boundary 
conditions. 

9. On the Necessity of Certain Conditions. Three-Point Schemes. We now 
give an example to demonstrate that the lack of sufficient accuracy at the boundary 
and assumption (i) at z = 1 can lead to a stable scheme for which the first divided 
difference is not estimable in terms of the data. 

This example indicates a difficulty that will arise in multi-dimensional problems 
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where the space boundary is curved. Accurate boundary conditions will be difficult 
to maintain in such a case. 

Consider a parabolic difference approximation to 

Ut = Ups, u(x, 0) = uo(x), t, x O, u(O, t) = O, 

(9.1) vXn+1 = + X( - 2n + n)+h2v+2 - 2v7 + V2 

j=1, 2, * 0 < X < i 

with boundary conditions: 

V-1 v 0 + z(h)" z(h) = O(h2) 

chosen below. Elementary maximum principle analysis assures us that the problem 
is stable. The equation 

1 2 (1 2 
(9.2) z-2+ -+ h 

has the root z = 1 and z(h) = O(h2). Consider the solution 

(9.3) v, = 1 - (z(h))+'. 

This obeys the equation and the boundary conditions. Now consider 
n+1 n+1 

(vo - |v = 1 -z(h) > 0a as h - O. 

(However, if x > 0, Dv(x, t, h) -? 0 as h -* 0.) 
Consider condition (i). We may view it as a restriction on the difference approxi- 

mation Q ( )(0, to, hD) to u: = a(O, to)u-,, in the region 0 < x, t with boundary con- 
ditions u_(O) = 0 or u(O) = 0, respectively. 

Condition (i) requires, among other things, that v(x, t) = x exp[i4,t/k] and 
v(x, t) = exp[i4pjt/k], respectively, are not solutions to the difference approximations 
to the aboye problems. This condition can easily be shown to be necessary in order 
that the estimates in the main theorem are true for the constant coefficient problem. 

Next, we consider the important special case s = 1 = I in (2.9), a "three-point 
scheme". We may weaken our accuracy assumptions at the boundary in this case 
for the Dirichlet problem. If a2 = 0, we do not need the condition: 

go 

- E b(?)(h)j = 0. 
3-1 

We, of course, still need the other assumptions, in particular (i) and (j). We may then 
modify our proof in a simple way to obtain the estimates (6.1) and (6.2), but this 
time we have then for all r = 0, 1, 2, * * *, as we do in this case with a2 $ 0. The 
main results then follow under these weaker hypotheses. 

We notice that our estimates on the Green's function would enable us to obtain 
L. estimates, 1 < p < co, instead of the L.: estimates, with no extra difficulty. 

Last, we notice that even for the Cauchy problem for ut = use, without the 
hypothesis of parabolicity, stable consistent difference schemes do not necessarily 
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yield estimates on derivatives. For example, 

n+1 Vi~ i+V~1 (9.5) Vi 2 + j = 09 4t I 9 * 2 

has the property that ven, is independent of vnn+ if p - q is odd, hence, an estimate on 
(v, - vn_)/h in terms of suplv'i is impossible. 

A similar statement can be made for the well-known DuFort-Frankel scheme. 
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