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A Predictor-Corrector Method for a Certain Class 
of Stiff Differential Equations 

By Karl G. Guderley and Chen-Chi Hsu* 

Abstract. In stiff systems of linear ordinary differential equations, certain elements of the 
matrix describing the system are very large. Sometimes, e.g., in treating partial differential 
equations, the problem can be formulated in such a manner that large elements appear only 
in the main diagonal. Then the elements causing stiffness can be taken into account an- 
alytically. This is the basis of the predictor-corrector method presented here. The truncation 
error can be estimated in terms of the difference between predicted and corrected values in 
nearly the same manner as for the customary predictor-corrector method. The question of 
stability, which is crucial for stiff equations, is first studied for a single equation; as expected, 
the method is much more stable than the usual predictor- corrector method. For systems of 
equations, sufficient conditions for stability are derived which require less work than a de- 
tailed stability analysis. The main tool is a matrix norm which is consistent with a weighted 
infinity vector norm. The choice of the weights is critical. Their determination leads to the 
question whether a certain matrix has a positive inverse. 

1. Introduction. The present paper studies a predictor-corrector method for 
stiff systems of differential equations which have the following form: 

(1) dx + Ay = Ay + r(x) f(x, y), 

where A is a diagonal matrix which may have some large elements, and the right-hand 
side is considered as nonstiff. The operator on the left is inverted and the right-hand 
side is approximated by Lagrangian interpolation polynomials at grid points. The 
point at which the unknown vector is to be computed is excluded in the predictor 
phase, but it is included in the corrector phase. The integration of the exponential 
-functions is done analytically. 

In general, it would be too costly to bring a stiff system into the form (1). However, 
systems of this kind arise naturally if one reduces certain partial differential equations 
into a system of ordinary differential equations by a Galerkin procedure which uses 
approximating functions closely related to the partial differential equation, see for 
-instance [1]. The ideas of usual predictor-corrector methods can be applied almost 
immediately to (1). In particular, it is possible to express the truncation error in 
terms of the difference between predicted and corrected values and to use this relation 
for step control. 

For stiff systems, the question of stability is crucial. We discuss it, first for a single 
equation, and then for a system, by means of a simplified analysis. Actually, this 
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latter discussion may be more interesting for the insight which it gives than for the 
practical work. In practice, the step control will probably suffice. It is true that a 
step control is only based on accuracy requirements, but the step selected by the 
method usually lies close to the stability limit, if a step of this size is compatible 
with the desired accuracy. The reason lies in the fact that instabilities lead to a 
deterioration of accuracy which leads to a reduction of the step size. The method 
would be A-stable if the matrix A vanishes. Therefore, one expects to find rather 
wide stability limits if A is sufficiently small. 

Whenever one wants to use a large integration step for the solution of a stiff 
system, one is confronted with matrix inversions. A method can be made more 
effective if, within a certain interval which contains a number of integration steps, 
the operator which determines the differential equation is decomposed into a constant 
stiff part and a remainder. Then the matrix inversion is needed only once in each 
interval. The iteration steps which would be needed to invert the complete matrix 
(in our case A - A) are combined with measures for increasing the order of the 
integration method; they do not appear explicitly even in the derivation of the 
formulae. In Gear's work [2], this idea is expressed clearly; in other methods it would 
probably appear if they are implemented in an efficient manner. In the present 
procedure the matrix inversion is, of course, trivial. Inversions of (well-conditioned) 
matrices will appear at values x where the functions used in Galerkin's method are 
changed. 

The inversion of the operator on the left of (1) leads to the equation 

(2) y(x) = e-Azzo)y(xo) + eAz I eArf(T, y(T)) dT. 
20 

This equation is the point of departure for some papers [3], [10]. If one approximates 
f by a polynomial, then, after integration by parts, one is led to matrices exp(- Ah), 
where h is the integration step. For a nondiagonal A, an approximation must be 
used at this stage. For stability reasons, it is advisable to use a rational function for 
the approximation of the exponential function [3], [4]. Here, a matrix inversion is 
required too. This additional work does not occur in the present approach, for A 
is a diagonal matrix. In Gear's work, an approximation of this kind is not needed 
for he makes the stronger assumption that y and f, rather than f only, can be approxi- 
mated by a polynomial. The difference has only minor importance; it would be felt 
in regions where those contributions of the first term on the right of (2) which are 
related to large elements of A are important and if A is small. But this happens only 
rarely and can be handled by taking a smaller integration step. 

In summary, we can say that the present paper deals with stiff systems of a form 
which allows us to use a modified version of the predictor-corrector method for 
nonstiff systems. One obtains a fairly simple computational procedure and a con- 
venient characterization of the truncation error. 

2. Integration Formulae. Let the dimension of the vector y be N, and assume 
that f is approximated by a polynomial of degree k. Assume that the integration has 
progressed to a station x,, x0 + nh and that we want to compute the value of 
y at x"+,. The values of y and f at equidistant stations, Yn-k+i and fn-k+i for j = 0, 
1, *. , k, have been retained in the memory. Then the prediction polynomial for 
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f is obtained by Lagrangian interpolation. One finds 

(3) f(x, y) -- FPBPg(), t = (x -xj)h, 

where F' is an N by (k + 1) matrix whose jth column is given by fn k+f, for short 
F` = (fn-k, fn-k+li * , * f), BP is a (k + 1) by (k + 1) constant matrix, and g(Q) is a 
(k + 1)-dimensional vector whose jth component is given by ti'. The value of y at 
x,,l is predicted by substituting (3) into (2) and carrying out a number of integrations 
by parts. One obtains 

(4) p eAAe-A'q] 
n+= e yn + h[qn+1 -e hq] 

in which the vector quit is given by 

(5) qn+= (Ah) F B 
g=() 

- (Ah 
1FPBP 

d + + 
(_)k(Ah)klFPBr 

dTg 

For small Ah, including Ah = 0, an alternate expression for qn+t is found by expand- 
ing exp(Aht) in (2) before the integration is carried out. One finds 

(6) qn+ = e Aht (Ah)'FPBPs(O), i- 0, 1, ... 

where the column vector sj(Q) is 

(7) s I(O) = f rig(r) dr. 

The prediction formula (4) can be written in the form 

(8) Y:+i = e Ayn + h[ Vof. + Vjfnj + *- * + Vkf-,1], 

where the diagonal matrices V, depend only upon Ah. 
From the predicted value y',i so obtained, one computes the predicted value of 

f++l The correction polynomial of degree k for f is obtained in a similar manner: 

(9) f(x, y) n FCBcg(), t = (x - xn)/h. 

Here, Fe is an N by (k + 1) matrix whose jth column is given by f-k+j+1, FK _ 

(fn-k+1i fn-k+2, , * fn+l), BC is a (k + 1) by (k + 1) matrix. Proceeding in complete 
analogy, one finds 

(10) Y+ = e AYn + h[Wofn+l + W1fn + *** + Wkfn-k+1], 

where Wj are also diagonal matrices which depend only upon Ah. Specific expres- 
sions for Vj, Wj, BP and BC for the case k = 4 are given in the Appendix. 

To start or restart the integration procedure, Picard's iteration method is em- 
ployed. Assume that the initial value y3 at the station xi is given, then the values ye+i, 
for j = 1, 2, ... , k, are computed simultaneously by iteration. Assume that the mth 
approximation for these values of y has been found, one then computes the corre- 
sponding values of f and obtains an interpolation polynomial for the mth approxi- 
mation. The recurrence relation for generating these values of y are obtained from 
(2) and (3) with n in the definition of t and FP replaced by i + k. One finds 

(11) (m+1) ehy~tl1 + h[q1m) - e q.i+], j = 1, * k, 
yi+i ii1 i iiJ 



54 KARL G. GUDERLEY AND CHEN-CHI HSU 

where the superscript denotes the order of approximation and the function q is. 
defined by (5). The first approximation for yij is obtained from (11) by neglecting 
the last term of the equation. 

3. Truncation Error. In problems of the kind considered, initial perturbations. 
die out with increasing x. The same is true for the propagation of errors unless the 
numerical procedure is not stable. Accordingly, most of the truncation error is 
generated locally, and the local truncation error should be a useful measure for the 
entire truncation error. In the present method, the local truncation error is caused 
by the fact that f is approximated by a polynomial of degree k. According to [5], the' 
error caused by this approximation in the corrector phase is given by 

(12) Q() = 1k+1)! -k)(Q - 2-k) . . . Q - W - 0), t = h (k + 1)!. h 

where fk' (t) is the (k + l)th derivative evaluated at some station t in the interval 
tl-k < t < t1. The value t depends on the value of t for which e(t) is evaluated. The 
local truncation error for the corrector is obtained from (2) and (12). One finds 

I 

(13) y(Xn+1) - Yn+= t = he f e ?(t) d. 

To compute t, an estimate for fk+ 1(t) is required. In general, fk+1 is not available, 
therefore, the additional assumption is made that f is exactly given by a polynomial 
of degree (k + 1). Then the derivative fk +1 is a constant vector; it can be expressed 
in terms of the values f-k f.-k+l, * , fn and fn+1, and (13) can be evaluated. 

Jf f1+ lis constant, the difference between the predicted and the corrected values. 
is simply related to the local truncation error. This relation is used for step control.. 
One has 

(14) Yc+i - Yn+i = Gt, 

where G is a diagonal matrix which depends on the degree of the polynomial k and 
Ah. This matrix G can be determined from any convenient example, since it does not 
depend on f. To derive (14), we first observe that f as a polynomial of degree (k + 1) 
depends linearly upon (k + 2) parameters. We choose for these parameters the 
values f,-k+l, ... , fn, fn+1 and the derivative fk+ 1. In the corrector formula, f is 
computed from fn-k+1, ... , fn, fn+ls the correction polynomial can therefore be 
obtained from the exact polynomial by setting f1+ = 0. One finds by an integration 
that 

(15) t = hGlfk+1, 

where G, is a diagonal matrix which depends on k and Ah. This result is, of course, 
already implied by (13). In the predictor phase, the approximation polynomial is 
determined by f-k fn-k+l, ... , fn. But in the "exact" polynomial the constant 
vector fk+ 1 is a linear function of fn-k fn-k+l, ... , fn and f"+1. Thus, the prediction 
polynomial can be considered as a linear function of the parameters fn-k+1, ...I 

fn, f,+1 and fk+'. Now, for fk+1 = 0, the prediction polynomial is the same as the 
correction polynomial, therefore 
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1(l6) -e _ yP+ = hG2fk+I 

Again, G2 is a diagonal matrix depending on k and Ah. Equations (15) and (16) then 
lead to (14). 

To find the matrix G, we choose for convenience fn-h+i = 0 for j 0, 1, **, 
*k and f,+1 = unit vector. One then obtains 

e1 eAh%(t + 1) .. * t + k - 1) dt 
(17) G= (k+1) , f - l~d - 

f e" Q- 1)t(t + 1) .(. + k- 1) dt 

For large values of Ah one has 

(18) G -(k + l)Ah. 

The values of G for k = 1, 2, 3 and 4 are given in Fig. 1. In practice, a simple bound 
for G will be sufficient. For k = 4, the matrix 

(19) a = -0.95(10 + 5Ah)(2 + Ah)/(l + Ah) 

serves this purpose, it satisfies 

(20) 0.9 IGj <? 11 ? JGI. 

4. Stability. We shall use the usual stability definition, namely, that the solution 
should remain bounded as x tends to infinity. If the matrix A on the right-hand side 
-of (1) is zero, the present integration method is perfect, except for errors in the 

500 

-G 

250 

0 50 100 

FIGURE 1. Ratio Between the Difference of Corrected and Predicted y and the Truncation Error 
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evaluation of integrals. Therefore, one would expect the method to be stable for 
rather large values of h if A is sufficiently small in comparison to A. For integration 
methods in which the matrix governing the system is treated as a whole, the stability 
analysis is greatly simplified by applying a similarity transformation which brings 
the matrix into its diagonal form; the results found from integrating the original 
system and the transformed system are exactly the same, except for round-off errors. 
Therefore, only a single equation needs to be considered in the stability discussion. 
However, if several matrices are considered simultaneously, as in the present method 
and also in Gear's approach [2], this simplification does not materialize. Nevertheless, 
we discuss the stability of a single equation in this section, for the results so obtained 
can be considered as an indication of the usefulness of the method. (This is the same 
as assuming that A is a diagonal matrix, too.) In the next section, we shall derive 
sufficient stability conditions for a system by a simplified analysis; even these dis- 
cussions are still too complicated for practical use. In practice, one will depend upon 
the step control, via the control of truncation error, as a means of controlling the 
stability. 

Assume that A in (1) is a diagonal matrix, then we examine the stability of a 
single equation of the form 

(21) y' + Xy = 'y. 

In the integration formulae, (8) and (10), f_-k+, is now replaced by -yyn-i. Substi- 
tuting the predicted value of y into the corrector formula, one obtains 

(22) Yn+l = aOYn + alYn-i + * + akYn-k, 

where the coefficients a, depend only upon yh and Xh; for k = 4, one has specifically 

a0 = e + yh(woeXh + wl + ylhwovo), 

(23) al = yh(w2 + yhwovl), a2 =h(w3 + yhWov2), 

a3 = yh(w4 + yhWov3), a4 = (yh)2WOv4. 

Here, w1 and v; are elements of the matrices given in the Appendix. Now, consider 
the following characteristic polynomial: 

(24) p - a0p -aap - * kp- ak = O. 

The method is stable if the maximum of the absolute values of the roots of (24),. 
Plrna, is less than one. 

The function olrnax is continuous in Xh and yh, but its first derivative need not be 
continuous since IPimax is not always attained by the same root. This can be seen from 
Fig. 2 which shows the relative magnitude of different roots in dependence upon 
Xh and ah. 

Fig. 3 presents for k = 4 the relation between IPima. and the ratio y/X for various 
values of Xh. For Xh < 1.0 and positive yh, 1PiMax is almost exactly approximated by 
the principal root, exp[-(X - -y)h]. But for negative 7h, 1Pimax is sometimes attained 
by spurious roots which are not related to the ideal solution, even if Xh is small. 
Fig. 4 gives the same curves as Fig. 3, but for larger values of Xh. Here, no resemblance 
with the curve IpI = exp[-(X - y)h] exists. For -y = 0, the method is, of course, 
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FIGURE 4. IPimax versus y/X for k 4 and Xh Larger than One 
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FIGURE 5. Region of Stability for k =4 
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exact and Imlplx> is given by the principal root, exp(-Xh). But, even in a close vicinity 
of -v = 0, very marked deviations from the correct principal root are encountered. 
For the exact solution, the right-hand side of (21) is y exp[-(X - y)h]; in the inte- 
gration scheme, this expression is replaced by a polynomial of degree k. The deviation 
between the correct principal root and the actual value of jp}m.. must be attributed 
to this approximation. For k = 4, the present method is stable for 1'YI 6 0.28X, even 
if X approaches infinity. 

Fig. 5 shows the region of stability in Xsy plane for k = 4. Assume that one treats 
a number of equations simultaneously and that y has about the same magnitude in 
all equations. Then, according to Fig. 5, the step size which is admissible from the 
point of view of stability is determined by those equations with small values of X; 
under these circumstances, the stiffness of the system, which expresses itself by the 
presence of large values of X, is no longer critical. 

Figs. 6-9 show the effects of the degree k of the polynomial on the stability. The 
admissible step size is smaller for higher values of k. For X = 0, the method reduces 
to the usual predictor-corrector method and the results shown in Fig. 6 are the 
stability criteria. 

IPIma= 

1.0 

-2.0 -1.0 0 

oh 

FIGURE 6. Effect of k on Jplmax for Xh = 0 

5. Stability Criteria for a System. For a more general stability discussion of 
the system (1) we consider A as a constant matrix. The inhomogeneous term r(x) has 
no influence in the stability analysis, therefore fj in (8) and (10) is replaced by Ay,. In 
the following analysis, the degree of the predictor and corrector polynomials is 
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assumed to be k = 4. Substituting the predictor formula (8) into the corrector formula 
(10), one finds 

(25) Y-+1 = QoYn + QlYn-1 + Q2Yn-2 + Q3Yn-3 + Q4Yn-4, 

where the matrices Q, are given by 

QO = e-A + hWOA(e-Ah + hVOA) + hWIA, 

(26) Q1 = hW2A + h2WoA V1A, Q2= hW3A + h 2WoA V2A, 

Q3 = hW4A + h WOA V3A, Qu = h2WOAV4A. 

Now one sets 

(27) y5 p iZ, YIn+l = Yn l, 

where z is a vector which does not depend on j, and p is a complex number. Sub- 
stitution of (27) into (25) then yields a linear, homogeneous system 

(28) Qz = 0, 

with the N by N matrix Q given by 

(29) Q = p I p4 QO-p Q1-p2Q2-PQ3-Q4. 

The system (28) has a nontrivial solution for z if and only if the determinant IQI 
vanishes. This requirement leads to a characteristic polynomial of degree SN in p. 
The integration method is stable if all zeros of this polynomial lie within the unit 
circle. 

For an assumed value of the step size h, the elements of the matrices QO, *, Q4 

can be computed without too much effort. However, if N is not small, the evaluation 
of the determinant requires many multiplications of polynomials. A test which avoids 
the explicit evaluation of the characteristic polynomial would, therefore, be preferable. 
We make certain simplifications which allow us to derive a sufficient condition for the 
stability of the system which is somewhat easier to apply. Because of the simplifi- 
cation made, the test may sometimes fail, although the system is stable. Assume that 
the diagonal part of the matrix Q is nonsingular and let 

(30) Q = Qd + Qnd, 

where Qd and Qnd, respectively, are the diagonal part and the nondiagonal part of Q. 
Then the system (28) can be written as 

(31) (I + Qd 'Qnd)z = 0 

Stability is guaranteed if we can show that for Ipj > 1 only the trivial solution for z 
exists. Because of the triangular inequality, this is the case if, for IpI _ 1, the following 
condition is satisfied 

(32) 1 fQd Qndf II < 1. 

Of course, the matrix norm used here must be consistent with the definition used for 
the vector norm. 

For the vector norm, we propose to use a weighted infinity norm where the weights 
will be determined such that (32) is as permissive as possible. For such a norm defi- 
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FIGURE 9. Effect of k on IPImax for Xh equal to Infinity 

nition, only the absolute values of the element of Qd 1Qnd are important. These elements 
are rational functions of p, which vanish at infinity; according to (29) the degree of the 
polynomials occurring in Qd exceeds that of the polynomials for Qnd by at least 1. 
We now make the assumption that zeros of all elements of Qd lie within the unit 
circle. To check this, one can use the methods of [6], [7]. Then the elements of Qdi1Qnd 

are regular functions in the region IpI _ 1 (including the point at infinity) and assume 
their maximum along the boundary Ip1 = 1. Let H be a matrix whose elements are 
given by 

(33) Hik = max[!(Qd'Q.d)lkI, p = e 
0 

We note that the diagonal elements of the matrix Q-1Qnd are zero. 
We introduce an auxiliary vector u with positive components u; and define the 

vector norm by 

(34) jjzjj = max[(uj) 1 Iz;Il] 

It follows that 

(35) IZi _ US 11Z11. 

In order for the definition of a matrix norm to be consistent with the given vector 
norm (34), one must choose 

(36) | R = max (ui) E IRkI Uk]l. 
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One has, according to the definition (34), 

jjRzjj = max (u) E R Zk < max[(ui)' E jRik IZkI]I 

Using (35), one arrives at the following relation, which implies the definition of the 
matrix norm (36): 

I jRzjj | 5 max (ui)- E: |RjkjUkl IZj ] 

The definition of the matrix norm (36) is now applied in (32), and (33) is sub- 
stituted. This gives the following stability condition: 

(U; X, E Hike* < I. 
k 

This condition can be written in matrix notation 

(37) (I- H)u > O 

where the inequality sign is to be applied componentwise. The method is stable for 
step h if (37) is satisfied for vector u with positive components. This requirement is 
not completely identical with the definition of matrices of the positive kind introduced 
in Section 23.1 of [8]. According to definition, the matrix (I - H) is of the positive 
kind if the vector u has positive components whenever (37) is satisfied. We have the 
weaker requirement that there should exist at least one vector u for which (37) is 
satisfied. The following theorem shows that (I - H) is actually a matrix of the positive 
kind. 

THEOREM. Let H = (Hi,) be a matrix for which Hij =- if i = j and Hij > 0 
if i # j. Then a vector u = (uj), ui > 0, for which (I - H)u > 0 will exist if and only 
if the matrix (I - H)-1 exists and has all positive elements. 

Remark. The assumptions made for H are rather strong. It is likely that the proof 
can be carried out for irreducible matrices in nearly the same form. From a practical 
point of view one also should consider reducible matrices. For the purpose at hand, 
one can evade this problem by a continuity argument, i.e. we replace the zeros in the 
off-diagonal elements of H by small positive quantities and then apply the present 
theorem. 

Proof. First we discuss the case that (I - H)1 does not exist. We note that the 
matrix H satisfies the conditions of the Perron-Frobenius theorem for an irreducible 
matrix [9]. Accordingly, the maximum eigenvalue of H and its transpose H' is positive 
and the respective eigenvectors n and ( are positive vectors. 

LEMMA 1. The real (and the imaginary) parts of the components of all other eigen- 
vectors cannot have the same sign. 

The eigenvectors of H which do not belong to the maximum eigenvalue must be 
orthogonal to J and the components of ( are all positive. 

LEMMA2. The vectors of the null space of (I - H) can be considered as real. 
LEMMA3. A vector of the null space of (I - H) cannot have some zero components 

if all other components are positive. 
Assume that the kth component of a vector n is zero but that all others are positive, 

then the kth component of (I - H)n is negative, which contradicts the assumption 
that n is a vector in the null space. 

LEMMA4. If the null space of(I - H) contains one vector nl whose components are 
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all positive, then the null space is one dimensional. 
Assume that within the null space there is a second vector n' with some positive 

and some negative components, then n3 = nl + an2 is also a vector of the null space. 
One can choose a such that all components are nonnegative and at least one is zero. 
This contradicts Lemma 3. The same holds if nl and n2 are linearly independent 
positive vectors. 

LEMMA 5. If (I - H) has zero for an eigenvalue, then there is no vector nl > 0 
for which (I - H)ti > 0. 

Case 1. The null space of (I - H) is one dimensional and contains one positive 
vector nl. Then nl is identical with the eigenvector of H which belongs to the maximum 
eigenvalue, for according to Lemma 1 all other eigenvectors of H have components 
with mixed signs. It follows that the vector adjoint to nl, to be denoted by (l, is also 
positive. In order for the equation (I - H)n = z > 0 to be solvable for n, one must 
have (z, C,) = 0. But this condition cannot be satisfied for C, > 0. 

Case 2. The null space of (I - H) contains one vector nl with positive and negative 
components. Assume that there exists a vector n2 > 0 for which (I - H)n, > 0. One 
can then form a vector 

n3 =an,+( -a)n2, 0 < < 1, 

for which at least one component is zero and all others are positive. Then one has on 
the one hand 

(I- H)n3 = (I - a)(I - H)n2 > 0, 

since (I - H)n, = 0. On the other hand, assume that the kth component of n3 is 
zero. Then one finds by direct evaluation that the kth component of (I - H)n3 is 
negative. Because of this contradiction, the assumption that a vector ft2> 0 exists is 
wrong. 

This concludes the discussion of cases where (I - H)-1 does not exist. 
If (I - H)-l exists, then the sufficiency of the theorem is trivial. Since (I -H)' 

has all positive elements, an admissible vector u > 0 can be constructed as (I -H)-1d, 
where d > 0. 

The necessity is next shown by contradiction. First, assume that there exists a 
vector u, > 0 for which 

(38) (I - H)u1 > 0. 

Next, assume that (I - H)1 has some nonpositive components: 

(39) [(I - )- H]m < 0, for some suitable (m, n). 

Denote the nth column vector of (I - H)-1 by u1j, then the components of u11 are 

(40) (u1l)i = [(I - ) ]in 

For some values of j, say j= k', k", m, 

(41) (UII)i :! O. 

We can now construct a vector 

(42) Uiii = (1 - a)Ux + aU,. 
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For a = 0, urnI > 0; for a = 1, the components (uI I)j, for j k', k", m, are non- 
positive. Therefore, one can find a value of a, 0 < a ?_ 1, such that all components of 
uIII are nonnegative and at least one is zero. Assume that 

(43) (UmII)k' = 0 and (uIII)j _ 0 for j v k'. 

Based on (43), we can now compute (I - H)u II by two different methods. If we write 

(44) (I - H)uIII = (1 - a)(I - H)uI + a(I - H)uII, 0 < a 9 1, 

then all the components of (I - I)U III are nonnegative because of (38) and since the 
components (I - H)uII are given by A. In particular, one has 

(45) [(I - H)uIlI].' 0. 
On the other hand, we can also write 

(46) [(I - H)uIII]kI = (UIII)k' - Hki(uIII), < 0, 

which is negative because of (43) and the definition of H. The contradiction between 
(45) and (46) shows that the assumption (39) is false. This completes the proof of the 
theorem. 

Instead of determining the inverse of (1 - H), one can solve the system 

(47) (I - H)u1 = S1 

with respect to u, for some xl > 0. A vector u > 0 for which (I - H)u > 0 will exist 
only if ul > 0. The particular choice of xl is unessential. This can be shown by re- 
placing the vector uI, in the above argument by u. 

If a vector u > 0 satisfying (37) exists, then I Hi I < 1 and (32) will hold outside of 
the unit circle. The explicit form of u need not be known. Sometimes, in particular if 
H is small, it will be easiest to find u by inspection. 

It is crucial that the matrix H give a rather narrow bound for Q-1Qed. Such a 
bound would be obtained if one searches along the unit circle for the maxima of the 
individual elements of Qd?lQnd. If H is smaller, then rougher estimations will be 
sufficient. One can, for instance, find upper bounds for the elements of Qnd and lower 
bounds for Qd along the unit circle from the coefficient of the polynomials. If the 
determination of the lower bound of Qd is critical, it might be preferable to search for 
it along the unit circle. The following examples show the effects of different approx- 
imations for QdlQnd. 

We consider a system of two equations in which the diagonal matrix A is given by 

I 0 
A =. 

A_=[ 100] 

For the matrix A, we have assumed three different forms 

AlF2 j A 2 j A L2 j 

1 3L -1 20 -1 10 

An exact stability analysis gives the corresponding admissible step sizes as 

h, = 0.55, h2 = 3.30, h3 = 3.66. 
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If H is obtained by searching the maximum elements of QdiQd along the unit circle, 
then (47) gives the admissible step size for stability as 

hi = 0.40, h2 = 2.55, h3 = 3.15. 

These results show that the present approach gives good approximations to the actual 
stability limits. If H is found by bounding the elements of Qd and Qnd separately, the 
results obtained are less satisfactory. The values of h for which stability can then be 
guaranteed are 

hA < 0.1, h2 = 0.2, h3 = 1.31. 

The results summarized in Fig. 5 would suggest that a method is stable for a 
certain h if stability has been established for a larger h but this conjecture has not 
been proven. 

Appendix. The constant matrices BP and BC, for k = 4, are 

O -1/4 11/24 -1/4 1/24 

0 4/3 -7/3 7/6 - 1/6 

-BP= 0 -3 19/4 -2 1/4 

0 4 -13/3 3/2 -1/6 

Li -25/12 35/24 -5/12 1/24_ 

0 - 1/12 -1/24 1/12 1/24 

0 1/2 1/6 -1/2 -1/6 

BC = 0 -3/2 1/4 1 1/4 . 

1 5/6 -5/6 -5/6 -1/6 

_0 1/4 11/24 1/4 1/24_ 

Let M Ah and E -eM, then the diagonal matrices V, and W, for k = 4 are 

given by 

VO = M5[M4(5-E) - - 1 E) 

(212 2E (-2E+(I-) 

V1 = -M 5[10M4 - M3(107 - 4E) 

+ m2 3 - 3 E) - M(13 - 9E) + 4(1 - E)], 

V2 = M-5[10M4 - M3 2 - 3E) 

+ M 2 - 
19 

E)- M(18 - 12E) + 6(1 - E)] 
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V3 = -M-5[5M- M3(61 - 4 E) 

+ M2( 3 - E) - M(l I - 7E) + 4(1 - E)] 

V4 = M-5[M4- M3 2- 4 E) 

+ M 2(35 -11 E)-M 
5 

3- E) + (I -E)] 

Wo = V4, 

W. = -M-5 [M4E- M3(4 + 6E) 

+ M2(] - 
2 

E) - M(9 - 5E) + 4(1 - E)] 

W2 = M 5[-M3(3 + 
3 

E) + M2Q 2 - E) - M(12 - 6E) + 6(1 - E) 

W3 = -M--M34 + 
I 

E) + M2Q 3 + E)- M(7 - 3E) + 4(1 - E) 

W 4 = M5 [M (4 + 12 E) + M2( 
11 

+ lI E- M(3 - I 
E) + (I - 9)] 

We note that V, and W, are finite for M = 0. 
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