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A Convergence Criterion for a Class of 
Integration Methods 

By J. C. Butcher 

Abstract. A criterion is established for the convergence of sequences of a general type 
of Runge-Kutta method. The criterion is expressed in terms of "weak convergence", a 
property defined in the paper. 

1. Introduction. While much is known about local properties of large classes of 
numerical methods for ordinary differential equations, attention to global questions 
is mainly confined to the consideration of the behaviour of the result obtained by 
iterated applications of a basic numerical method. The main results of this sort can 
be found in the work of Dahlquist [1] and of Henrici [2]. Dahlquist found necessary 
and sufficient conditions for convergence in the case of linear multi-step methods and 
Henrici gave an exposition of this theory and also dealt in detail with the case of a 
general class of one-step method. With a view to generalising and unifying these 
theories, the present author [3] dealt with a class of methods characterised by a pair 
of matrices; it was possible to express conditions for convergence of a method in 
terms of algebraic properties of these matrices. 

The present paper may be regarded as a sequel to [4]. In that paper, certain prop- 
erties of a generalised type of Runge-Kutta method were investigated. In particular, 
it was shown that numerical properties of a Runge-Kutta method m are characterised 
by w(m) E G where G is the set of real valued functions on T, the set of (rooted) 
trees, and w(m) is defined by w(m)(t) = va(t)(h,) for all t E T where m = (H, a, h,). 
The various notations and the function va are defined in [4]. 

In this paper, a characterisation is given for convergent sequences of the type 
of generalised Runge-Kutta method described in [4]. This formulation is general 
enough to be applicable not only to the usual sort of global procedure in which a 
given method is used repeatedly but also to a wider class of methods. 

2. Preliminary Remarks. In this section, certain developments of the theory in 
[4] are presented. They will be made use of later in the paper. 

Let H be an arbitrary set, B(H) the set of bounded real valued functions on H and 
A(H) the set of continuous linear functions B(H) -* B(H). If a E A(H), b E A(K), 
where H, K are finite sets, then it is possible to define the direct product a (0 b E 
A(H X K) by the following formulae 

(a (0 b)(x)(h, k) = a(u(., k))(h), u(h, *) = b(x(h, )), 

where x E B(H X K), h & H, k & K and x(h, *) B(K) is defined by x(h, *)(k)= 
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x(h, k) with similar definitions for y(, k), y(h, *), etc. Alternately, a (0 b can be 
defined in an analogous manner but with a operating before b. We shall show in 
Lemma 2.1 that there is no difficulty in extending this definition to the case where 
one of H, K is infinite. 

LEMMA 2. 1. If one of H, K isfinite, a E A(H), b E A(K), then there exists a ? b E 

A(H X K) with the property that if x E B(H X K) and (a (0 bXx) = z, then there are 
u, v E B(H X K) such that 

z(-,k) = a(u(-,k)), u(h, )= b(x(h, )), 

z(h, *) = b(v(h,*)), v(., k)= a(x(., k)), 

for all h C H, k C K. 
Proof. Suppose, for example, that H is finite with elements h1, h2, , h.. For 

x C B(H X K) and i = 1, 2, , n, let x, C B(K) be defined by xi(k) =x(hi, k) 
for all k E K. Let a, i (i, j= 1, 2, ,n) be defined by 

n 

Z aijy(h,) = a(y)(hi), i = 1,2, n.. , 
i-1 

for y C B(H). Then, the lemma can be immediately verified with u, v, z defined by 

u(hi, ) = b(xi), v(., k) = a(x(., k)), z(hi, k) = E aib(x2)(k). 

It is clear that a (0 b as defined is linear and bounded. 
In [4] for a given a E A(H), the functions Da, v.: T-V+ B(H) were defined as follows: 

(2.1) y.()= eH, 

(2.2) Va(t) = a(pa(t)), t C T, 

(2.3) i.a(tu) = Iaa(t)Va(U), t, U E T. 

Here, eH denotes the function taking each h C H to 1. The product on the right- 
hand side of (2.3) is pointwise and the product on the left of elements of T is defined 
in [4]. We will need the following result: 

LEMMA 2.2. If one of H, K is finite and a C A(H), b CS A(K), then for all t C T, 

a.k38b(t) =IA(t) ()0 Ab(t), VaOb(t) = V.(t) 0 Vb(t), 

Proof. Note that the product 0: B(H) X B(K) -- B(H X K) is defined by 
(a & ,)(h, k) = a(h) i30(k) for all a E B(H), ,3 E B(K), h C H, k E K. Because of the 
way Ma, va are defined in (2.1), (2.2), (2.3), it is necessary only to show that for all t, 
uCGT, 

(2.4) eHXK = eH OeK, 

(2.5) Va(t) (0) Vb(t) = (a (0 b)(sa,(t) 0 Mb(t)), 

(2.6) ia(tU) (0 /b(tu) = (pa(t) 0 /Ub(t))* (V'(U) 0D Vb(U)) 

and of these (2.4), (2.5) are easily verified. To verify (2.6), we use an obvious property 
of pointwise products to show that the right-hand side is (sA4(t)v.(u)) 0D (MUb(t)vb(u)) 

which equals the left-hand side. 
The application of Lemma 2.2 will occur in Section 5. In that section also, we 

will need to consider an equation of the form 
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(2.7) y(O) = Of O)), 

where for a given o, y(O) is a member of a Banach space X and f: X --X is a function 
satisfying the condition that for each x E X and for each positive integer n, the nth 
derivative f ("(x) can be defined. By this, we shall mean that I (')(x) is a bounded linear 
function on X" to X such that for given xl, x2, * * * , x, E X and any positive number 
a, there is a positive number a such that for all z satisfying I Iz - xj I < a it holds that 

I If jn(Z)(xi, x2, , xn) - fIn (X)(x1, x2, , Xn) 

- f(n+l(X)(x1, x2, Xn, Z - x)l I < e I Iz - xI I 

it will also be assumed that for each n, the set of values of IIf (n(x)l I for x E X is 
bounded. We shall denote supex IItf('(x)II by L. Let E denote the open interval 

(-1/L, I1/L). 
THEOREM 2.3. If f satisfies the conditions described above, then there is a unique 

function y: E -- Xsatisfying (2.7). Furthermore, y is differentiable arbitrarily often on E. 
Proof. It is easy to see that f satisfies the Lipschitz condition 

I|f(z) - f(x)lI < L llz - xII 

for all z, x E X. Hence, the existence and uniqueness of y(Q) for each 0 E E satisfying 
(2.7) follows from the contraction mapping theorem. This defines the function 
y: E -+ X. To prove that y is differentiable at each 0 E E, consider z(0) satisfying 

(2.8) z(0) = f(y(0)) + Of'(y(0))(Z(O)). 

Since f'(y(0)) is a linear operator satisfying I If'y(6)) I -< L, we see that for each 
o E E, z(0) is defined uniquely by (2.8), again using the contraction mapping theorem. 
For 0, 0' E E, we find from (2.7) that 

y(O') - Y(O) = 0(f(y(0')) - f(y())) + (0' - )f(y(O'))- 

Hence, 

(2.9) jIY(0') - Y(0)jj ' 1 _ Lt' - 01, 

where c = supsE1 If(x)II. We now compute y(0') - y(0) - (0' - 0)z(0) making use 
of (2.7j and (2.8). We find 

y(') - y(O) - (0' - 0)z(0) = 0'(f(y(0')) - f(y()) - f'(Y())(Y(o') - y(O))) 

? 0f'(Y(0))(Y(0') - y(O) - (0' - 0)z(0)) 

+ (0' - 0)f'(Y(0))(Y(0') - y(0)). 

Hence, it follows that 

IIy(O) - y(o) - (0 - 0)Z()II 

1 - Iol L {L If(Y(0')) - f(Y(0)) - f'(Y())(Y(o') - YOM)) 

+ L 10'- 0j jIY(OV ) - Y(A)I} 
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By the definition of f', for any positive e,, we can choose a positive e2 so that as long as 
IIY(8')-Y(O)II < 162, 

I/f(y(0')) - f(y(0)) - f'(y(0))(y(0') - y(O))jl ? L y Iy(O') - y(O)II. 
By (2.9), there is 5, such that for 0' E E satisfying l0' - 01 < 5, we have I y(o') - 

Y(O)l I < f2- 

Choose a = min (5,, e,/L) so that for 0' ? E satisfying 10' - 01 < 6 we have 

IIY(0') - Y(O) - (0' - 0)z(0)II < -1- _ I/IY(0)_Y( )- I 1 - /0/ L 

(1 - 10/ L)2t 

Given e > 0, choose e, so that 2ce,/(l - /0/L)2 < e and then choose 5 in the way 
that has been described above. It is seen that for 0' E E satisfying I0' - 0/ < 5, we 
have I/Iy(0') - y(O) - (0' - 0)z(0) ? I /' - 0/1. That is, y is differentiable at 0 and 
z(0) is its derivative. 

In a similar way, we can prove that z (which we will now write as y")) is dif- 
ferentiable. We obtain a sequence of equations for y(), y,(2) * * of the form 

(2.10) y(n) (0) g.(0) + 0fO(y(09))(Y(n)(0)), 

where g,(0) = f(y(0)) and, for n = 1, 2, **, 

(2.11) g +1(0) = gn(0) + f(y(0))(y'n) (0)) + 0f"(y(0))(y(n)(0), y(l)0()). 

By a tedious calculation of the type carried out above, we can show that ye, y( ), * 

are the higher derivatives of y. Apart from these details, which we omit, the proof is 
complete. 

We shall now obtain a convenient expression for y'nf'(0). 
LEMMA 2.4. Let kj, k2, **: E > X be defined by k,(0) = f(y(0)), k2 = k1, k3 - 

k,* . Then, for n = 1, 2, 

y )(n) (= nkn(0) + 0k.+1(0). 

Proof. In the case n = 1, the result is identical to (2.8). We complete the proof by 
induction on n. Assuming its truth for lower values we verify the result in the case 
when n is replaced by n + 1. 

By (2.10) and the induction hypothesis, we have 

gn(0) = nkn(0) + 0kn+1(0) - 0f'(y(0))(y(n)(0)). 

Differentiating this result, substituting into (2.11) and simplifying we find 

gn+,(0) = (n + 1)kn+,(0) + 0kn+2(0)- - y(8))(y'n+1)(0)) 

so that using (2.10) with n replaced by n + 1 we obtain 

Yin+ (0) = (n + 1)kn+1(0) + 0kn+2(0) 

and the proof is complete. 
We will wish to have formulae for ki, k2, ... and it turns out to be convenient 

to describe these functions making use of partitions. By a partition of n, we will 
mean a positive integral valued function 7r on ( 1, 2, * * - , o-(ir)}, where o(r) depends 
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on 7r, such that 7r is nondecreasing and such that ? wir(i) = n. Associated with 7r,, 

there is a function X- on { 1, 2, * } to { 0, 1, 2, I.. } such that #r(i) is zero except for a 
finite number of values of i and such that E.-1 #r(i)i = n. In fact, #r(i) is defined as the 
number of members of { 1, 2, * **, o(r)} which map onto i under 7r. For ir a partition 
of n, let C(7r) denote the integer 

(or)-0 n! II wo((i)-Ti)rwi) 
i-1 

and let f1ry) denote the function E -- X defined by 

fv(Y)(O) = f(a(r))(y(O))(y1r(1))(O), ,(yr(2))(0) Y(1(ar)))( 

Let P, denote the set of partitions of n. We will now prove the following result. 
LEMMA 2.5. For n = 1, 2, 

kn = E C(7r)f.(y). 
7 EPn 

Proof. The result is clear in the case n = 1. For n > 1 and 7r E P, such that 
7r(1) = c1, 7r(2) = c2, * * , r(o-(r)) = C,)(n define 7r0 E Ps+1 such that a(7r) = a(7r)+1 
and such that 7r0(l) = 1, 7r0(2) = cl, ro(o-(ro)) = C(,r). Also, for i = 1, 2, *** 
b(r), define 7r' E P, 1 such that -(r') = oCr) and such that 7r' maps 1, 2, * a(r), 
onto cl, c2, * * *, C, + 1, * , c(,r, (possibly rearranged into nondecreasing order). 
Computing the derivative of fr(y) we find 

f (y)'(O) = , 
( ( 

)+1)(Yowy 
O 

(') - y(l)(0 

+ f((T))(y(0))(y(()+1)( 0), Y )) 

+ + ,(O(T)V( 0))(Y (0)9 y(r(o(r))+l)(0)) 

so that 
at ir) 

fr(y)= E fr1(Y). 
i O 

It now follows that kn+1 is indeed a linear combination of functions of the form 
f(y) with 7r E P". It remains to verify that the coefficients are as the lemma states. 
Assuming (we are again using an inductive argument) that the result of the lemma 
is true for ki, k2, * , kn we find 

a(p) 

kn = C(p) E f (Y) 
PEPn-i i-O 

If ir C P,, and p, i are such that pi = ir, then either i = 0 and p(j) = r(j) for j 1, 
p(l) + 1 = ir(I) or else, for some positive 1, p(j) = dj) for j not equal to either I 
or l + 1, (l) = (l)+ 1, p(l + 1) + 1 = #(l + 1). 

In the second case, there will be p(l) i values for which p' = ir and 

C(p) = (n - 1)!j H (j!v(i)pj)!) 

#(l+ 1).(1+ 1) 
Ip(l).n C(nr) 
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The total contribution from terms derived from p will thus be 

r(l+ 1)(1+ )C(7r) 
n 

A similar calculation for the first case can be made and we find, for the total co- 
efficient of fjy) in kn+1, 

C(r)(() + 2(2)+ r) n n I 

This completes the inductive argument and the proof of the lemma. 
We have proved that, under certain assumptions on f, y: E -- X is differentiable 

arbitrarily often. We now prove that on compact subsets of E, the various derivatives 
are bounded. 

LEMMA 2.6. Let I = [-03, e] C E be a closed interval, then there are constants 
c1, c2, ,such that, for n = 1, 2, * * * and e E I, 

I IY~n ( @) I IC o 

Proof. For the case n = 1, we have 

y(1)(0) = f(y(0)) + 0f'(y(0))(y(1)(0)). 

Hence, I()I I + A ))I I Iy()() so that 

I Iy'(0)H I < I If I I/(1 - eL), 

for 0 E I, where we have written IlfII = sup.Ex Ilf(x)II. (We shall, of course, also 
write I If )II, ... for supEX Ill f(x)I , ...) 

Having established the result for n = 1, we again use an inductive argument 
and assume its truth for i = 1, 2, * * , n -1, where n > 1. Let 7ro E Pn be defined 
by a(ro) = 1, iro(l) = n. Using Lemmas 2.4, 2.5, we find 

(2.12) y ()(0) = n E C(7r)fr(y)(0) + 0 E C(7r)f1(Y)(0) 
(2.*2) rE=-Pn-:l rEPn\(Irol 

+ Of'(ry())(y (0)). 

For ir C P,_ 1 U (Pn\{Iro}), we have 

I IfT(y)(O)II = IIf(Oa( I))(y(0))(y( TO() (0) Yj v(a(w 
))) (0))!! 

=< I If((T)) I I Cr(l)C1(2) ... C((T))= d, say. 

Substituting this result into (2.12), we find 

I yY(n)(0) I -< n Z C(7r) d, + 101 i C(7r) d, + 101 L IIy(f)(0)II 
r E-P n-:L r GE P n\ I r o I 

so that 

Ily(n)(()II < geL n C(7r) d,1 + C(7r)d 1 L r(-Pn,-, 7rEP\ (rol 

It is possible to transform the formula for y'(f'(0) in the special case when 0 = 0 
into a much simpler form than that given by Lemmas 2.4, 2.5. In doing this, it will 
be convenient to make use of some of the terminology concerning trees that was 
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introduced in [4] and we now extend this terminology by introducing a notational 
device convenient for dealing with certain iterated products of trees. If (t1, t2, - , t) 
is an s-tuple of trees and to is any tree, then we define the product 

t0(t1 I t2l '- - t, as (... ((tt4%%)t *)t,. 

That is, this new product satisfies the recurrence relation 

to0011 t2l ** - t, = 0000)(21 *- - to,) 

with to(t1) = tot,. Because of the rule (tot1)t2 = (tAt2)th (see [4D, it is clear that 

to(tlI 
t2, *m , t0) = t0(tl, tI, - t), 

where t', t', , t' is any permutation of ti, t2, . . ., t.. 
For t C T we now define F(t) E X by the recurrence formulae 

F(T) f(Ox), 

F(r(t1, t2, , ts)) =f(8)(o)(F(t) F(t2), , F(t)), 

where Ox is the zero element of X. Next we define an integer valued function 5 on T 
as follows: 

(T) =1, 

5(r(t1, t2,, to)) = nj! n2! ... nt 5(t1) 8(t2) 5 (t), 

where it is supposed that t1, t2, * * *, t, are distinct but that, for i = 1, 2, . . ., 3, 4t 

occurs n, times in t,, t2, * , t,. We are now in a position to prove the promised 
simple formula for y`)(O). 

THEOREM 2.7. For n = 1, 2, * * 

y (n)(O) = n! E (F(t)/(t)). 
r(t)-n 

Proof. Note that r(t) denotes the order of t and Er( -n denotes a summation 
over all t E T such that r(t) = n. 

For n = 1, the result is trivial. We assume now that n > 1, that the result is true 
for y ')(O), * , y (n- 1'(O) and we prove the result for y n )(O) to complete an inductive 
argument. We have 

yi)(O) = n E C(r)fy(y)(O) 
rEPnz-i 

=n! E (i!)"i (ir-mi! ) )ea( 00? (?x)(Y( Or( 1) )(0) .* Y( T (at 0) ) (0)) 
rEPn-l 

That is, 

Y (f) (0) =n! II ... f 7(a)!) 
(2.13) rEPn,-, 1 2 o7re) i-1 

.f(q(r))(0XJ((t_) F(t2) ... __))_ 

where for j = 1, 2, * *, u(ir), i,- denotes a summation of t, over all trees such that 
r(t ) = ir(j). 
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This is a linear combination of the F(t) with r(t) = n. To find the coefficient of 
F(t), suppose that t = T(il, i2, * *, t, i) where amongst 4,, t2, . .. , i,, there are ni trees 
with order 1, n2 with order 2 and so on. Also suppose that amongst the n, trees of 
order i (i = 1, 2, ... ), nil are the same of one kind, ni2 are the same of a second kind 
and so on. F(t) is equal to 

f rr(?x)(F(tj), F(t2), R*,Fta(,r))) 

if and only if a(ir) = s and ti, t2, . .. , t, are the same as il, i2, * , t, in some order. 
Thus, ir in (2.13) must be such that #(i) = ni for i = 1, 2, * . . . The number of choices 
of the ni trees of order i amongst ti, t2, * , t, which correspond to the trees of order 
i amongst ii, t2, ..., i. is given by the multinomial coefficient ni!/(nillni 2!*). 
Hence, the coefficient of F(t) in (2.13) is equal to 

n! on I 
CO 

n_ _ _ _ 
n ! 

_ _ 

n-i ni! i nil! ni2! 
. .. 

iti) 4) 

and the inductive proof is complete. 

3. Convergence Criteria. Let mO = (Ho, ao, h0j) be a given integration method 
and let M be a sequence of methods given by 

M(1) = ml = (H1, a,, hij), 

M(2) =M2 = (H2, a2, h21), 

When we consider such collections of methods as mo, ml, M2, **, there is no loss 
of generality in supposing that any pair of sets from Ho, H1, * is disjoint. We shall 
always assume this is the case. 

Definition 3.1. M is a bounded sequence if {I IalII, IIa211, I} is a bounded set. 
In this paper, we will consider only bounded sequences. 
As in [4], we will consider, for a given method m = (H, a, hi), equations of the form 

(3.1) y- =foeH+aX (foy), 

(3.2) 7l = y(h1). 

In (3.1), f is a Lipschitz continuous function on, X to X (where Xis a finite-dimensional 
real vector space), a is a continuous linear operator on B(H) to B(H) and the "un- 
known" y is a bounded function on H to X. By the contraction mapping theorem, y 
is defined by (3.1) if I all L < 1 where L is the Lipschitz constant for f. 

A triple (X, f, 7to) will specify a "problem" in the same way as (H, a, hj) specifies a 
method. For a method m and a problem (X, f, 7o) we will write m* (X, f, 7t) for the 
numerical solution obtained, that is 11. 

Definition 3.2. A bounded sequence M converges strongly to a method mo if for 
all problems (X, f, -q0) such that f satisfies a Lipschitz condition with constant L 
satisfying sup { ai I I : i = 0, 1, * * * } L < 1 then 

Imim(X, f, 70) - mo.(X, fI, o)II 0 as i -* . 

Definition 3.3. A bounded sequence M converges weakly to a method m' if for all 
tE T. 
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w(mi)(t) -* W(mo)(t) 

as I'-- x. That is, for all t E T. 

(3.3) Vai(t)(hii) --+ v0(t)(hoj) as i X . 

LEMMA 3.4. A bounded sequence M converges weakly to mo if and only if for all 
tE T, 

(3.4) -ai(t)(hi) (t)(hol) as i a . 

Proof. To prove sufficiency, we note that va ,(t) = Ma 1(rt). To prove necessity 
we note that if t = r(tl, t2, ... , t,) then Mia i(t) =a V(tj) Va ,(t2) . V 4 * Va P J- 

We now come to the main purpose of the paper which is to prove the following 
result. 

THEOREM 3.5. A bounded sequence M converges strongly to a method m0 if and only 
if M converges weakly to mo. 

The proof will be given in the next two sections. Throughout, we will be concerned 
with a fixed sequence M and a fixed method no. Since we are dealing with a bounded 
sequence, we can define a C A(H), where H = Ho 'U H1 U H11 U * , by the equations 

a(x) I Hi = ai(x Hi) 

for all x ES B(H) and all i = 0, 1, 2, 
It is trivial that (H, a, hi,) is equivalent (in the sense of [4]) to (Hi, a1, hiI) for all 

i = 0, 1, 2, * - . . For convenience, we will make use of the representation involving 
H and a in the proof which follows. 

4. Proof of Sufficiency. In this section, we will show that weak convergence of 
M to mn implies strong convergence. Suppose, on the contrary, that there exists a 
problem (X, f, 70) where f has Lipschitz constant L satisfying I jal IL < 1, such that 
there is a positive e with the property that the set 

{ i: I mi - m(X , i, - mo. (Xf, k no)I I _ c} 

is infinite. 
Let y satisfy (3.1) and denote y(hi) by yi so that mi n(X, f, no) = y. for all i- 

0, 1, 2, *- . Making use of Lemma 4.2 and Theorem 5.4 of [4], we can 
choose c: U R. where U is a finite subset of T such that 

Y - E A.(t)C(t) < E/4. 
tfEU 

Hence, for all i= 1, 2, * , we have 

I IYS l < + E (u4(t)(h11) - AM(t)(hol))c(t) 

< 62 + E I fc(t)l I - max I 11u(t)(h1) -Aj(t)(hol)l I 2 t EU tEU 

If i is such that I yj - yoII E, we therefore have 

(4.1) d max I11A(t)(h1) - 4(t)(h01)II > 
teu 2 
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where d = etU Ilc(t)II. Thus, (4.1) holds for an infinite number of values of i. By 
Lemma 3.4, for each t E U we can find nfl so that d IIi a(tXhi,) - Ma(t)(hoj)II < e/2 
for all i > n,. If n = maxeu n we thus see that, for all i > n, 

(4.2) d max I uIa(t)(hsi) - p6(t)(hol)fI < 2 
teu ~~~~~~2 

Hence, the infinite set for which (4.1) holds is a subset of the finite set 1, 2, * , nJ. 
This contradiction completes the proof. 

5. Proof of Necessity. Conversely, we will prove in this section that weak 
convergence of M to mo is implied by strong convergence. 

Suppose on the contrary that M converges strongly to mo but that for some 
to E T, v0(to)(hj,) does not converge to v0(toXhoi) as i -X c. Let n be the order of to. 
We will now construct a triple (X, f, tno) for which the condition of strong convergence 
is not satisfied. Let K be a finite set and (K, b, kj) be a method such that for all t of 
order not exceeding n we have 

Vb(t)(kl) = 0 (t P to), 

Vb(tO)(kl) = 1. 

Note that the existence of (K, b, k,) follows from Theorem 6.9 of [4]. The assumption 
that K is finite can be made here since the constructive proof of that theorem made 
use only of finite sets. 

Let so: R -- R be a bounded function such that all its derivatives exist and are 
bounded and such that 

(P(O) = (P'(O) = (p"(O) = ., = p(n-(0) = . 1 

For example, we can choose so as defined by 

((x) = P(x)e 

where P is a suitably chosen polynomial. 
We now choose X = B(K), 70 = 0 and we define f by f(x) = Oob((P o x) for all 

x E X. The real number 0o which occurs in the formula for f will be determined later. 
It is easy to see that f is infinitely differentiable with bounded derivatives of all orders. 
In fact, for m = 1, 2, * . * , the mth derivative f m): X L(X'Z, X) is defined by 

-f)(X)(XI1 X2, * , Xm) = 00,b((p(?) 0 x).x1 *Xm) 

where the products in the argument of b are pointwise. 
Let L be defined as the maximum of 1 and Ilajl Ijbj I -supER =f.'(x)l and let E be 

the open interval (- IL, I/L). 
Consider z: E B(H) (0 B(K) defined by 

(5.1) z(O) = 0(a (0 b)(sp oz(0)). 

To see that z is defined by (5.1), note that for any 0 E E the function taking r E B(H) 
(0 B(K) to 0(a 0 b)(p o 0) is a contraction. 

If 00 E E and y E B(H, X) is defined by y(h)(k) = z(0o)(h, k), we observe that y 
satisfies (2.7) with 0 replaced by 0. Also, z satisfies the conditions of y in Theorem 
2.3. Hence, z is infinitely differentiable and its derivatives at zero can be found by 
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making use of Theorem 2.7. We have, for m = 1, 2, 
zi(m)(O) = m! 2 F(t)/8(t) 

r ( t)-m 

where F(r) = (a 0 b)(so o OB (HXK)) = (a 0 b)(eHXK) = 4'a(r) (0 vb(.r) and if t = 
T(t1, t2, *. ,* t.) then 

F(t) = (a 0g b)((pp(s) 0 OB(HXK)) F(t1). F(t2)- -F(t.)) = v.(t) & Yb(t), 

where s < m = r(t) ? n. 
We now compute z ()(O)(h, k,) for all h ? H and m ? n making use of the special 

property for which b was chosen. We have 

z(i) (O)(h,kj) = O (m < n), 

z(n) (O)(h, k1) = n! Va(to)(h)/6(to). 

Let e9 = 1/2L, I = [-E), (3] C E. By Lemma 2.6, l1zR (+l)(O)(h, kJ)jj is bounded for 
0 E I and h E H. Let (n + 1) !c bound this quantity. 

For 0 G I we have by Taylor's theorem 

jz(0)(h, k1) - OnVa(to)(h)/5(to) I < c I 1+1 

for all h C H. Hence, 

jz(O)(hoj, k1) - z(O)(hjj, kj)j 
I 
jojn jva(to)(hol) - va(to)(hii)1 - 2c I0In+1. 

Since Va(to)(h,1) does not converge to Va(tj)(hoi) there is an infinite set { i4, i2, * * } = S 
say such that 

inf jva(to)(hol) - va(t0)(hui)i > 0. 
iEs 

Let d denote this infimum. We now select 0o C I such that 2c 1001o < d and 1o0 > 0 
so that for all i E S, 

1z(00)(hoj, kj) - z(0o)(hil, k)I >I 0oin d - 2c I0o 1` 

= C, say 

> 0. 

That is, for i C S, 

ily(hil) - y(hOj)11 > ?y(h,1)(kj) - y(h0j)(kj)j > C: 

Since S is infinite, this contradicts the assumption that y(hi,) -- y(hoj) as i Co. 
This completes the proof. 
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