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A Quasi-Newton Method with No Derivatives 

By John Greenstadt 

Abstract. The Davidon formula and others of the "quasi-Newton" class, which are used in 
the unconstrained minimization of a function f, provide a (generally) convergent sequence 
of approximations to the Hessian of f. These formulas, however, require the independent 
calculation of the gradient of f. In this paper, a set of new formulas is derived-using a pre- 
viously described variational approach-which successively approximates the gradient as 
well as the Hessian, and uses only function values. These formulas are incorporated into an 
algorithm which, although still crude, works quite well for various standard test functions. 
Extensive numerical results are presented. 

1. Introduction. The so-called variable-metric method for minimizing functions, 
which was discovered by Davidon [1] and developed by Fletcher and Powell [2], has 
been so successful that it has attracted a great deal of interest. Various theoretical 
studies, as well as new, related algorithms, have appeared in the literature ([3H6], 
among many others). 

So far, all but one* of these variants of the DFP (Davidon-Fletcher-Powell) 
method have required the explicit evaluation, at each step, of the gradient of the 
function f to be minimized. From these computed gradients, the inverse of the Hessian 
matrix is gradually constructed, and the Newton formula (which is used to compute 
the next step direction) becomes gradually more accurate. 

In a previous publication [7], it was shown how DFP-like formulas could be 
derived by solving a certain variational problem. In this paper, the same method will 
be applied to finding quasi-Newton** formulas which do not involve the explicit 
calculation of gradients. Clearly, since the gradient is needed in the Newton formula, 
the new algorithm will have to estimate it-as well as the Hessian- in the same way 
as the inverse Hessian is estimated in the DFP method.*** 

The basic notation to be used is as follows: f(x) is the function of the variables 
(X1, X2, ... , xN) in RN which is to be minimized; g and G are the gradient and Hessian 
of f, respectively. In the course of the work, certain estimates of these quantities will be 
discussed; these will be denoted by g and G (without bars). Further, H G-1. At 
certain stages, vectors specifying directions for line searches are introduced; the 
letter d is used to denote these. When a direction vector d has been normalized (in a 
sense to be outlined later), the normalized direction is denoted by the letter s. Using a 
starting point x0 and a unit direction s, a straight line in R, may be expressed para- 
metrically as follows: 
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(1.1) X(a) =xo + as, 

where a is a parameter which measures the distance from xO to X(a). If a line search 
along such a line has terminated at a certain value a,, the displacement vector 
x(al) - x0 will be denoted by a, so that a = a1S. 

At appropriate places, subscripts may be appended to any of these symbols, to 
label the various steps with which they are associated. At other places, the context 
permitting, the subscripts will be dropped. 

2. The Role of the Constraint in the DFP Case. In the DFP procedure, after 
the kth step from xk to xk+1, a new estimate Hk+1 to the inverse Hessian is sought, 
which is to replace the current estimate Hk. This new estimate is required to satisfy 
the quasi-Newton condition (also known as the DFP condition): 

(2.1) Hk+lYk = Crk, 

where jk is defined as (gk+- gk). 

Where does this constraint come from? Basically, it is an identity which holds 
for quadratic functions. At the beginning of the kth iteration, we have a quadratic 
approximation to f(x), say: 

(2.2) Qk(X) = a + blx + lx-TGx, 

(where the superscript T denotes the vector transpose) and, during this iteration, 
we make a step from the point xk to a point xk+1. At these two points, we have 
evaluated the exact gradient vectors: 

(2.3) al Vf(x); gb+1 VI(xk+l). 

A new, improved quadratic approximation Qk+1(x) is now forced to fit f(x) at these 
points, in the sense that the gradients calculated from Qk+1(X) match the exact ones: 

(2.4a) g9+I(xk) = b+l + Gk+lxk = If, 

(2.4b) gk+l(xk+l) = bk+1 + Gk+lxk+l = Rk+1. 

It follows that the new Gk+, satisfies the condition: 

(2.5) gk+l - = Gk+1(Xk+l - Xk) Gk+loh 

which is equivalent to Eq. (2.1). 
The method used in [7] to derive correction formulas was briefly as follows: The 

correction to Hk was written as: 

(2.6) Hk+i = Hk+ Ek 

and a quadratic norm of Ek was minimized subject to (2.1). (This amounts to a 
constraint on Ek.) In addition, it was required that Ek be symmetric so as to preserve 
the symmetry of Hk.+,, given that of H1. This amounts to another (linear) constraint 
on Ek. This constrained variational problem was solved, leading to a class of correc- 
tion formulas. These formulas resemble the DFP formula, and it was, in fact, shown 
by D. Goldfarb [13] that the variationally derived class contains the DFP formula. 

3. Constraints in the Derivativeless Case. We now have the task of trans- 
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rating the variational procedure to the case when there is no independently calculated 
gradient. The first thing we must do is to find an appropriate constraint corresponding 
to the QN condition. 

Clearly, the new condition cannot contain g explicitly, since & cannot be inde- 
pendently computed. Hence, the only admissible ingredients are the values of f at 
various points. 

As in all treatments of quasi-Newton methods, we assume f(x) to be approximated 
by a quadratic function (as indicated previously). The approximation for f is Q, 
given in (2.2). If we replace b in favor of g, we obtain: 

(3.1) Q = a + gTx - 2xTGx. 

This form for Q(x) has turned out, in practice, to be more convenient (less subject 
to rounding error) than that in (2.2), but it must be remembered that g depends on x. 

Let us now assume that we are at some point x0 and do a line search along some 
s (with length parameter a) for the minimum of f. For any x on this line (x = x0 + as), 
we have for the estimate g, based on Q: 

(3.2) g =b+Gx= b+G(xo+as) 

= (b + Gxo) + G(as) = go + aGs. 

Correspondingly, for Q: 

Q = a + (go + aGs)T(xo + as) - 2(Xo + as)T G(xo + as) 

= (a + g0xo 2X XTGXO) + (g Ts)a + (S TGs)a2. 

At some value a,, we find the minimum value fI. The' corresponding x value is 
X1 (= xo + aCs). 

The spirit of the QN condition in the DFP case is to require that the estimated 
set of "parameters" I Hi, } be such as to make the quadratic representation Q "fit" 
the independently computed gradients. What corresponds in the present case is to 
require the "parameters" go and G to be such as to make the function Q(x) "fit" the 
independently computed values of f. Thus, we shall require for our next estimates, 
g* and G*, say: 
(3.4a) Qo Q(O) = a + gx0 - 2x oG*xo = to, 

(3.4b) Qi Q(ai) fi. 

As in the DFP method, we eliminate what amounts to an additive constant 
(viz., a) by taking differences: 

(3.5) Af = AQ = Q, - Qo = (go* s)a1 + 2(sTG*s)a . 

There is another independent constraint, based on the fact that f is a minimum 
at a1. Hence, the derivative of Q, with respect to a, is forced to vanish at a1: 

(dQ \ _ T =S~g (3.6) \dah gaTS 
+ (sTG*s)a - sT(g0' + aiG*s) = s91 = 0. 

Thus, we have two "QN conditions" at each step. Other combinations are possible, 
of course, such as fitting Q(a) to f at three distinct points along s. (This would also 
lead to two conditions.) 
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For reasons which will be apparent later, it is not feasible to attempt to correct 
go and G after only one step. We therefore take more steps than one in each "correc- 
tion cycle", and distinguish between a minor step, involving a line search along a 
single direction, and a major step, which will be a sequence of such minor steps. 

In what follows, we shall suppress the major step index k, and concentrate on 
the set of minor steps which constitute a major step. 

Starting from xo (the starting point of a major step), the first minor step direction 
di is calculated by Newton's formula, using the current estimates go and G: 

(3.7) dl = -G-1go 

and d, is then normalized with respect to a positive-definite matrix L, to be chosen 
later. This gives the unit vector s1, defined as follows: 

(3.8) s1 dll(d7Ld . 

Note that it is necessary to solve a simultaneous linear system for di, since G1 
will not be directly estimated, as in the DFP method. The reason for this is that G 
is involved in Eqs. (3.5) in such a way, that replacing it by H-1 would unavoidably 
lead to a nonlinear constraint on H, thus rendering the variational problem intractable. 

After the line search along s,, yielding al and f1, the direction of the next minor 
step may be generated by combining s1 with some other direction. A simple choice 
is one of the coordinate directions, say el. Then 

(3.9) d2 = el + pis, 

with Pi chosen so as to make d2 orthogonal to s1, in the sense that d7Ls = 0. d2 is 
then normalized to give S2, and a line search is performed, yielding a2 and f1. Next, a 
new direction d3 is found by combining e2, sl and s, linearly, and requiring d3 to be 
orthogonal to s, and s2 (with respect to L). d3 is then normalized, etc. 

If it should happen that one of the coordinate directions is a linear combination 
of the already computed direction vectors, it is simply dropped. In all, a total of N 
minor steps are attempted. In what follows, the index i will be a label for the minor 
steps within a major step. 

.If we denote the ith minor step by a i, we have: 

(3.10) xi = xii + o-. 

r. is next defined as the total displacement from xo to xi: 

(3.11) ri-xTi -X = Eoa. 

Then, based on (3.2), we will impose the condition: 

(3.12) gi* = g9* + G*,ri = gif 1 + G*oei 

and, corresponding to (3.6), we satisfy: 

(3.13) a17g* = a (g* + G*ri) = 0 

for each ri. 
Corresponding to (3.5), we have: 
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Afh = i - fi-i = Qi -Qi- 

(3.14) - g~T(xi_1 + oi) - (gx - *i)xi_1 

- (xi-1 + cri)TG*(xi_1 + oi) + 1x'_LG*xi1l 

= g* ai - 2aJ G*oi = 2a iG pi, 

the last equation resulting from (3.13). 
In summary, our constraints are: 

(3.15a) Afi + lo4G*o-i = 0, 

(3.15b) a ,g* + aK G*ri = 0. 

It is important to note that the only independently computed functional quantities 
here are the {A f i} . 

We are now going to consider the major step as an independent cycle, and make 
the corrections to our old estimates, g0 and G, at the end of it. The corrections will 
be denoted by -y and r, so that the corrected values g* and G* will be: 

(3.16a) 90 go + 'y, 

(3.16b) G*= G + r. 
Then the constraints (3.15), considered to apply to the new estimates g* and G*, 

are translated into constraints on -y and r as follows: 

(3.17a) 2,roi = -{Afi + 1a'7Gi} Pi, 

(3.17b) a + a7rri = {g + 4Gri } i. 

Now, there are N parameters in go and IN(N + 1) in G to be estimated. But in 
each major step, we have at most 2N constraints. Hence, when N > 1, there are 
fewer constraints than parameters; so that one major step does not determine all the 
parameters. Since each major step is treated independently of the others, any method 
based on these constraints will not necessarily be an "N-step" method. In fact, the 
formulas to be derived need not necessarily generate the exact G, even for quadratic 
functions. This is not to say, however, that it is impossible to construct "N-step" 
formulas (by other means). 

4. The Variational Procedure for the Derivativeless Case. We now have the 
problem of setting up a functional to minimize, which somehow embodies, the 
norms of -y and of r. The most obvious norms to choose, which are quadratic, are: 

(4.1a) 1 1711 7TVY, 

(4. 1b) lifrl12 Trf wr wry) 

where V and W are positive-definite matrices of some sort. 
A difficulty arises in somehow combining these norms in a natural manner. One 

wishes to have a quadratic function of the elements of -y and r which is also positive- 
definite. These two quantities are not really comparable, since it is easy to construct 
functions for which they have arbitrary values. The obvious device of simply adding 
them leads to the problem of insuring that their "units" are consistent. This might 
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be accomplished, for example, by taking W = G` and V = `l I-2I, where I is the 
unit matrix. 

The most practical form, which was found after some trials, was the most obvious 
one, viz., a simple sum: 

(4.2) (D= 2 4y V + 1 Tr( wr wrT), 

and a large number of numerical trials, wherein various forms of V and W were 
chosen, seemed to indicate that the choices V = I, W = vI (where v is some arbitrary 
number) worked best in practice. However, we shall defer this specialization to a 
later section, but leave V and W arbitrary so as to show the general form of the 
corrections. 

Incorporating the constraints (3.17) into the functional via the Lagrange multi- 
pliers { and {OI} gives: 

4 = o - E ,i(4.rai - pi) 
(4.3) 

- E2 Goi(oy + r.ri - esi). 

We should add to this the additional constraint r T = r, but will dispense with doing 
this explicitly, and simply indicate the change in the formula for r, necessary to 
include this requirement. 

The necessary conditions for a stationary IP are obtained by differentiating, as 
follows: 

(4.4a) d = Vy- Ojai = O, 

(4.4b) = wrw - E 77in.4 -2 E i(OCri- + ria) = 0. 

(The symmetrizing of the airT term is a result of taking account of the symmetry 
condition on r.) 

If we define A V_ V, M = W', we have: 

(4.5a) y = A E Oivi, 
(4.5b) r = 'M{ E iafT + . Oi(oirT + ri_)} M. 

We now solve for the Lagrange multipliers { 71 I and { 0iI by applying the con- 
straints to y and r. The resulting equations are rather complicated, but they reduce 
to the following (in matrix form): 

(4.6) AO + B=, BT +C = p, 

where 

(4.7) e- {es}, P- {pi, 

(4.8a) A1i, X, + 4{)4)PJit + He}' 

(4.8b) Bij = 

(4.8c) Cii- 4#A JA 
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and 

(4.9a) 

(4.9b) ruM) _ 7 , 

(4.9c) p(2) -r 

(4.9d) Aii Ta Mai; 

i and j run from 1 to N and are not summed in (4.8). 
If M and A are now chosen to be proportional to L, we gain a great simplification 

in the formulas for -y and r. We set (as suggested previously): 

(4.10) W=vV; or M=-A 
V 

and, in addition: 

(4.11) A = L, so that M =-L. 
V 

We then have, since Is I is now an orthonormal set with respect to L: 

(4.12a) kii= 4Ao-, = Jail Jail sLsi = 0,2ii 

and, similarly: 

(4.12b) A = TM = !L = 1aa 
V ~~~V -4t~ 

so that { XB,} and {I 3i) } are diagonal. Since, from Eq. (3.11), r = oa,, we have: 

(2) = jT~ =1 

(4.13) A V == X 

2V, if i > i, 

-0, if i <, 

so that {1A } is a lower triangular matrix. 
Bearing in mind that the products in Eq. (4.8) are not matrix. products, but 

element-by-element products, we see that: 
1. Itz i j) I3 is diagonal because {Ii)} is; 
2. A u2) /j2)} is diagonal because /A (2)} is triangular; 
3. { 2) 1} is diagonal because 1 } is. 

Hence, A i, B i and C j all form diagonal matrices, and have the values: 

(4.14a) A1i = a+ 2 (r i + al)} 5,,, 

(4.14b) Bi= 22I a, Sii. 

14 
(4.14c) Cii= Ti O'ii 
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where 

(4.15) x2 = V 
p-1 

all of which follows from the orthonormality of s I} with respect to L. 
The solution of Eq. (4.6) has the form: 

(4.16a) 0 = (A - BC-1BTY) - BC-'p), 

(4.16b) 'o = C (p -B To) 

and these expressions may be easily evaluated because all the matrices are diagonal. 
The result is (by components): 

(4.17a) 2v2 (e - 2pi) 
a'i(2v Ti-f) 

4V2 (4.17b) t7, = 4Pi- 2 i, 

so that the evaluation of y and r does not really involve any matrix inversions. 
The algorithm now runs as follows: 
1. Assume G = I, and estimate go at the starting point by first differences. (See 

explanation in Section 5.) 
2. To start a major step, compute a direction s, from Eqs. (3.7), (3.8). 
3. Do a line search for a minimum of f along s (for each minor step). 
4. Save s, T, p and e as defined in Section 3. If a total of N independent directions 

have been generated, skip to step 6. 
5. Form a new direction from the previous step directions plus a new linearly 

independent direction, and orthonormalize. Go to step 3. 
6. Compute 0 and X from Eqs. (4.17). 
7. Compute y and r from (4.5). 
8. Correct go and G (Eq. (3.16)) to form g* and G*. 
9. Translate g* using g** = g* + G*TN (referring to Eq. (3.12), since the new 

X* is XO + TN). 

This completes a major step. 
10. Test for termination (I Ig**II < threshold, say). Otherwise, go back to step 2. 
There are the usual complications in the program for this algorithm, mostly as 

a result of rounding error. These have not been described here. 

5. Computational Experience. This method was programmed in the APL 
language for the IBM 360 computer and a good many trials were run on a few test 
functions. There was a good deal of tinkering necessary to get the method to converge 
reliably and reasonably efficiently, but the most effective choice of various arbitrary 
quantities turned out to be one of the simplest. 

The worst difficulty with this method is that the successive estimates of G are 
not necessarily positive-definite. This precludes setting L = G (hence A = G and 
M = G/v) since minimizing a quadratic form with an indefinite metric can (and did!) 
yield very large, unstable corrections y or r. The choice L = I turned out to be the 
most stable (and the simplest) choice, and almost always led to the fastest convergence. 
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The best choice of v turned out to be 0! Of course, one cannot simply set v = 0, 
and evaluate y and r, since Eqs. (4.6) become singular for v = 0. It is possible, of 
course, to find the limiting solution as v -*0, and this is described in Appendix A. 

In many instances, the correction computed in this way caused G to become 
indefinite. This is easily detectable in those cases when a diagonal element becomes 
negative. This was cleared up in most instances by letting v -+ c, instead of v - 0. 
(The former case is analyzed in Appendix A.) When this device did not help, the 
indefiniteness was allowed to remain, and the next major step was begun. Near the 
point of convergence, this pathological effect nearly always disappeared; however, it 
did have the effect of slowing down convergence. 

As will be seen from the printouts of some of the examples shown, the convergence 
does seem to be superlinear in many cases. This has not been proven and may not 
even always be true. 

There is certainly no assurance that a variational derivation will yield formulas 
having the most desirable properties. It is likely that a deeper theoretical analysis 
of this type of QN method will yield better procedures with better properties (such 
as positive-definite G's). 

As in the DFP method, the unit matrix was taken as a starting value for G. For a 
starting value of go, there is no "natural" vector, although, in principle, it is possible 
to start with any vector. When this was done (for example, by taking go = (10000 . - * ) 
or go = (111 ... ), the method converged, but often with great difficulty. Ultimately, a 
rough estimate of go was computed at the outset (by simple forward differences), 
and this stabilized matters quite considerably. 

6. Numerical Examples. Tables 1-3 following are printouts generated at a 
terminal by the APL program. The entries are as follows: 

NSTEP The major step number. 
P The number of minor steps in the major step; in these tables, P = N 

in all cases, except when some minor steps are too small. (The 
formulas for 0 and X remain the same, except that N is replaced by P.) 

NFUNC The total number of evaluations of f after each major step. 
F The value of f(x). 
X The position vector. 

In these printouts, go is denoted by GZ and G is denoted by GG. When G is found 
to be indefinite, the notation: IG (indefinite G) with the major step number is printed. 
The value of v is then changed from 0 to co. When this still gives a detectably in- 
definite G, the same notation is printed again. The entire process was regarded as 
having converged when I Igo Ij < I0-, or, failing this, that no minor step > I0- was 
possible. If the size of the major step falls below 10-', the notation "SPF" is printed, 
and the iteration terminated. 

The functions tested were as follows: (The starting values in each case are listed 
on the first line with NSTEP = 0.) 

(a) Quadratic Function 1. 

f = X12 + l00(x2 - 1)2 + (X3- 2)2 
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whose Hessian is equal to: 

2 0 0 

G= ? 200 0 

_0 0 2_ 

and minimum at (0, 1, 2). Various starting values were used. 
(b) Quadratic Function 2. 

f = (X1 + X2 - 2)2 + 10(x -x2 

with Hessian: 

7 20002 -199981 
-19998 20002 

and minimum at (1, 1). 
(c) Quadratic Function 3. 

f = (X1 + 2x2 + 3X3)2 + 100(x2 - 1)2 + (x3 -2)2, 

2 4 6 

G3 =4 208 12 

_6 12 20] 
and minimum at (-8, 1, 2). 

(d) Rosenbrock's Function [8]. 

f = 100(x2 
_ X) + X(1 ), 

G~o F 802 -400 t (11 
-400 200i 

(e) Beales's Function [9]. 
3 

f = [ -x1(1-x2)]2; fc,} = { 1.5, 2.25, 2.625] 
i-I 

(Hessian not computed independently). 
(f) Powell's Function No. 1 [10]. 

f = (X1 + lOx2)2 + 5(x3 - X4)2 + (X2- 2XS3) + IO(xI - x4)4 

(Hessian not computed independently). 
(g) Powell's Function No. 2 [11]. 

f = [1 + (xI - x2)2F + sin(27rx2x3) + exp{ ( 2 + 3-2)3} 

(Hessian not computed independently). 
(h) Cube [12]. 

f = 00(x2 - X)2i+ (1 - 

F 1802 -6007 
GuBE - 0 at (1, 1). 

L -600 200j 
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(i) Random Trigonometric Function [2]. 
tJ { ~N 2 

f = Et - E (Aij sin xi + Bij cos xi)} 

(with A h, B,,, and E; randomly generated). 
GRT is variable and the solution is "XNULL", which is precomputed. 
(j) Helical Valley [2]. 

f = 100[(X3 - 100)2 + (r - 1)2] + X3 

with 
0 = tan'(X2/X1); r = (x2 + X2) / . 

Solution: (1, 0, 0). 
(k) Wood's Function [15]. 

f = 10(x2 -0 X )I + (1 -X1)2 + 90(X4 -3 

+ (1 - X3)2 + 1O.1{(x2 - 1)2 + (X4 - 1)21 + 19.8(X2- 1)(x4- 1). 

Solution: (1, 1, 1, 1). 
It will be seen that various interesting (some good and some bad) things occur 

in these problems: 
(1) The convergence near the solution is often clearly superlinear (even quadratic 

at times), but breaks down for functions which do not have a quadratic minimum 
(e.g., Powell 1). 

(2) When G at the solution is singular, there is a good deal of difficulty with 
indefinite intermediate G's, which slows the convergence drastically. 

(3) This method is not as speedy as several others (Simplex, Powell's, Rosen- 
brock's) but compares well in some cases. 

(4) The successive estimates of G have been printed for Quadratic Function No. 3; 
evidently, a good value is generated very soon, which explains the quite rapid con- 
vergence in the quadratic cases. (A similar study of what happens to go has not 
been made.) 

(5) When P, the number of minor steps per major step is restricted to be <N, 
the convergence is slowed considerably. (These cases are not shown.) When P = 1, 
the correction to go tends to make it vanish altogether, thus providing no direction 
for the next Newton step. (This was the reason for introducing additional minor 
steps in the first place.) 

In Table 4 is shown a comparison with other methods for those test functions 
for, which information is available. The starting points for all comparison functions 
are the "standard" ones, i.e., those used most in the literature. 

The entries in Table 4 are as follows: 
QNWD stands for "Quasi-Newton Without Derivatives" 
H-J stands for "Hooke and Jeeves" 
Ros stands for "Rosenbrock" 
SPLX stands for "Simplex" 
Pow stands for "Powell" 
Stew stands for "Stewart". 
For each case, the number of function evaluations needed to get the function 
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TABLE 1 
QUADR. PtUC 2 

,S2ZP P NPUNC P I. 
0 0 3 1.0001109 1.0000102 0.0000100 
1 2 15 9.3134E-01 1.0096100 9.99931-01 
2 1 25 2.327ZE-09 1.0000100 1.0000100 
3 1 35 9.94201 17 1.0000100 1.0000100 

CONVgRGED 
3 0 1.5 9.9411.117 1.0000OO 1.0000100 

GZ 
0.47993 0.47904 

GO 

20002 19999 

19999 20002 

QUADR. FUNC. 3 

5S21P P NPUIC P Z. 
0 0 4 2.0100102 3.0000100 2.0000100 1.0000100 
1 3 15 1.2969101 ..4I90100 1.1901E00 1.6976E00 

NIN(91J 
2.0573 3.9072 6.0731 
3.9072 209 12.065 
6.0731 12.065 19.942 

2 3 25 1.4396E 02 7.6544l.00 9.9721E101 1.9123100 

1.9107 4.4549 5.9024 
4.4540 209.09 11.949 
5.9024 11.9169 20.003 

3 3 31. 1.90621-05 7.9969100 1.00001-00 1.9956100 

2.0031 8..016S 6.0059 
4.0165 209 12.056 
6.0059 .12.056 19.997 

1 2 47 1.1491.111 8.0000100* 1.00001-00 2.0000100 

1.9992 4..0165 5.9977 
4.0165 208 12.056 
5.9977 12.056 20.002 

5 1 60 3.40651 17 9.0000100 1.00001oO 2.00001OO 
.sPF 5 

CONVERGED 
5 1 60 3.40651 17 9.0000100 1.0000100 2.0000100 

CZ 
1..343VE99 2.1134.17 V.62369-10 

1.9995 4.0165 5.9976 
1..0165 209 12.056 
5.9976 12.056 20.002 

QUIADR. fl/NC. 3 

NSEEP P NFLNC P 1. 
0 0 4 9.6440103 1.0000FOl 1.0000101 1.000001 
1 3 15 2.1191E02 9.2552100 2.4072100 V.0563E0 2 
2 3 25 1..3574.103 7.97431300 1.001900 1.9159100 
3 3 34 6.0971E104 7.921VE00 9.99951 01 1.9766OO 
4 3 43 3.0676E 11 9.0000100 1.0000E00 2.0000EOO 
5 1 56 1.0791E114 9.0000100 1.0000E00 2.0000EOO 

CONVERGED 
5 1 56 1.0791E 14 9.0000100 1.0000E00 2.0000100 

CZ 
7.24119 1.6262E16 1.9152E9 

GG 

1.9979 3.9979 5.9977 
3.9979 209 11.659 
5.9977 11.659 20.002 

QUADR. FUNC. 3 

NSTEP P NFUNC F X. 
0 1 1.0101.EO. 1.000002 0.0000E00 0.0000100 

1 3 19 2.9819E03 14.9717101 1.2341E.01 9.3294E101. 
.2 3 31 V.3338E 03 9.0426100 1.0002EOO 1.9841E00 
3 3 40 1.3427E106 980037EOO 1,0000EOO 2,0011100 4 2 5' 2.030SE 13 8.0000rOo 1.0000100 2.0000FOO 

CONVERGED 
4 0 66 1.3073E 13 0.00O0E00 1.0000EOO 2.OOOOOO 

CZ 
2.7719E17 I.V61315S 6.074'.8 

CC 

1.9998 3.99417 5.9997 
3.991.7 209 12.011 
5.9997 12.011 20 
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TABLE I (continued) 
QUADR. FMhC. 1 

USTEP P NFU.JC F X 
0 0 16 1.1000E02 3.0000E00 2.OOOOEOO 1.0000E00 
1 3 14 8.73195-01 2.6729E-01 1.0099100 1.9109500 
2 2 31 1.4443E310 9.4633E506 1.0000E00 2.0000EOO 
3 2 49 2.5580b 12 1.5982E506 1.000000 2.0000E00 

*SPF 3 
CONVERGED 

3 2 49 2.5560E512 1.5982E 06 1.0000500 2.0000EOO 
CZ 

1.00115 5 0.00065156 5.770GE 10 

GC 

2.000050 1.4511E54 1.0140E05 
1.41.511AV 2.000052 1.36555E' 
1.914.051 1.3655514 2.0000EO 

QUADR. FUNC. I 

NSGTP P IFUNC F I 
0 0 1 8.3440503 1.00OOE1 1.0000501 1.000001 
1 3 15 6.8539500 2.86605 01 1.2579E00 1.6561EOO 
2 1 27 1.9813S 11 2.7736E 06 1.0000V 00 2.0000100 
3 1 39 4.9839e-11 -2.85141-10 1.0000800 2.0000500 

*SPF 3 
CONVERGED 

3 1 39 i..9839511 2.8514.510 1.0000500 2.0000100 
CZ 

'..3719E 6 0.00039373 5.2219956 

CC 

2.000050 1.3939E55 7.004441 7 
1.3939E 5 2.0000E2 1.6035E 5 
7.0444E 7 1.6035E55 2.0000EO 

QUADR. FUNC. 1 

NSTEP P F/UNC F I. 
0 0 . 1.010450 1.00OOE02 0.0000500 0.0000500 
1 3 15 9.3271E03 9.6079501 3.9261S 02 7.8474.102 
2 3 29 2.77465 06 1.1907E503 9.9999E01 1.99895OO 
3 1 43 1.60899915 2.3111E509 1.0000500 2.0000EOO 

CONVERGED 
3 1 '.3 1.68899-15 2.3111.-09 1.0000500 2.0000500 

CZ 
7.9167E 10 2.6501E 7 5.2693E510 

CG 

1.999"90 2.9797E55 22.2098954 
2.9797E55 2.0000E2 6.690051. 
2.2098E' C6.600E54 2.000750 

QUADR. FUNC 2 

NSTEP P NFUNC F X 
0 0 3 3.2405E02 1.0000Ol 1.0001501 
1 2 9 3.2367502 9.9949500 9.9059500 
2 2 23 1.3747500 1.5962500 1.5962EOO 
3 1 43 6.9562E519 1.0000FOO 1.00GOE00 

CONVERGED 
3 1 43 6.9562E519 1.000000 1.0000500 

CZ 
9.6235E57 9.6235E57 

CC 

20002 19998 
19998 20002 

QUADR. FUNC 2 

ISTEP P NFUVC F 
0 0 3 4.0000E06 1.0000E01 1.0000O 
1 2 12 2.2491E506 9.9999E01 1.0000EOO 
2 1 20 1.3917E513 1.0000EOO 1.0000EOO 
I CON VERGED 
2 0 37 1.3970E515 1.OOOOEOO 1.0000E00 

CZ 
0.0099104 0.01089 

20002 19998 
1 9999 2 0002 
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TABLE 2 

ROSENBROC)S FUNCTION 

NSTEP P NFUMC F XI 
0 0 3 2.4200E01 1.2000E00 1.0000o O 
1 2 13 3.62SEO00 9.9OC7EK01 7.6981E 01 
2 2 21 3.4233EOO 8.4879E01 7.2767E 01 
3 2 37 1.8095E00 3.3952EK01 1.2760KE01 
i. 2 1.9 1.6006E00 2.5919EK01 7.9437E 02 
5 2 57 1.1819z00 7.8469EK02 1.9865N 02 
6 2 65 8.8453E 01 6.0462K 02 7.9961E 03 
7 2 73 7.1738Z 01 1.S3049 OI 2.4091K 02 
a 2 d1 5.6197E 01 2.5041E 01 6.1746EK02 
9 2 90 4.29989 01 3.4429E 01 1.1797E 01 

10 2 99 3.16991 01 4.3715K 01 1.9241.1.01 
11 2 108 2.2182C 01 5.3139E 01 2.8710E-01 
12 2 119 1.3396E 01 6.3433E 01 4.009O0101 
13 2 127 1.0543E 01 6.7550E 01 1..57449-01 
11. 2 11.0 4.47591 02 7.8846E 01 6.2137EK01 
15 2 150 3.0951E 02 9.2677K 01 6.8662KE01 
16 2 163 4.4350e 03 9.33989 01 0.7320EK01 
17 2 173 2.2415E 03 9.5434E.01 9.1203E 01 
19 2 183 2.9901K 05 9.9459K 01 9.8924E 01 
19 2 191 6.0225E 06 9.9756K 01 9.9515EK01 
20 2 199 4.2134E 09 9.9994.K01 9.9987Y 01 
21 1 208 U.00289 11 9.9999EK01 9.999HE 01 

COtVERCGD 
21 1 208 9.0028E 11 9.9999E 01 9.999VE 01 

CZ 
5.5109E1 2.77341 0 

GG 

798.76 401.73 

401.73 202.7 

BEALES FUNCTION 

NSTEP P NFUIIC F X. 
0 0 3 1.4203101 0.0000OO 0.OOOOEOO 
1 2 25 3.4995K 01 2.1250600 2.0891EK01 
2 2 33 9.7130L'02 2.4689E00 3.2620EK01 
3 2 1. 5.35OOE04 2.9462K00 1.8493EK01 
1 2 57 1.28989904 2.9729F100 1.9262K-01 
5 2 G5 9.61461607 2.997GC00 .9939E101 
0 2 71 2.27O9OE09 2.9999OO 4.9997K-01 
7 2 77 9.04991113 3.OOOOEOO 5.0000Eo01 

CON VERCED 
7 2 77 9.0499K 13 3.0000E00 5.0000E01 

C.8265K 6 1.6972EK6 

GC 

3.9444 12.984 
12.394 45.54 

POWELLS FUIICTIOII 2 

IJSTEP P ItFU ;C F X. 
0 0 1 1.50OO00OO 0.OQOOEOO 1.OOOOEOO 2.0000OO 
1 3 20 2.4976C00 2.1959.?01 8.6335EK01 1.6225EOO 
2 3 33 2.869KEO0 4.0741E.01 7.73889901 1.1885E00 
3 3 42 2.8974EOO 4.7880K 01 8.0091E 01 1.1542EOO 
1 3 57 2.9999C00 1.0192E00 1.0079C00 9.9289E 01 
5 3 74 3.0000E00 1.0051E00 1.0023E00 9.984E9 01 
G 3 95 3.OOOOEOO 1.0044EOO 1.0017E00 9.9050EK01 

^IC G 
7 3 00 3.OOOOEOO 1.0033COO 1.0019EOO 9.987G6 01 
8 3 108 3.OOOOEOO 1.003E.OO 1.0015100 9.9900 01 

^IC 9 
9 3 119 3.OOOOEOO 1.0026E00 1.0012E00 9.9936E 01 

10 3 133 3.OOOOEOO 1.0000EOO 1.0001EOO 1.OOOOOO 
11 3 144 3.OOOOEOO 1.0001EOO 1.0000100 1.0000 00 

*IC 11 

12 3 153 3.0000LC 1.0000EOO 1.0000EOO 1.0000K 00 
13 3 175 3.0000OO0 1.OOOCEOO 1.OOOOEOO 9.9999E 01 
FSPF 13 

CO;; #VEPED 
13 3 175 3.0000EOO 1.0000EOO 1.OOOOEOO 9.9999E 01 

GZ 

2.08491.5 1.7105E 5 3.1795K 5 

CC 

-4.1302 8.0504 1.9054 
8.0504 9.0137 0.57887 
1.8054 0.57887 7.7914 
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TABLE 2 (continued) 

POWELLC FUNCTION 1 

h'STEP P NFUNC F X 
0 0 5 2.15OOE02 3.OOOOE00 1.OOOOEOO 0.0oooooo 1.0000100 
1 . 27 3.0957E00 6.l.603E 01 1.56410E01 5.22251E01 7.062'.101 
2 1 .1. 5.3349E101 5.8315E 01 6.41841E103 3.3092E 01 3.0313E101 
3 1 66 1.95471 01 1.6.001 01 1.3570E102 3.191.1E01 3.49141.01 

*1C 3 
I, , 63 6.26251E02 2.1017E01 O 1.651.1E02 2.3993E101 2.4747E701 

*IC 4 
5 4 100 2.9855E102 1.5177E 01 1.91421 02 1.9360E01 2.0664.101 

*10 5 
6 4 115 1.4491.4 02 1.39981 01 1.2674E 02 1.5501E 01 1.61261E01 

*IC 6 
7 1 131 1.1635E 02 1.3174E101 O 1.1921SE02 1.5335E 01 1.6654E 01 

*IC 7 
6 . 11.6 7.8424.103 1.2730E 01 1.2215E 02 1.42511E01 1.4106E 01 

'IC 6 
9 1. 164 5.2363E 03 1.14.011 01 1.231S1E02 1.2767E01 1.2962E101 

*IG 9 
10 1 184 4.3417E01. 1.18761 01 1.14813E02 4.960SE102 5.3873E 02 

*.T 10 
11 1 203 2.910.5E 01 1.1095SE01 1.106E 02 S.1263E 02 5.2515E102 

*1C 1 1 
12 1 217 2.71441. 04 1.00SE 01 -1.0775E 02 5.2268E102 5.2864E 02 

*IC 12 
13 1 233 2.6617E 04 1.0789E 01 1.0772E 02 5.1243E102 5.2.11.1E02 
11. 1 248 2.52601 04 1.0601E 01 1.0577E102 5.1121E102 5.2296E102 
15 1 265 2.3636E01. 1.0319E 01 1.02S4E102 5.16089 02 5.1714.102 

*IC 15 
16 4 279 2.3047K 04 1.03031 01 1.0259E 02 5.0941E.02 5.15921 02 

*10 16 G 
17 1 291. 2.251.3E 01. 1.02571 01 1.0235E102 5.0364E102 5.1364.102 

*IC 17 
16 1. 319 2.0639E 01. 1.0171E 01 S1.0145.502 1.5911E102 4.71.1SE02 

^IC 16 
19 4 335 1.8336E104 9.67761 02 9.8570E103 1.5914.E02 4.6433E102 

*IC 19 
20 1 353 1.7972E 01 9.76761 02 9.6105E103 4.5585E102 4.6349E102 

*IC 20 
21 A. 372 1.7149E 04 9.6105E 02 9.7499E103 1.5862E102 4.5903E102 

*IC 21 
22 1 369 1.6443E104 9.56741.02 9.56361E03 4.4902E102 4.5793E 02 

*022 16 
23 4 401 1.6076E 04 9.5386E 02 9.';1889103 1.4701E02 4.54386102 
21 1 420 1.2269E 04 6.9529E 02 8.94211-03 3.9303E102 4.03421 02 

^IC 214 
25 1 438 1.051E1 04 6.6293E 02 6.6240E103 3.6419E102 3.9032E102 

*IC 25 
26 1 '.53 1.0091E 04 6.5387E 02 8.5260E103 3.8286E602 3.6825E102 
27 1 4669 9.6162E05 6..4156E102 68.4060E103 3.64701V02 3.9061E102 
26 1. 461. 6.5522E05 7.181CE 02 7.1699E103 3.9382C 02 3.95151E02 
29 1 499 5.7095E 05 6.2700E 02 6.2611E103 3.98001E02 3.96.2E102 
30 1 513 5.6051. 05 6.0344E102 5.9848E103 3.9858E102 3.9744.E02 
31 1 526 5.3594L' 05 5.9125E102 5.9026E103 3.9437E102 3.9761E102 
32 4 542 5.055SE 05 5.9026E 02 5.9094E.03 3.8666E102 3.9105E102 
33 4 560 4.7046E 05 5.88601E02 5.8811.E03 3.8031E102 3.8211E 02 
31. 1. 579 3.8032E 05 5.6198E 02 5.6099E103 3.5961E 02 3.62011-02 
35 4 594 2.3221 05 5.036G6102 5.0289E103 3.0844E102 3.1497E102 
36 1. 610 4.0940 006 3.6028E602 3.G013E103 1.9613E 02 1.959HE 02 

*IC 36 
37 3 633 4.0560E 0G 3.6040r 02 3.6026E103 1.9532E102 1.9563E102 

*IC 37 
36 4 650 3.6604E 06 3.5698E102 3.5732E 03 1.8702E102 1.6759E102 
39 1 665 2.5530E 06 3.3991E 02 3.3985E103 1.41S1IE02 1.42091 02 
40 4 676 2.3721E 06 3.2601E 02 3.2598E103 l.i885E102 1.1897E102 
41 1 690 1.6674E 06 2.904VE 02 2.9041E.03 6.7539E103 6.81186103 
1.2 4 705 1.5262E 06 2.24800 02 2.250UE 03 2.7218E103 2.7756E103 
43 1 725 1.2772E 06 1.2637E102 1.2636E 03 6.219GE&03 6.2068E 03 
11 1 741 1.2302E 06 1.0228E602 1.0229E103 8.2679E103 8.274SE603 
45 1 755 7.7647E 07 6.0290E 03 6.0304E.04 6.3232E103 8.3057E 03 
1.6 4 771 2.9589E107 3.231SE103 3.2251E104 8.7766E103 6.7689E 03 
47 4 787 1.6261.107 6.1.599E101 6.4978E105 9.1030E103 9.101.0E03 
1. 3 604 1.4365E107 2.5199E103 2.5194E.04 1 9.21401E103 9.21441E103 
49 1 617 1.4007E107 3.6216E103 3.6255E101. 9.3060E103 9.3051E103 
50 3 635 1.3972E107 3.63t3E103 3.6329E04 t9.3017E103 9.3009E103 
51 3 6851 1.3941E 07 3.6243E103 3.6229E0o t9.29561E 03 9.2952E 03 
52 3 866 1.3909E 07 3.5903E103 3.5889E 04 9.28811E03 9.2874E.03 
53 3 885 1.3714E.07 3.8647E103 3.8633E01 t9.2749E103 9.2743E103 
54 1 899 1.3393E 07 1..393SE103 4.3925E01. 9.24151E03 9.244161 03 
55 1 913 1.2288E 07 6.2465E103 6.2464E 04 1 9.0374.103 9.0374.E03 
56 2 935 1.09491'07 1.2087E102 1.2085E103 6.4S41.1103 68.4562E103 
57 3 956 1.0930E107 1.18551E02 1.1685E 03 .1.4712E103 68.4713EC03 
16 3 978 1.0906E 07 1.1852E 02 1.1852E103 6.1.6621 03 68.46651 03 

^SPF 56 
CON VERGED 

56 3 978 1.0906E107 1.1852L'02 1.1852E103 6.4662E103 68.4665E193 
CZ 

5.8332E 5 0.00023982 5.7645E 5 3.1733E16 

G0 

2.9281 20.314 1.6214 0.69141 
20.314 198.08 4..1385 10.418 

1.6214 4..1385 9.8807 13.095 
0.69111 10.418 13.095 9.4135 
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TABLE 3 

cuss 

ST5P P MFUMC r Z1 
0 0 3 7.4190402 -1.2000500 1.0000500 
1 2 14 1.2567100 1.2067C 01 3.50561C03 
2 2 21. 1.1620E00 0.2517C02 9.526SE-03 

*IC 2 
3 2 31 1.03S.00 1.S6475 02 S.40477-03 
4 2 42 5.3092E501 2.7137E 01 2.0427E 02 
5 2 53 1.1516-01 3.5567N-01 4.45935-02 
6 2 62 3.1294N 01 4.4062501 0.41976E02 
7 2 71 2.40846 01 S.0925SE01 1.3220E 01 
6 2 61 1.6317E 01 S.7253Z 01 1.69768101 
9 2 90 1.37308-01 6.3374Z 01 2.6022S 01 

10 2 102 6.6609102 7.0503N 01 3.5079E 01 
11 2 112 7.51535-02 7.2536X-01 3.02265-01 
12 2 126 1.4.511402 7.0903L 01 4..9146Z 01 
13 2 138 3.4141E102 6.1536E 01 5.4136'-01 
1. 2 11.6 2..57VE 02 6.4331E501 5.9923E 01 
15 2 15S 1.6041.02 6.7337E 01 6.6595t01 
16 2 168 1.0041.602 6.99775 01 7.2030E 01 
17 2 176 5.0923c 03 9.23241E01 7.96675 01 
is 2 166 3.1131C 03 9.14215-01 0.4175Z501 
19 2 196 1.41421203 9.6239E 01 6.91375 01 
20 2 206 5.06060104 9.7750E01 9.3402E 01 
21 2 217 1.2327?004 9.00905 01 9.G7061 01 
22 2 226 1.5146E05 9.9611E 01 9.8637E501 
23 2 231. 4..050E 07 9.9931E501 9.9792E 01 
21. 2 21.2 1.9537L 09 9.9996E 01 9.9967E 01 
25 1 251 5.2986615 1.0000E 00 1.0000 00 

COHVERGED 
25 1 251 S.29866515 1.0000E 00 1.00005 00 

GZ 
2.94991 6 9.0342129 

CC 

1600.2 600.06 
600.06 200.25 

RAJNDOM TRIG. PURVCTIOU 
XIULL 0.146662 1.3003 0.69519 

NO"TEP P NFUNC F J. 
0 0 1. 5.7102502 -1.30431 01 1.3236500 -6.15941:01 
1 3 13 9.9760100 14.97041.01 1.4301500 7.72095 01 
2 3 27 6.0360100 4.9460E 01 1.3932500 7.65941 01 

*.1 2 
3 3 36 4 .5219100 1.93025 01 t1.3609100 6.1216,:01 
1 3 1.6 3.6366500 1..93451E01 1.3715E00 6.2162E 01 
5 3 58 1.46801600 1.91.5E 01 1.3433100 6.50295 01 
6 3 68 1.1072E 02 4..7015-01 1.3039100 6.9160E01 
7 3 77 I..9202E 03 ..6866r601 1.3027100 60.9272E 01 
6 3 94 1.66775 04 4..6669501 1.3006500 6.94715-01 
9 3 105 7.46735 07 14.06625 01 1.3004800 6.95165 01 

10 3 115 1.2634.060 4..6625-01 1.3004E00 8.95191:01 
11 1 130 1.57161-09 14.86629 0; 1.300300 8.95195 01 

*;Pr 11 
CONVERGED 

11 1 130 1.57186509 4..662-Ol -1.3003E00 9.9519C 01 
GZ 

0.00076759 0.00072181 0.00047637 

GC 

30463 2505.7 691.99 
2505.7 21567 15367 

691.99 15387 13091 
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TABLE 3 (continued) 
HELICAL VALLEY 

RSTEP P PFUNC F I 
0 0 1 2.5000E03 1.000000 0.000000 E 0000100 
1 3 29 2.2316E01 9.5036E 01 6.7678Z901 4.1633SOO 
2 3 39 1.6429101 0.3S209101 6.2382E 01 4.0141900 

*IG 2 
3 3 49 1.523VE01 -7.0195101 6.37901 01 3.9014100 
1. 3 60 1.396E101 6.9259E 01 7.0984E Ot 3.7301100. 
S 3 78 7.4961.00 1.5041.101 9.7597E 01 2.7332100 
6 3 93 6.597E100 5.0009102 1.0019100 2.5519100 
7 3 115 2.7227E00 5.2671E101 8.6135E101 1.6409100 
9 3 125 2,5229100 5,5464E-01 0,51.87101 1,5731100 

*IC 9 

9 3 11.3 2.1290100 6.3925F101 7.9759E 01 1.43701OO 
10 3 154 1.7566E00 6.72289101 7.40121 01 1.32S3E00 
11 3 169 1.3967E00 7.3603E 01 6.4335E 01 1.1547EOO 
12 3 190 4.9120E101 9.1941E101 4.2133E101 6. 933101 
13 3 207 2.19261 01 9.6011E 01 2.V5629-01 1.6523E101 
14 3 217 1.2787E 01 9.01899E01 2.1753E101 3.3623E101 
15 3 235 7.3891E 02 9.99751 01 1.68971-01 2.68741.01 
16 3 246 1.6776k 02 9.9673E101 9.1695E 02 1.29041.01 
17 3 258 9.9479E-03 9.9816E01 6.2932E102 9.9053E102 
19 3 268 3.6942E103 9.9912E101 3.8264E 02 6.0732E 02 
19 3 280 1.3516Z 03 9.99941.01 2.2736E102 3.6579E102 
20 3 291 3.82231 04 9.9993E101 1.2320E102 1.95309102 
21 3 304 6.4540-005 9.9999E 01 5.0592E 03 9.03061 03 
22 3 313 9.3911.106 1.0000E00 1.91521 03 3.0616E103 
23 3 325 3.0591E106 1.0000E00 1.1014.E03 1.7414.103 
24 3 335 9.5342E 07 1.0000E00 6.1509EC01 9.75989004 
25 3 346 2.9451E 07 1.0000100 3.39889904 5.42461604 
26 3 358 4.5557E109 1.00001OO 1.3473E004 2.12$89104 
27 3 369 6.1942E109 1.0000E700 5.Q713105 9.01961 05 
29 3 378 1.1147E109 1.OOOOE00 2.0959E105 3.3386E105 
29 2 391 3.5719E_10 1.000000 1.1934E 05 1.9912E105 
30 1 412 8.2403E 12 1.OOOOEo00 1.78OIE06 2.83890S06 

COVJ VERGED 
30 0 424 7.9056E112 1.OOOOE00 1.724HE 06 2.7451E106 

c7 Z 
2.4249E 7 1.1199t 5 6.7099E16 

GG 

200.04 118.89 71.555 
119.99 520.95 322.d& 

71.55 322.ki6 202.25 

MOODS FUICrIOS 

DSrP P 5FVNC F 
o 0 5 1.9192204 3.0000EOO .1000000 3.0000t00 1.00001OO 
1 1 26 3.6916E01 1.39531-01 3.66069601 2.231SE 01 1.9226t 01 
2 1 52 1.0919101 2.0079E101 1.2592E101 .11194EOO 1.19701OO 

*IG 2 
3 1 71 9.3399100 3.6494E101 1.0699E 01 1.1209E00 1.2626100 

*IC 3 
1 95 7.7425100 1.31289-01 2.2502E 01 1.1071E00 1.2945100 

5 1. 9 7.0012100 5.09971 01 2.5792E01 1.1190t00 1.3027100 
6 1 116 6.2792E00 5.23s51101 3.0096E101 1.1571E00 1.3530800 
7 1 130 5.9995100 5.1113E 01 3.1761E101 1.1770900 1.3992100 

*'C 7 
9 1. 144 5.9309100 5.7212t101 3.2293t 01 1.1742100 1.1*075100 

*iG 9 
9 1. 159 S.71.11OO 5.64199101 3.3S021-01 -1.1856g00 1.1.1O500 

'XC 9 
10 1 179 5.4569100 6.03931-01 3.5410-01 -1.2355100 1.5222100 

*IC 10 
11 1 193 5.4006100 6.00361-01 3.6966E101 1.2370t00 1.5422100 
12 1 206 5.3821100 6.06189101 3.73431-01 1.2350900 1.5397100 
13 1 223 5.3669100 6.1359E 01 3.7910t 01 1.2386100 1.5365100 
14 1. 237 5.3471100 6.16421-01 3.85961 01 1.2331E00 1.5300100 

'XC 11. 
1s 1 252 5.3216100 6.275E 01 3.9249E 01 1.2312E00 1.5211EOO 
16 1. 269 5.2790900 6.40261 01 4.1279E 01 1.2324E00 1.5231100 
17 1. 286 5.2271.00 6.7152E 01 4..7869601 1.2351800 1.5271.00 
19 1. 299 5.2090100 6.740.2E01 4.5675 01 1.2309E00 1.5243EOO 
19 1 317 1.9765100 7.2372E 01 5.2978E 01 1.1497100 1.3259100 
20 1. 311 3.9000100 1.0571.00 1.1229100 7.79591-01 6.5765t101 
21 1. 360 3.6295100 1.1004100 1.2100100 -7.3603Z-01 5.57921-01 
22 1. 377 3.2539100 1.1631100 1.3906100 6.5712E101 1.47079E01 
23 1 369 3.1269100 1.1777100 1.3959Z00 6.953GE101 4.9994t 01 
24 1 1.01 3.0791100 1.1905E00 1.4191100 6.9126E101 4..9051 01 
25 1. 1.17 2.95.4700 1.24131OO 1.54S1OO 6.62561 01 4.4919E 01 
26 1 135 2.9251100 1.2939100 1.6392E00 6.0129E 01 3.7144E 01 
27 1 152 2.5623100 1.3573EOO 1.93390OO _4.5276E 01 2.2201.101 
29 169 2.5010E00 1.3441.00 1.8076100 _4.5745E101 2.0866E101 
29 At 1.96 1.9926t00 1.383500 1.915900 2.1881E 01 5.6012E 02 
30 1. S10 1.7717100 1.3980100 1.9S70O00 1.07410101 2.2494E102 
31 1 526 1.5361E00 1.4112100 2.0041.00 2.31789102 3.9660E 03 
32 1. 539 1.32S*900 1.4139100 1.9999100 1.30018101 2.10811E02 
33 1 5SS 1.1472100 1.4110100 1.9909E00 2.3657E 01 5.2709E102 
34 1 571. 1.1332800 1.4.1110O 1.9913100 2..4626F01 5.61851 02 
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TAbLE 3 (continued) 

*IC 34 
3S ' S96 1.0277OO 1.3937(00 1.9162100 2.91511-01 6.5163(-02 
36 ' 613 0.25S5C 01 1.3379(00 1.7916(00 3.7191(-01 1.4946(-01 
37 . 632 7.59161-01 1.2968.00 1.6777100 4.4681E-01 2.01309101 
39 8. 6.9 6.792S9-01 1.2711(00 1.6346100 4.9791(-01 2.5375(-01 
39 86 674 4.67751201 1.1979(00 1.'.79(00 6..91VE 01 4.17691t01 
40 8. 696 3.8.07(-01 1.2373(00 1.5324.00 6.39705-01 ..1517(-01 
41 8. 700 3.3566 010 1.2476(00 1.55.7(00 6..013t-01 ..09949-01 
.2 8 715 3.2760(-01 1.2.69(00 1*5565500 6..6351-01 8.1351(-01 

*IG '.2 
.3 ' 729 3.22771S01 1.2469100 1.5570(00 6.4623r-b1 '.179VE(01 

*IG 43 
'8 ' 745 3.12'95-01 1.2469100 1.5559(00 6.5221E 01 4.2778i(01 
.5 ' 763 2.7200( 01 1.2417(00 1.5'29(00 6.9021(-01 4.7.60(-01 

'.6 779 2.6999(t01 1.2'09(00 1.5366E00 6.9921t 01 '.7337( 01 
'7 ' 794 2.67'1(-01 1.2391(00 1.5351(00 6.9979( 01 4.77.70(t1 
.9 so 909 2.559E501 1.2326E00 1.5199(00 6.93G1E(01 4.9172( 01 

'9 ' 823 2.252'.(01 1.2223(00 1.49'9(00 7.1959E(01 5.1652E 01 
SO ' 9'5 1.4391(Tol 1.1929(00 1.39'3(00 7.9962E(01 6.376'.501 
51 ' 961 1.339'. 01 1.1752(00 1.3796(00 9.1302( 01 6.6176t 01 
52 ' 994 1.25'2( 01 1.1725(00 1.369EO0 9.0759( 01 6.SOS9(01 
53 ' 996 1.2229E(01 1.1701E00 1.3700'00 9.056S5(01 6.47'2( 01 

*IC 53 
5' ' 913 1.2130( 01 1.1702(00 1.3672(00 0.059.-(01 6.'921 01 

*IC 5' 
55 ' 929 1.20'9t 01 1.16d9900 1.3669(00 9.0493(-01 6.'7958101 

*IC 55 
56 ' 9'. 1.1956E(01 1.1699100 1.365500 d.06'5(E01 6.4932(-01 

*IC 56 
57 ' 959 l.l190'.01 1.1673(00 1.3633OO d.0736E101 6.S0'1( 01 

*IC 57 
59 ' 977 1.1710E(01 1.1673(00 1.3610(OO d.0057( 01 6.5203E(01 

*IC S9 
59 ' 993 1.115SE01 1.1631(00 1.3533(OO d.1279( 01 6.6029E(01 
60 8 1007 1.07'.'.01 1.1602E00 1.3'65(OO d.1577( 01 6.64'4.''01 
61 ' 1023 d.'772E(02 1.1341(00 1.257(00 d.3330( 01 6.9'.30(01 
62 ' 1036 7.6021E(02 1.11'3(00 1.2491(.00 9.5059( 01 7.2376E 01 

*IC 62 
63 ' 1052 5.6929E(02 1.1166t00 1.2471'00 d.6497E(01 7.'.32E 01 
6' 8 1064 5.3193E(02 1.1112(00 1.2352(00 d.6917( 01 7.56dS9(01 
65 ' 1079 '.6602( 02 1.0950EOO 1.1995OO 9.9S2152(01 7.774'.901 
66 8 1096 3.6399( 02 1.0962(00 1.202'OO d.9766t01 9.06899(01 
67 8 1112 3.5651E(02 1.0961(00 1.2003(OO d.9972E(01 9.0923( 01 

*IC 67 
G9 ' 1131 3.507E502 1.091(OO 1.1995r00 9.0029( 01 9.0990( 01 

69 8. 1160 3.1375E(02 1.0992(OO 1.184.EOO 9.0142( 01 9.1319( 01 
70 8 1175 2.3260E(02 1.0656EOO 1.1352(00 9.1999(01 9.'.96(E01 
71 8 1193 1.3796E502 1.060s(OO 1.1246(00 9.3951( 01 9.905(E 01 
72 8 1207 9.5139E(03 1.0461E00 1.0939(00 9.6061F 01 9.2317E101 
73 8 1221 7.6979( 03 1.0457(00 1.0932t00 9.5537E 01 9.1252t(01 
7' 8 1237 6.97999(03 1.0432(00 l.098.EOO 9.5757E(01 9.1666t(01 
75 8 1257 5.996'.(03 1.0389(OO 1.0793(00 9.5789E901 9.1759( 01 
76 8. 1271 3.109'E 03 1.0292E00 1.0592E00 9.7055C 01 9.'190( 01 
77 8 1299 3.5876E004 1.007'OO 1.0189E900 9.9491C 01 9.990.EO01 
79 8 1301 3.8049S05 1.0032(00 1.0063E00 9.9671E(01 9.93'3E(01 
79 8 1315 3.0320O05 1.0029(00 1.0059(00 9.9730(-01 9.9'.59(01 
90 8 1330 1.729E905 1.0019E00 1.0037E00 9.9959( 01 9.9719( 01 
91 8 13'. 1.8491E(06 9.999'.(01 9.9999( 01 1.0003OO 1.0005(00 
82 8 1356 2.20748 09 9.99989(01 9.9996L'01 1.OOOOEOO 1.0001(00 
83 8 1378 1.1622E(09 9.9997EC01 9.9993E(0 1.0000(OO 1.0001(00 
84 1 1396 6.1348E909 9.9996E(01 9.9992E(0 1.0000(OO 1.0001(00 
9s 1 1.15 2.5295E(09 9.9999E(01 9.9997E(01 1.000000 1.0000EOO 
86 1 1832 1.0726k' 09 9.9999E(01 9.99989101 1.0000(00 1.000000 

CON VERCED 
86 0 185' 9.9290E 10 9.9999E(01 9.9999E 01 1.0000(00 1.000(O0 

CZ 
2.3'.99(S 2.615'E.S 0.00010617 '..9179 5S 

CC 

789.6 380.23 51.112 19.939 
380.23 205.12 23.93 31.517 

51.112 23.93 727.31 378.26 
19.938 31.517 379.26 228..25 
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TABLE 4 
Comparison with Other Methods 

(Figures taken from [14D 

Method QNWD H-J Ros SPLX Pow Stew 

Function 
Rosenbrock 208(- 11) 250(-8) 200(-6) 200(-8) 151(-10)* 163(- 12)** 
Beale 77(- 13) 100(- c) 130(-7) 100(-8) 
Powell 1 978(-7) 433(- 13)* 407( - 10)** 
Cube 254(- 15) 200(- co) 140(-7) 
Box 191(- l1) 100(- co) 290(-5) 
RTF(3)*** 130-284 96.- 120 

Av. = 189 Av. = 108 
RTF(5)*** 312-406 166 - 167 

Av. = 370 Av. = 166 

* These figures come from [10]. 
** These figures come from [4]. 
*** These are Random Trigonometric Functions of dimension 3 and 5. The accuracy criterion 

used is that the maximum error in any x-component is <10-7. The smallest and largest numbers of 
evaluations taken are listed, as well as the averages. 

down to a certain value is listed. The number in parentheses is the exponent, to base 
10, of the least calculated function value. The value "- " indicates that f was 
reduced to zero. 

7. Acknowledgments. I am especially indebted to Dr. P. G. Comba, whose 
suggestions and criticisms sowed the seeds for many of the ideas in this work. I am 
also grateful to Drs. D. Goldfarb and Y. Bard for very helpful discussions, and to 
Jean-Claude Cohen for his help in setting up the program. 

Thanks are also due to M. J. D. Powell whose criticisms resulted in a simplification 
and clarification of the presentation. 

The bulk of this work was done at the IBM New York Scientific Center. 

Appendix A. 
Limiting Cases of v -+ 0 and v -+ co. 

Case 1: v -O 0. If v is set to zero in Eq. (4.17a), the formula for O1 is not defined, 
since r' = a'. Therefore, we must consider 01 (and i7) separately. The formula for 
91 is: 

(Al) 21 = (e - p 

and for 11, we have: 

(A2) 7 = 4v2pl/lo- 201. 

When i 9d 1, we have: 

2s2(ei , 2p 4 (A3) =j - (r + 0(y )9 
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(A4) 4i= 4 -20g. 

When v -O 0, every term in formula (4.5a) goes to zero, except the first term 
(for i = 1). The result for y is (also- replacing A by L): 

(A5) y--+ L01l. 

For r, we must be more careful. When we replace M by L/v, we have a denomi- 
nator which converges to 0, whereas 01 and q1 do not. However, if we evaluate the 
terms in the brace in formula (4.5b) for i = 1, we obtain: 

(A6) i{ = 71alal + 2 OulTl 

since r1 = O. Replacing tq1 by expression (A2), we then have: 
2 

(A7) 4= PI Tlal 2 1 + 201al 

so that all we have left is the first term. There is no difficulty with the rest of the 
terms in Eq. (4.5b). 

For convenience, we define: 

(A8) I, _ 2(e, - 2pi) 

(A9) ii 4 
O'T 

(AlO) 4; Pi 20j; i 1, 
ai 

so that 

OIV2= Ai + O(V2) and qi/v2 = ii + O(V2). 

Then r becomes (replacing M by L/v): 

=I L4V Pl0,l'l + , [,T~c4 + Oi (a~ 
T 

T\1\ 

(All) 2v2 01 + i E + 

= 2 L{ T1a0ar + E [XiiaT + ji(air7 + riT)] L + O(v2) 

and when v - 0, the last term vanishes. 
Clearly, this limiting procedure has the effect of correcting go from the results of 

the first minor step only, and of removing part of the first minor step discrepancy 
from the correction to G. 

Case 2: v -* a. In this case, there is no need to separate out the first minor step. 
The limit for Ci is: 

(A12) 0; -* (es -2pi i, 

but 7i still contains a multiple of v2. The formula for y remains the same as (4.5a), 
but that for r becomes: 
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(A13) r I 
L{ 2 P? T ia }L + o(4) 

and the last term vanishes for v -> a. In this case, g. is corrected in terms of all the 
minor steps, but the G-correction does not contain the 0's. 

In the program used to run the test problems, L was set equal to the unit matrix I, 
as mentioned in the text. 

Appendix B. 
Comparison with Fiacco-McCormick Method. The method described by Fiacco 

and McCormick in their book [16] is based largely on a relation identical with Eq. 
(3.15a). Let a step a be made up of a linear combination of at most two coordinate 
directions, viz.: 

(Bi) U(aj) = a(e1 + ajet. 

That is, let the direction Sij be specified in terms of coordinate directions es and 
ej, and do a line search for the minimum of f along that direction, starting at a point 
x0. Then the minimum is found at xl (_ xo + aT(ij)) and the difference between 
starting and minimum values of f is denoted by Af( i.. We then have, rewriting 
(3.15a): 

(B2) fij=)G*ar 

and, replacing a( is ) according to (B 1), we obtain: 

(B3) = - I {a'ie'G*ei + 2aciaeTG*ei + aieTG*eiI 

(remembering that G* is symmetric). But, because the coordinate-direction vector 
e; has the structure: e; = (0, 0, * *, 0, 1, 0, . * , 0)-where the 1 is in the ith 
position-each of the products singles out a component of G*. Thus, e.g., 

(B4) eTG*e,- -Glj 

so that (B3) becomes: 

(B5) Af(= - G{aG? + 2ajajG4' + ajG!j}. 

Now, we choose the first set of directions for a so that they lie along the 
coordinates. Then, we have: 

(B6) Afi) - - G= 

from which we can solve for the diagonal elements GA. 
Next, we arrange that a i = a, (and denote them both by a if), i.e., we search in a 

direction (always starting at x0, as before) which bisects the right angle between es 
and ej. We then have: 

(B7) Af(^j) = -2a j(G*^ + G*1 + 2G?2), 

from which we can solve for GA, since everything else is known. Clearly, since G* is 
symmetric, we need only have done .1 N(N + 1) line searches. 

Once we have estimated G* in this way, we make use of Eq. (3.15b), using the 
results of the searches along the coordinate directions. (,r is, of course, the same as a 
for a single line search.) We then have: 



166 JOHN GREENSTADT 

(B8) aigoi + aiG?, = 0, 

from which we solve for Igo*}. We may then translate g* to any other point, using 
(3.12). 

The main differences between this method and the QN method outlined in this 
paper are: 

F-M QN 

1. N(N + 1) line searches N line searches 
2. Complete estimate of go and G Incomplete estimate of go and G 

(exact for a quadratic function) 
3. Completely new estimate at next Improvement of previous estimates at 

major step next major step 
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