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A Quasi-Newton Method with No Derivatives
By John Greenstadt

Abstract. The Davidon formula and others of the “quasi-Newton” class, which are used in
the unconstrained minimization of a function f, provide a (generally) convergent sequence
of approximations to the Hessian of f. These formulas, however, require the independent
calculation of the gradient of f. In this paper, a set of new formulas is derived—using a pre-
viously described variational approach—which successively approximates the gradient as
well as the Hessian, and uses only function values, These formulas are incorporated into an
algorithm which, although still crude, works quite well for various standard test functions.
Extensive numerical results are presented.

1. Introduction. The so-called variable-metric method for minimizing functions,
which was discovered by Davidon [1] and developed by Fletcher and Powell [2], has
been so successful that it has attracted a great deal of interest. Various theoretical
studies, as well as new, related algorithms, have appeared in the literature ([3}-{6],
among many others).

So far, all but one* of these variants of the DFP (Davidon-Fletcher-Powell)
method have required the explicit evaluation, at each step, of the gradient of the
function f to be minimized. From these computed gradients, the inverse of the Hessian
matrix is gradually constructed, and the Newton formula (which is used to compute
the next step direction) becomes gradually more accurate.

In a previous publication [7], it was shown how DFP-like formulas could be
derived by solving a certain variational problem. In this paper, the same method will
be applied to finding quasi-Newton** formulas which do not involve the explicit
calculation of gradients. Clearly, since the gradient is needed in the Newton formula,
the new algorithm will have to estimate it—as well as the Hessian— in the same way
as the inverse Hessian is estimated in the DFP method.***

The basic notation to be used is as follows: f(x) is the function of the variables
(%1, X3, * + + , Xy) in Ry which is to be minimized; g and G are the gradient and Hessian
of f, respectively, In the course of the work, certain estimates of these quantities will be
discussed; these will be denoted by g and G (without bars). Further, H = G~'. At
certain stages, vectors specifying directions for line searches are” introduced; the
letter d is used to denote these. When a direction vector d has been normalized (in a
sense to be outlined later), the normalized direction is denoted by the letter s. Using a
starting point x, and a unit direction s, a straight line in Ry may be expressed para-
metrically as follows:
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* This is the method of Stewart [4] which, however, computes the gradient by finite differences.

** The term *‘variable-metric” is reserved by convention for those methods in which the Hessian
remains positive-definite (and hence can be regarded as a “metric” tensor).

*** A method due to Fiacco and McCormick [16] also estimates the gradient and Hessian using

only function values. A comparison is made in Appendix B.
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1.1 x(@) = xo + os,

where « is a parameter which measures the distance from x, to x(«). If a line search
along such a line has terminated at a certain value «,, the displacement vector
x(a;) — x, will be denoted by o, so that ¢ = ;5.

At appropriate places, subscripts may be appended to any of these symbols, to
label the various steps with which they are associated. At other places, the context
permitting, the subscripts will be dropped.

2. The Role of the Constraint in the DFP Case. In the DFP procedure, after
the kth step from x; to x;.,, a new estimate H,., to the inverse Hessian is sought,
which is to replace the current estimate H,. This new estimate is required to satisfy
the quasi-Newton condition (also known as the DFP condition):

2.1 Hyjp = oy,

where y, is defined as (§,+1 — &i).

Where does this constraint come from? Basically, it is an identity which holds
for quadratic functions. At the beginning of the kth iteration, we have a quadratic
approximation to f(x), say:

@.2) 0i(x) = a + bix + 3x"Gx,

(where the superscript T denotes the vector transpose) and, during this iteration,
we make a step from the point x, to a point x,.,. At these two points, we have
evaluated the exact gradient vectors:

2.3) & = Vi(x); Zer1 = Vi(xa41).

A new, improved quadratic approximation Q,.(x) is now forced to fit f(x) at these
points, in the sense that the gradients calculated from Q,.,(x) match the exact ones:

(2.4a) ge+1(x1) = brsy + Grarxe = &,
(2.4b) i+1(Xk41) = brar + GrarXasr = Giar.

It follows that the new G,., satisfies the condition:

2.5) i1 — & = Gira(Xps1 — X)) = G0y

which is equivalent to Eq. (2.1).
The method used in [7] to derive correction formulas was briefly as follows: The
correction to H, was written as:

(2.6) Hiyy = H, + E,

and a quadratic norm of E, was minimized subject to (2.1). (This amounts to a
constraint on E,.) In addition, it was required that E, be symmetric so as to preserve
the symmetry of H,.,, given that of H,. This amounts to another (linear) constraint
on E,. This constrained variational problem was solved, leading to a class of correc-
tion formulas. These formulas resemble the DFP formula, and it was, in fact, shown
by D. Goldfarb [13] that the variationally derived class contains the DFP formula,

3. Constraints in the Derivativeless Case. We now have the task of trans-
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lating the variational procedure to the case when there is no independently calculated
gradient. The first thing we must do is to find an appropriate constraint corresponding
to the QN condition.

Clearly, the new condition cannot contain g explicitly, since g cannot be inde-
pendently computed. Hence, the only admissible ingredients are the values of f at
various points.

As in all treatments of quasi-Newton methods, we assume f(x) to be approximated
by a quadratic function (as indicated previously). The approximation for f is Q,
given in (2.2). If we replace b in favor of g, we obtain:

@a.1n 0 =a+ g"x — 1x"Gx.

This form for Q(x) has turned out, in practice, to be more convenient (less subject
to rounding error) than that in (2.2), but it must be remembered that g depends on x.

Let us now assume that we are at some point x, and do a line search along some
s (with length parameter «) for the minimum of f. For any x on this line (x = X, + as),
we have for the estimate g, based on Q:

g=b+ Gx = b+ G(xo + as)
= (b + Gx,) + G(as) = go + aGs.
Correspondingly, for Q:
0 = a+ (g + aGs) (xo + as) — 3% + a5)"Glxo + o)
= (a + gox0 — 3x7Gxo) + (gos)x + 3(s"Gs)e’.

At some value «;, we find the minimum value f,. The corresponding x value is
X (=% + a,9).

The spirit of the QN condition in the DFP case is to require that the estimated
set of “parameters” {H .} be such as to make the quadratic representation Q “fit”
the independently computed gradients. What corresponds in the present case is to
require the “parameters” g, and G to be such as to make the function Q(x) “fit” the
independently computed values of f. Thus, we shall require for our next estimates,
g* and G*, say:

(3.4a) Qo =00) =a+ ggrxo - %ng*xo = fo,
(3.4b) 0, = Q) = fi.
As in the DFP method, we eliminate what amounts to an additive constant
(viz., a) by taking differences:
(3.5 Af = AQ = 0, — Qo = (8¥"s)ay + 3(s"G*s)a].

There is another independent constraint, based on the fact that f is a minimum
at «,. Hence, the derivative of Q, with respect to «, is forced to vanish at a,:

3.2)

3.3)

(3.6) (gid__g) = g&"s + (s"G*s)y = s"(g¥ + .G*s) = sgF = 0.
Thus, we have two “QN conditions” at each step. Other combinations are possible,
of course, such as fitting Q(a) to f at three distinct points along s. (This would also
lead to two conditions.) v
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For reasons which will be apparent later, it is not feasible to attempt to correct
8 and G after only one step. We therefore take more steps than one in each “correc-
tion cycle”, and distinguish between a minor step, involving a line search along a
single direction, and a major step, which will be a sequence of such minor steps.

In what follows, we shall suppress the major step index k, and concentrate on
the set of minor steps which constitute a major step.

Starting from x, (the starting point of a major step), the first minor step direction
d, is calculated by Newton’s formula, using the current estimates g, and G:

3.7 dy = —G g,

and d, is then normalized with respect to a positive-definite matrix L, to be chosen
later. This gives the unit vector s,, defined as follows:

(3.8) s, = d/(d1Ldy)".

Note that it is necessary to solve a simultaneous linear system for d,, since G*
will not be directly estimated, as in the DFP method. The reason for this is that G
is involved in Egs. (3.5) in such a way, that replacing it by H~! would unavoidably
lead to a nonlinear constraint on H, thus rendering the variational problem intractable.

After the line search along s,, yielding «, and f,, the direction of the next minor
step may be generated by combining s, with some other direction. A simple choice
is one of the coordinate directions, say e;. Then

(3.9 dy = e, + pi5i

with p, chosen so as to make d, orthogonal to s,, in the sense that d3Ls;, = 0. d, is
then normalized to give s,, and a line search is performed, yielding «, and f,. Next, a
new direction d;, is found by combining e,, s, and s, linearly, and requiring d; to be
orthogonal to s, and s, (with respect to L). d; is then normalized, etc.

If it should happen that one of the coordinate directions is a linear combination
of the already computed direction vectors, it is simply dropped. In all, a total of N
minor steps are attempted. In what follows, the index i will be a label for the minor
steps within a major step.

.If we denote the ith minor step by o, we have:

(3.10) X; = X3 + O;.

7, is next defined as the total displacement from x, to x.:

(3.11) Ti = Xy — Xo = Z g;.

i=1
Then, based on (3.2), we will impose the condition:
(3.12) gt = g¢ + G*r; = gt + G*o;
and, corresponding to (3.6), we satisfy:
(3.13) oigk = o(g¥ + G*r) =0

for each ..
Corresponding to (3.5), we have:
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Af

fi — fici = Qi — Qi
g:'kT(xi—l + 0) — (gf — G*‘T.‘)Txi—l
- %(xi-—l + O'e)TG*(x.'—l + o)) + %xf—lG*xi—l

= o*T 1 T — 1 _Tex%
= g¥o;, — 30,G*s; = —30,G*0,,

Il

(3.14)

the last equation resulting from (3.13).
In summary, our constraints are:

(3.153) Af; + 30 G*o; = 0,
(3.15b) olg¥ + oTG*r; = 0.

It is important to note that the only independently computed functional quantities
here are the { Af.}.

We are now going to consider the major step as an independent cycle, and make
the corrections to our old estimates, g, and G, at the end of it. The corrections will
be denoted by y and T, so that the corrected values g¥ and G* will be:

(3.16a) g = & + 7,
(3.16b) G*=G+T.

Then the constraints (3.15), considered to apply to the new estimates g% and G*,
are translated into constraints on y and T as follows:

(3.17a) 16 T'e, = —{Af; + 305Go;} = pi,
(3.17b) oy + oil'ry = —{o7g + 07Gr} = ..

Now, there are N parameters in g, and $N(N + 1) in G to be estimated. But in
each major step, we have at most 2N constraints. Hence, when N > 1, there are
fewer constraints than parameters; so that one major step does not determine all the
parameters. Since each major step is treated independently of the others, any method
based on these constraints will not necessarily be an “N-step” method. In fact, the
formulas to be derived need not necessarily generate the exact G, even for quadratic
functions. This is not to say, however, that it is impossible to construct “N-step”
formulas (by other means).

4. The Variational Procedure for the Derivativeless Case. We now have the
problem of setting up a functional to minimize, which somehow embodies, the
norms of v and of I'. The most obvious norms to choose, which are quadratic, are:

(4.1a) IvlI* = +" v,
(4.1b) [IT|]* = Te(WT W),

where ¥V and W are positive-definite matrices of some sort.

A difficulty arises in somehow combining these norms in a natural manner. One
wishes to have a quadratic function of the elements of v and T" which is also positive-
definite. These two quantities are not really comparable, since it is easy to construct
functions for which they have arbitrary values. The obvious device of simply adding
them leads to the problem of insuring that their “units” are consistent. This might
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be accomplished, for example, by taking W = G™' and V = ||g,||”’I, where I is the
unit matrix.

The most practical form, which was found after some trials, was the most obvious
one, viz., a simple sum:

4.2) ® = 3" Vv + } TH(WTWTT),

and a large number of numerical trials, wherein various forms of ¥ and W were
chosen, seemed to indicate that the choices ¥ = I, W = vl (where v is some arbitrary
number) worked best in practice. However, we shall defer this specialization to a
later section, but leave ¥ and W arbitrary so as to show the general form of the
corrections.

Incorporating the constraints (3.17) into the functional via the Lagrange multi-
pliers {#,} and {6.} gives:

® =&, — Z "1:'(%“1."1‘0’:' )
4.3) :
— 2 0oy + oiTr; — €.

We should add to this the additional constraint I'" = T, but will dispense with doing
this explicitly, and simply indicate the change in the formula for T, necessary to
include this requirement.

The necessary conditions for a stationary & are obtained by differentiating, as
follows:

%

(4.42) Pl Z f.0. = 0,
aé 1 T 1 T T
(4.4b) or = WTW — 2 nidoel — % 2 Oi(oiri + 1i0) = 0.

(The symmetrizing of the ¢,7% term is a result of taking account of the symmetry

condition on T'.)
If we define A = V™', M = W', we have:

(4.53) vy=A Z 0.0,,
(4.5b) T = iM{D now! + 2 8:oir] + 1D} M.

We now solve for the Lagrange multipliers {#.} and {6,} by applying the con-
straints to y and I'. The resulting equations are rather complicated, but they reduce
to the following (in matrix form):

(4.6) A0+ Bp=¢ B0+ Cqn= p,
where

4.7 e={e}, o= {pn},
(4.82) Ay =Ny + $H{uiui + p e}
(4.8b) B = $uiPu?,

(4.8¢) Cii = tuiiui?
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and

(4.9a) \ij = oA,
(4.9b) piy = 1iMr;,
(4.9¢) w = 1iMay,
(4.9d) wy = o iMaj;

i and jrun from 1 to N and are not summed in (4.8).
If M and A are now chosen to be proportional to L, we gain a great simplification
in the formulas for v and T'. We set (as suggested previously):

(4.10) W =vV; or M=1A
and, in addition:
4.11) A= L, sothat M = } L.

We then have, since {s.} is now an orthonormal set with respect to L:
(4.123) )\;; = UfAO’i = IO’.'I la','l S{-’Ls,' = 0'?6”
and, similarly:
(4.125) b = oTMo, = oTLo, = -t b,
so that {A;;} and {u®} are diagonal. Since, from Eq. (3.11), 7. = 2_i_, ,, we have:

i i
(2) 1 T 1 2
Hii = & ZUpLUi = ; Zl 05 Opi
p=

4.13) Y oeml
=dif, ifiz},
=0, ifi < j,

so that {u{?} is a lower triangular matrix.

Bearing in mind that the products in Eq. (4.8) are not matrix. products, but
element-by-element products, we see that:

L {pPu®} is diagonal because {uP} is;

2. {(u@u®} is diagonal because {u!?} is triangular;

3. (2 u®} is diagonal because {u{¥} is.
Hence, A.;, B;; and C,; all form diagonal matrices, and have the values:

(4.14a) A;; = {0'? + % (de’? + d't)} Oiis
(4.14b) By = S50
. W O; 055,
1 .,
(4.14¢) Cii = 7305 044,

4
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where

4.15) =2 da,

=1

all of which follows from the orthonormality of {s:} with respect to L.
The solution of Eq. (4.6) has the form:

(4.16a) 6 = (A — BC'B") '(¢ — BC'p),
(4.16b) 7= C'(p— B9

and these expressions may be easily evaluated because all the matrices are diagonal.
The result is (by components):

_ 21’2(5; = 2p5)
(4.173) 0.' = 0'?(21!2 + T? _ d’?) s
2
(4.17b) mo= % o - 20,

so that the evaluation of v and I' does not really involve any matrix inversions.

The algorithm now runs as follows:

1. Assume G = I, and estimate g, at the starting point by first differences. (See
explanation in Section 5.)

2. To start a major step, compute a direction s, from Egs. (3.7), (3.8).

3. Do a line search for a minimum of f along s (for each minor step).

4. Save o, 7, p and ¢ as defined in Section 3. If a total of N independent directions
have been generated, skip to step 6.

5. Form a new direction from the previous step directions plus a new linearly
independent direction, and orthonormalize. Go to step 3.

6. Compute 9 and 5 from Egs. (4.17).

7. Compute v and T from (4.5).

8. Correct g, and G (Eq. (3.16)) to form g% and G*.

9. Translate g% using g¥* = g% + G*ry (referring to Eq. (3.12), since the new
x*%is xo + 7).

This completes a major step.

10. Test for termination (||g¥*|| < threshold, say). Otherwise, go back to step 2.

There are the usual complications in the program for this algorithm, mostly as
a result of rounding error. These have not been described here.

5. Computational Experience. This method was programmed in the APL
language for the IBM 360 computer and a good many trials were run on a few test
functions. There was a good deal of tinkering necessary to get the method to converge
reliably and reasonably efficiently, but the most effective choice of various arbitrary
quantities turned out to be one of the simplest.

The worst difficulty with this method is that the successive estimates of G are
not necessarily positive-definite. This precludes setting L = G (hence A = G and
M = G/v) since minimizing a quadratic form with an indefinite metric can (and did !)
yield very large, unstable corrections v or T'. The choice L = I turned out to be the
most stable (and the simplest) choice, and almost always led to the fastest convergence.
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The best choice of » turned out to be 0! Of course, one cannot simply set » = 0,
and evaluate v and T, since Eqs. (4.6) become singular for » = 0. It is possible, of
course, to find the limiting solution as » — 0, and this is described in Appendix A.

In many instances, the correction computed in this way caused G to become
indefinite. This is easily detectable in those cases when a diagonal element becomes
negative. This was cleared up in most instances by letting » — , instead of » — 0.
(The former case is analyzed in Appendix A.) When this device did not help, the
indefiniteness was allowed to remain, and the next major step was begun. Near the
point of convergence, this pathological effect nearly always disappeared; however, it
did have the effect of slowing down convergence.

As will be seen from the printouts of some of the examples shown, the convergence
does seem to be superlinear in many cases. This has not been proven and may not
even always be true.

There is certainly no assurance that a variational derivation will yield formulas
having the most desirable properties. It is likely that a deeper theoretical analysis
of this type of QN method will yield better procedures with better properties (such
as positive-definite G’s).

As in the DFP method, the unit matrix was taken as a starting value for G. For a
starting value of g,, there is no “natural” vector, although, in principle, it is possible
to start with any vector. When this was done (for example, by taking g, = (10000- - -)
or g, = (111- - -), the method converged, but often with great difficulty. Ultimately, a
rough estimate of g, was computed at the outset (by simple forward differences),
and this stabilized matters quite considerably.

6. Numerical Examples. Tables 1-3 following are printouts generated at a
terminal by the APL program. The entries are as follows:

NSTEP The major step number.
P The number of minor steps in the major step; in these tables, P = N
in all cases, except when some minor steps are too small. (The
formulas for 6 and 5 remain the same, except that & is replaced by P.)
NFUNC The total number of evaluations of f after each major step.
F The value of f(x).
X The position vector.

In these printouts, g, is denoted by GZ and G is denoted by GG. When G is found
to be indefinite, the notation: IG (indefinite G) with the major step number is printed.
The value of » is then changed from 0 to «. When this still gives a detectably in-
definite G, the same notation is printed again. The entire process was regarded as
having converged when ||go|| < 107%, or, failing this, that no minor step >10~" was
possible. If the size of the major step falls below 107°, the notation “SPF” is printed,
and the iteration terminated.

The functions tested were as follows: (The starting values in each case are listed
on the first line with NSTEP = 0.)

(a) Quadratic Function 1.

f=xi+ 100G, — 1" + (x5 — 2)°
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whose Hessian is equal to:

2 0 O
G,=|0 200 O
0o 0 2

and minimum at (0, 1, 2). Various starting values were used.
(b) Quadratic Function 2.

f= 01+ x‘z - 2)z + 10‘(-"1 - -’Cz)2

. ={ 20002 —19998}

with Hessian:

—19998 20002

and minimum at (1, 1).
(c) Quadratic Function 3.

f= 0 4 2% + 3x5)" + 100(x; — 1)° + (x5 — 2,

2 4 6
G; =4 208 12
6 12 20

and minimum at (-8, 1, 2).
(d) Rosenbrock’s Function [8].

f = 100(x, — x3)* + (1 — x,)%,
GROI = {: 802 —400:l at (1’ 1)-
—400 200

(e) Beales’s Function [9].

3
f= e — ml — x5 e} = {1.5, 2.25, 2.625]

t=1

(Hessian not computed independently).
(f) Powell’s Function No. 1[10].

f= G+ 10x,) 4+ 50 — x)* + (2 — 2x5)* + 100x; — x,)°*

(Hessian not computed independently).
(g) Powell’s Function No. 2 [11].
X1+ x3

f=104 (= x)T" + sinGrxx;) + cxp{—(

2

(Hessian not computed independently).
(h) Cube [12].
f = 100(x, — x))* + (1 — x)’,

1802 —600
Gcuse = [ } at (1, 1).
—600 200

-3}
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(i) Random Trigonometric Function [2].

N N 2
f= Z {E; — Z (A;;sin x; + B,; cos x,)}
i=1 =1
(with 4;;, B,;, and E; randomly generated).
Gry is variable and the solution is “XNULL”, which is precomputed.
(§) Helical Valley [2].

f = 100[(x; — 106} + (- — 1)’] + x3
with
6 = tan"'(xy/x1); r = (] + x3)'°.

Solution: (1, 0, 0).
(k) Wood’s Function [15].

f=100(x;, — x1)° + (1 — x,)° + 90(x, — x3)°
+ (= x3)" 4 10.1{Cxz — 1)" + (% — 1)’} + 19.8(x, — 1)(xa — 1).

Solution: (1, 1, 1, 1).

It will be seen that various interesting (some good and some bad) things occur
in these problems:

(1) The convergence near the solution is often clearly superlinear (even quadratic
at times), but breaks down for functions which do not have a quadratic minimum
(e.g., Powell 1).

(2) When G at the solution is singular, there is a good deal of difficulty with
indefinite intermediate G’s, which slows the convergence drastically.

(3) This method is not as speedy as several others (Simplex, Powell’s, Rosen-
brock’s) but compares well in some cases.

(4) The successive estimates of G have been printed for Quadratic Function No. 3;
evidently, a good value is generated very soon, which explains the quite rapid con-
vergence in the quadratic cases. (A similar study of what happens to g, has not
been made.)

(5) When P, the number of minor steps per major step is restricted to be <N,
the convergence is slowed considerably. (These cases are not shown.) When P = 1,
the correction to g, tends to make it vanish altogether, thus providing no direction
for the next Newton step. (This was the reason for introducing additional minor
steps in the first place.)

In Table 4 is shown a comparison with other methods for those test functions
for which information is available. The starting points for all comparison functions
are the “standard” ones, i.e., those used most in the literature.

The entries in Table 4 are as follows:

QNWD stands for “Quasi-Newton Without Derivatives”

H-J stands for “Hooke and Jeeves”
Ros stands for “Rosenbrock’
SPLX  stands for “Simplex”

Pow stands for “Powell”

Stew stands for “Stewart”.

For each case, the number of function evaluations needed to get the function
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TABLE 1
QUADR. PUNC 2
NSTEP P NPUNC 14 &3
] 0 3 1.0001£08 1.0000£02  0.0000£00
1 2 1s 9.3134E£701 1.0096500 9.99932701
2 1 25 2.32726709 1.0000£00 3,0000200
3 1 s 8.9420E717 1.0000200 3.0000500
COWVERGED _
3 0 oS . 9L1LE"17 1,0000200 1.,0000£00
Gz
“0.47993 0.47946
GG
20002 19994
19998 20002

QUADR. FUNC. 3

BSTEP P NPUNC r p 23
[} [} & 2.0100502 3.0000800  2,0000200
1 3 15 1.206¥501 “L,LLU0E00  1.190LZ00
NIN(91)
2.0573 3.4072 6.0731
3.8072 ou 12,065
6.0731 12,065 19.942
2 3 25 1.63965702  T7,6564%00 9.97218701
1.9107 [T 5.9024
LobSLY 209.09 11.949
S.8024 11,949 20,003
3 3 3 1.90628705 ~7.9469Z00 1,00008700
2.0031 4.0165 6.0058
4,0165 208 12,056
6.0058 ©12.056 19.997
. 2 [%] 1.14948711  T8.0000500° 1,00002700
1.9982 4.0165 5.9977
4.0165 208 12,056
5.9977 12,056 20,002
s 1 60 3.40658717  T¥,0000200 1,0000£00
eSPP S
CONVERCED
H 1 60 3.40655717 ~8,0000800 1.0000500
cz
“L.3038ET9  T2.1134E77 8.6236E710
(4
1.9985 4.0165 5.9976
4.0165 208 12,056
5.9976 12.056 20,002

QUADR. FUANC. 3

ASTEP P NFUNC r X+
0 & ¥.6440£03 T1.0000201  1.0000Z01
1 3 15 2.1194E02 T8.2552E00 2,4072E00
2 3 28 4.3570E703  T7,8743E00 1,0018E00
3 3 3t 6.0971E704  77,9218E00  9,99855_01
& 3 &3 3.0676E_11  “8.,0000£00 1.00008°00
s 1 56 1.0791E714  "4.0000£500 1,00008700
CONVERGED -
H 1 H 1.07918716%  T4,0000500 1.0000E700
cz
7.2411E78  1.6262E76 "1.91525w
[{4
1.9978 3.4979 $.9977
3.8979 208 11.659
5.9977 11.659 20,002

QUADR. FUNC. 3

NSTEP P NFUNC F X
0 [ & 1.0104E04 1.0000502 0,0000£00
1 3 18 2.8819£03 4.9717501  &,.2341E701
.2 3 31 8.3338E703  T8.0426E00 1,0002Z00
3 3 4“0 1,3427E706 “8,0037E00 1,0000E00
3 2.0308E713  T4.0000F00 1.0000£00

2 St
CONVERCED
o 66 1.3073E713 “8.0000£00 1.0000E00

¢z
2.7719E77 1.8613E75 6.874E"8
cc
1.9998 3.9947 5.9997

3.9947 208 12,011
5.9997 12,011 20

1.0000800
1.6976200

1.9123F00

1,9956Z00

2.0000F00

2,0000E00

2.0000500

~1.0000£01
8.0563E702
1.9458500
1.9766£00
2,0000£00
2.0000£00

2,0000E00

0.0000£00
9.3294F01
1.9841£00
2,0011£00
2.0000£00

2,0000800



A QUASI-NEWTON METHOD WITH NO DERIVATIVES

TABLE 1 (continued)

QUADR. FUiC. 1

NSTEP P NFUIC F X
[ . 1.1000502 3.0000£00 2.,0000£00
1 3 1 8.7319E701 2,6728£701 1.0891200
2 2 31 1.44L3E710  T9.4633E£°06 1.0000£700
3 2 &9 2.55808712  T1.5982E706 1.0000£00
*SPF 3
CONVERGED _
3 2 .9 2.5580F712 T1.5982F706 1.,0000500
¢z

1,8011E”S 0.00065156 S$.7706E710
Gac

2.000050 "1.L511E7%  1.¥1L0E”L
“1.4511£78  2,0000£2 1.3655E %
1.8140E7%  1.3655K5"%  2.0000E0

QUADR. FUANC. 1

NSTEP P NFUNC F X+
[ [ & 8.3LL0F03 T1.0000£01  1.0000£01
1 3 15 6.4539K00 ~2,u6605°01 1.2579E00
2 1 27 1.98138711 2.7736E_06 1.0000£700
3 1 39 L.9839271%  T2,85145710 1.0000E00
*SPF 3
CONVERGED
3 1 39 4£.98398714  T2.8514Z710 1.0000£00
¢z
“L.3709E76 0.00039373 T5.24985°6

GG

2.0000E0 1.3838E75  T7.06L4ET7
1.3838E°5  2.000052 1.6035E7S
T7.0644E77  1.6035E7S  2.0000E0

QUADR. FPUNC. 1

NSTEP P NFUNC 14 &3
[ [ & 1.010420% 1,0000£02 0.0000£00
1 3 15 9.3271£03 9.6079501  3.92615°02
2 3 29 2.7746E706 1.19075703 9.9999E701
3 1 &3 1.6889E715 2.3114E709 1.0000£00

CORVERGED
1 &3 1.6889E715 2.3114E709 1.0000£00

cz

7.9167E710 2.6501E77 ~$.2693E710

GG
1.9998E0 2.9797E7s 2.2098E %

2.9797E”S _2.0000E2  ~6.6800E %
2.209887% TE€.6800E%  2.0007E0

QUADR. PUNC 2

NSTEP P NFPUNC 14 X+
o [} 3 3.2L05E02 1.0000F01 1.0001£01
1 2 9 3.2367502 9.99L,8500 9.9958£00
2 2 23 1.3747500 1.5862500 1.5862E00
3 1 L¥] 6.9562E7 14 1.0000F00 1.0000E00
CONVERGED

1 &3 6.95625718 1.0000800 1.0000£00
¢z
9.6235L77 T9.6235E77
ce

_20002 19998
19994 20002

QUADR. FUNC 2

NSTEP P NFUKC F X+
[ 0 E] 4.0000E06 ~1.0000£01  1,0000£01
1 2 12 2.2491E706 9.9999E£701 1.0000£00
2 1 20 1.3917£713 1.0000£00 1.0000£00
! CONVERGED
2 [ 37 1.3970£715 1,0000E00 1.0000E°00

Gz
0,008910% 0.01089
({4

20002 19998
19998 20002

1.0000£00
1.9109F00
2,0000£00
2.0000%X00

2.0000E00

~1.0000%01
1.6561£00
2.0000500
2.0000500

2.0000F00

0.0000£00
7.8L748 02
1.9988E00
2.0000£00

2.0000200
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JOHN GREENSTADT

TABLE 2
ROSENBROCKS FUNCTION
NSTEP P MFUAC F _Xe
[ [ 3 2.4200E01 ~1.2000E00
1 2 13 3.6298£00 8,9067E_01
2 2 21 3.4233E00 “8.4879E"01
3 2 37 1.8095E00 C3.3952E"01
& 2 &9 1.6006£00 Z2.5919E_01
5 2 57 1.1819£00 “7.8469E02
[} 2 65 8.8453E°01 6.0462E02
7 2 73 7.17385°01 1.53042701
8 2 81 5.6197E°01 2.5041E°01
9 2 90 £.29985701 3.4429E701
10 2 99 3.16985°01 4.3715E_01
11 2 108 2.2182E701 5.3139£_01
12 2 119 1.3396E_01 6.3433E_01
13 2 127 1.0543E701 6.7550E_01
14 2 1.0 4.L759E_02 7.8846E_01
15 2 150 3.09512702 4.2677E_01
16 2 163 L.4350£703 9.3398E°01
17 2 173 2.2615E°03 9.5434E_01
18 2 183 2.9801£8705 9.9458E°01
19 2 191 6.02258706 9.9756E_01
20 2 199 4.2134E709 9.9994E701
21 1 208 8.00285711 9.9999E701
COWVERGED - -
21 1 208 8.00285711 9.99995701
Gz
S.5108E°8 ~2.7734E78
cG
798.76 “401.73
“401.73 202.7
BEALES FUNCTION
NSTEP P NFUNC F X+
0 [ 3 1.4203801 0.0000£00
2 25 3.49952701 2.1250£00
2 2 33 8.7130£702 2.4649E00
3 2 [T} $.3580E°0% 2.9462E00
& 2 57 1.2898E70% 2.9728F00
5 2 65 9.6146E8707 2.9976L00
6 2 71 2.2749E°09 2.9999£00
7 2 77 9.0499E713 3.0000E00
CONVERGED _
oz 2 77 9.04998713 3.0000£00
“6.8265576 ~1.6972E76
GG
3,948 T12.944
T12.9446 45,54
POWELLS FUNCTION 2
NSTEP P NFUKC F X+
0 0 & T1.5000E00 0.0Q00E00
1 3 20 T2.4976L00 2.19583701
2 3 33 T2.4698E00 4.0748E_01
3 3 L2 2.8974E00 4.7880E701
4 3 §7  T2.9999L00 1.0192L090
s 3 7% 73.0000£00 1.0051£00
© 3 85  T3.0000£00 1.0044E00
«IC 6
7 3 96 ~3.0000£00 1.0033£00
(] 3 108  T3.0000E00 1.0034E00
«IC 8
9 3 119 73.0000E00 1.0026£00
10 3 133 73.0000£00 1.0000£00
11 3 144 T3.0000E00 1.0001E00
*IG 11
12 3 153 T3.0000Z0C 1.0000£00
13 3 175  T3.0000£00 1.0000E00
«5PF 13
COWVERCED
13 3 175  T3.0000E00 1.0000£00
cz
2.08L8E75  1.7105875 T3.174SE”S
14
£.1302 “8.0504 1.8054
“8.0508 9.0137 ~0.57887
1.8054 ~0.57887 7.791%

1.0000£00

7.6981E°01
7.2767E"01
1.27608701
7.9%37E702
1.9865L702
7.8961E703
2.4091E702
6.17462702
1.1797E701
1.9244E701
2.8710E701
&.00802701
L.5740E”01
6.2137E°01
6.86625-01
8.7320E"01
9.12032701
9.89245701
9.9515E”01
9.99875701
9.9998E701

9.9998E701

0.0000E00

2.0891F701
3.26208701
4.8493E701
&£.9262E701
%£.99392701
%,9997E701
5,00002701

$.,0000E701

1.0000£00
8.6335E701
7.7388E°01
8.0091E701
1.0079L00
1.0023£00
1.0017E00

1.0019Z00
1.0015F00

1.0012500
1.0001£00
1.0000700
1.0000E00
1.0000E00

1.0000E00

2.0000E00
1.6225E00
1.1885E£00
1.1542E00
9.9288E701
9,984 85701
9.9850E701

9.9876E701
9.9900L701

9.9936E701
1.0000£00

1.0000E700
1.0000E”00
9.9999E701

9.9999E701



A QUASI-NEWTON METHOD WITH NO DERIVATIVES

TABLE 2 (continued)

POWELLS FUNCTION 1

NSTEP ~ P NFUNC F X+
0 5 2.1500£02 3.,0000E00 ~1.0000E00
1 & 27 3.0957Z200 5.4603E_01 “1.5640Z°01
2 & o 5.3349E701 5.8315E°01 ~6.48415703
3 & 68 1.95.7E701 1.8400E701 "1.3570E702
*IG 3 .
3 [ 83 6.2625E702 2,1017E701 T1.8541E702
oIG &
S & 100 2.9855E702 1.5177E701 T1.9142E702
IG5
6 v 118 1.L494E702 1.39985701 T1.2674E702
*JG 6
7 . 131 1.1635E702 1.31764E701 T1.1921E702
IG 7
] . 146 7.8424E703 1.2730E701 "1.2215E702
*IC 8 .
9 % 16k 5.2363E703 1.1401E701 T1.2318E702
*IG 9
10 DI 1Y 4.3417E7 00 1.1878E701 T1.1483E702
*IG 10 -
11 v 203 2.9105E7 0% 1.1095E701 "1,10C6E702
«IG 11
12 » 217 2.7140E 00 1.08055701 “%.0775E702
IG 12 - _
13 & 233 2.6617E"04 1,0789E701 "1.0772E702
14 [ 1Y 2.5260E_0% 1.0601E701 ~1.0577E_02
15 & 265 2.3636£704 1.0319E701 T1.0284E702
*IG 15
16 L 279 2.3047E 08 1.0303E701 T1.02595702
*IGC 16 )
17 v 29 2.25%35 00 1.0257E701 T1.0235E702
«JG 17
18 v 319 2.0639E7 04 1.0171E701 T1.0145E702
«JIG 18
19 & 335 1.8336E7 04 9.8776E702 ~9.8570£703
*IG 19
20 L 353 1.7972E 08 9.7878E702 T9.6105E703
«IG 20
21 & 372 1.714957 08 9.6105E702 ~9.7499£703
«IG 2%
22 LI T'T ] 1.6L43E7 08 9,587LE702 T9.5636E703
*IG 22 _ _ _
23 Y18 1.6076E” 0% 9.5388E°02 9.5188E703
24 . K20 1.2269E 0% 8.9529E702 "8.9421E703
«IG 24
25 & %38 1.0511E70% 8.6293E702 "4.62L0£703
*IGC 25
26 b &S) 1.0091E7 04 8.5387E702 "8.5260E£°03
27 L 68 9.6162E70S 8.4156F°02 “8.4060E°03
28 [ 1 6.5522E°05 7.1816E°02 ~7.1699E°03
29 L K99 $.7095£705 6.2700E°02 ~6.2611E703
30 & 513 5.6054£705 6.03L4E"02 ~5.9848E703
31 L 526 5.359LE705 $.9125E702 ~5.9026E703
32 .Y 542 5.0555E°05 5.9026£°02 ~5.9094E703
33 . 560 4.70L6E°0S 5.8801E°02 ~5.8814E703
3 579 3.8032E708 $.6198E°02 ~5.6099E°03
35 L 594 2.3221E705 5.0366E-02 ~“5.0289E°03
36 L 610 L.0940Z706 3.6028E702 T3.6013£703
«IC 36
37 3 633 4.0560E706 3.60402702 T3.6026E703
*IG 37
38 L 650 3.660LE-06 3.5698E-02 3,5732E_03
39 L 665 2.5530E706 3.3991£702 ~3.3985E°03
40 v 678 2.3721E708 3.2601£°02 ~3.2598E703
L3} L 690 1.867LE706 2.9048E°02 ~2.9048E"03
[¥3 . 705 1.5262E706 2.24807702 ~2.2508E703
&3 v 725 1.27722706 1.2637E°02 ~1.26365°03
Ly L 7M1 1.2302E°06 1.0228E702 ~1.0229E703
&S L 755 7.7647E707 8.0290E703 “8.0304E70%
46 771 2.9589E707 3,2318E°03 T3.2251E°04
[%4 v 787 1.6264E707 "6.4599E 0L 6,4978E_0S
Y} 3 go 1.4365£707  T2.5199E703 2.5194E”0%
L9 & 817 1.4007E707 T3.6216E°03 3.6255E”04
50 3 83s 1.3972E707  T3.6343E703 3.6329E 0%
s1 3 851 1.39%1E707  T3.6243E°03 3.6229E_0%
52 3 ues 1.3909E707  73.5903£703 3.5889E”04
53 3 uYs 1.3714£707  T3.8647E703 3.8633E"04
Sk L 899 1.3393£707  T4.3938E703 4.3925E_0%
5S L 913 1.2288E707 T6.2L65E°03 6.246LE” 04
56 2 935 1.0949£707 T1.2087E702 1.2085E703
57 3 9sy 1.0930E707  T1.1855£°02 1.1854E703
58 3 978 1.0906E707 T1.1852E702 1.1852E703
«SPF sy
CONVERCED
S8 3 978 1.0906E707  "1.,1852£702 1,1852E703
Gz
T5.8332E75 T0.00023982 5.764SE”S "3.1733E°6
GG
2.9281 20,314 T1.6214 0.69141
20,314 198,08 T4.1385 10.418
T1.6214% “4.1385 9.8807 ~13.095
0.69141 10.418 T13.095 9.4135

0.0000500
5.2225E701
3.3092E701
3.1948E701

2.3993E701
1.9380E701
1.5501E701
1.5335E701
1.4251E708
1.2767E701
4.9608E702
$.1263F702
5.,2268E702

5.1263E702
5.1421E702
$.1608E702

S.0944E702
5.036LE702
&.5911E702
L.5914E702
L.SS58SE"02
L.5862E°02
&.4302E702

4.4701E702
3.9303E702

3.8419E702

3.8288E°02
3.84708702
3.93828702
3.9800E702
3.9858E_02
3.9437E702
3,8668E°02
3.8031E702
3.59618702
3.08LLET02
1.9613E£702

1.9532E702

1.8702E702
1.41812702
1.1885E°02
8.7539E703
2.7218E703
6.2196E703
8.2679£°03
8.3232E703
8.7766E-03
~9.1030£703
~9.2401E703
~9.3060E703
~9.3017E 03
T9.2958E703
~9.2881£703
T9.2749k703
9.2451E703
9,0374E703
8.L541E703
¥.4712E703
¥.L662E703

“4.4662E703

1.0000E00

7.0824E_01
3.0313£701
3.4914E701

2,L707E701
2.0664E701
1.8126E701
1,6854E701
1.41062701
1.2962E701
5.3873E702
$.2515E702
5.2864E702

S.2814E702
$.2296E02
5.17145702

5.1592E702
$.1364E702
4.7415E702
4,6L33E702
4.6349E702
4.5903E702
4.5793E702

&.5438E702
4.0342E702

3.9032E702

3.8825E°02
3.9061E°02
3.9515E°02
3.98L2E702
3.97684E702
3.9761E-02
3.9105E702
3.8211E702
3.62015702
3.1497E702
1.95982702

1.9563E702

1.8759E°02
1.4209E702
1.1897E702
8.8118E703
2.7756E703
6.2068E_03
8.2748E°03
8.3057E703
8.7689E703
9.1040E703
9,2441E703
~9.3051£703
T9.30098703
9.2952E703
9.2874E703
9.2743E703
9.24465°03
9.03745703
4.4562E°03
8.4713E£703
8.46658°03

“8.4665E703
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JOHN GREENSTADT

TABLE 3
CUBE
ASTEP P NFUNC 4 _ Xs
[ 3 7.4904502 T1.2000500
1 2 14 1.2547E00 T1.2067E]01
2 2 24 1.1820£00 ¥.25172702
*IG 2 - =
3 2 31 1.0345500 1.5647E702
5 2 82 5.30925701 2.7137E701
s 2 53 %.1518E701 3.55675_01
6 2 62 3.12945701 %.4062E701
7 2 7 2,4084E701 $.09255_01
[ 2 v 1.83178701 $.7253E701
9 2 90 1.3738E701 6.33702701
10 2 102 8.66095_02 7.0543501
11 2 112 7.54535_02 7.2538E701
12 2 126 s.45108702 7.49032701
13 2 138 3.8181E702 ¥.1536E_01
14 2 1w 2,64579E702 ¥.6301E701
15 2 15 1.6061E702 ¥.73375701
16 2 168 1.00685702 8.99775701
17 2 1 $.49232703 9.2320E701
18 2 1w 3.1131£703 9.4621E701
19 2 19 1.61425703 9.62395701
20 2 208 5.0608E7 0 9.77505_01
21 2 217 1.2327E70% 9.9890X701
22 2 226 1.5146E70S 9.96115701
23 2 23 &.8050E707 9.99315701
2% 2 2w2 1.9537L709 9.9996£_01
25 125 5.29865718 1.0000E700
CONVERGED ~ _
25 1 25 5.29865715 1.0000E700
2]
2.9499E78 T9.¥3n2E79
cc
1900.2 ~600.04
“600.04 200.25
RAUDON TRIG. PUZCTION

xHuLL T0.4¥662 T1.3003 T0.99519
NSTEP P NPUNC P PS4
[] [ 3 $.7102502 “s.30432701
1 3 13 9.9780£00 “v.97042701
2 3 27 8.0360£00 "y, 94608701
«IG 2
3 3 k1) 4.5219£00 “&.93022701
. 3 (Y 3.6348E00 “4.93458701
s 3 58 1.4680£00 “%.9145E701
© 3 6y 1.10728702 “&.9701Z701
7 3 77 &£.9202£703  “w.u6uuET01
] 3 9% 1.98775706 "W .¥66¥E"01
9 3 108 7.4673E707  T4.¥662E2701
10 3 118 1.20308708 T&.96622°01
11 1 130 1.5719E709  “4.8662E703
«SPP 11
CONVERGED -
1162 1 130 1.5718£709  “u.86625701
~0.00076759 0.00072181 0.00047437
GG
3on83 ~2505.7 ¥91.99
2505.7 21567 15397
¥91.99 15387 13091

1.0000500
3.50588°03
9.52645703

$.40472703
2.04278702
&.4593E702
¥.4976E702
1.32205”01
1.89788701
2.60225701
3.5079E701
3.82262701
4.9146E701
$.41365701
$.99232701
6.6595X701

7.8687E701
¥.41758701
¥.91378701
9.3402E701
9.67068701
9.88375701
9.9792E701
9.9997E701
1.00004700

1.00005700

T1.3236500 ~6.159%8701
T1.4301£00 77.72092701
1.3932200 "7,¥5942701

¥.12168701
¥.2182E701
¥.5029E701
¥.91C0E”03
T1.3027£00 Tu.9272E701
T1.3008200 “¥.9471E701
T1.3004800 T¥.9516Z°01
C1.3004Z00 Z8.9519E°01
1.3003500 "8.95192701

C1.3909800

1.3715E00
T1.3433500
-1.3039%00

“1.3003200 “v.9519E701



A QUASI-NEWTON METHOD WITH NO DERIVATIVES 161

TABLE 3 (continued)

HELICAL VALLEY

HSTEP P NFUNC F 28
0 [ [ 2.5000£03 T1.0000£00 0.0000500  0.0000£00
1 3 28 2.2316£01 9.5036E701 6.7678Z°01 &.1635200
2 3 39 1.6428E01 “9.3520E701 6,23825701 &.0148Z00
oIG 2
3 3 &9 1.5238£01 T7.8195£701 6.3790E701 3.9014500
. 3 60 1.3986E01 T6.9259EF701 7.0984E701 3.7341Z00,
5 3 74 7.496LE00 T1.5061E701 9.7597E701  2.7332E00
6 3 93 6.5887£00 “5.0008£702 1.0018E00 2.5518500
7 3 118 2.7227£00 $.2671£701 8.61355°01 1.6409200
] 3 125 2,5228£00 S,SL6LET01 ¥,5487E701 1,5731Z00
«IC 8
9 3 183 2.1290E00 6.3925£701 7.9759E°01 1.4370E00
10 3 154 1.7566£00 6.7228£701 7.%012E701 1.3253£00
11 3 168 1.3967E00 7.3603E701 6.4335E701 1.1547EQ0
12 3 190 £.9120E_01 9.1941F£701 4,.2L33E°01 6.4933Z 01
13 3 207 2.1926£701 9.60115701 2.8562E701 4.6523F701
14 3 217 1.2787£701 9.8189E701 2.1753E701 3.3623E£701
15 3 235 7.3891£702 9.8975E°01 1.6897E_01 2.6874E701
16 3 246 1.6776£702 9.9673E°01 8.1695E702 1.29045°01
17 3 258 9.9479£703 9.9816£701 6.2932E°02 9.9053E702
18 3 268 3.6942E703 9.9912E701 3.8264E702 6.0732E02
19 3 240 1.3546£°03 9.9984E701 2.2736E-02 3.6579E°02
20 3 291 3.8223E 0% 9.9393£701 1.23205702 1.9538E°02
21 3 3o 6.45L0E°05 9.9999E701 5.0592E703 8.0306£°03
22 3 2313 9.3914E706 1.00005700 1.9152£703 3.0616E°03
23 3 a2s 3.0591E706 1.0000E700 1.1044E°03 1.7414£703
24 3 335 9.5342E707 1.00005700 6.1509E°04 9.7S98E-06
25 3 36 2.94512707 1.0000£00  3.398BE”04 S.42465"04
26 3 354 &.5557L"08 1.0000£00 1.3473E70% 2,1288E°0%
27 3 369 6.4842E8709 1.0000£700 5.Q713E705 8.0496E0S
28 3 378 1.1147£709 1.0000E700 2,0959E°05 3,3386E705
29 2 39y 3.5719:710 1.0000E700 1.1934£705 1.8812£705
30 1 .12 ¥.2403E712 1,0000£700 1.7681E706 2.8380E°06
COWVERGED
30(: 0 w2k 7.9056E712 1.0000£700 1.7268F706 2.7451E706
g
2.5289E77 1,1199E75 T6.7899E76
¢G
_200.08 “118.89 71.555
118.89 520,95 “322.86
71.55% “322.86 202.25

¥OODS FUNCTION

#STEP P NFUNC r Xs _ _ _
o o s 1.9192508 “3.0000£00 ~1,0000£00 73.0000£00 ~1.0000E00
1 & 26 3.6916501 1.3853E°01 3.6686E_01 72.2318£701 1.9226E°01
2 . 52 1.0810E01 2.00795701 1.25925701 T1.1184E00  1.1970Z00
*IG 2 ..
I: 3 71 $.3398E00 3.6494£701 1.4699£701 "1.1208E00 1,2626500
*IG -
0 ! . s 7.7425£00 4.3428E701 2.25025701 T1.1071F00  1.2945E00
. &
!g . 99 7.0012800 5.09875701 2.57825701 71.1190Z00 1.3027500
[ & 116 6.2782£00 5.2356£701 3.0096E°01 ~1.1571200  1,3530£00
7 & 130 5.9495500 5.4113£701 3.1761£701 T1.1778E00  1.3892E00
.,
’5 ! LI U1 $.8308£00 §.72128701 3.2293E701 "1,1742500 1.4075E00
*IG - -
’9 ' & 189 $.7%11£00 5.6L492701 3.35025701 "1.1856Z00  1.4150£00
*JG = -
{o ! & 179 5.4569500 6.03935701 3.54105701 "1.2355£00 1.5222F00
.
{f 1 v 19 5.4006£00 6.00365°01 3.6966E_01 1.2370500  1.5422E00
12 & 206 5.3826£00 6.0618£701 3.7343E701 71.2358Z00  1.5347500
13 & 223 5.3669500 6.1359E701 3.79105701 ~1.2386£00 1.5365E00
1 v 23 5.3471800 6.1642F701 3.8546E701 "1.2331Z00  1.5300500
oIG 1% .
15 & 282 5.3216800 6.2758E701 3.9249E701 71.2312E00 1.5211F00
16 & 269 5.2798E00 6.40268°01 4,1279E701 "1,2324500  1.5231Z00
17 & 286 5.2274E00 6.7152E701 &,LTH6E701 71,2351F00  1.5274E00
1 & 299 5.2080500 6.7482E701 &.56755°01 ~1.2308E00  1.5243£00
19 v 317 £.9765£00 7.23726701  5.2078E701 T1.1497Z00  1.3258E00
20 (U3} 3.9000E800 1.0574£00  1.1229E00 ~7.79585°01 6.57655°01
21 & 360 3.6285500 1.1004E00 1.2100500 ~7.3603£701 5.5792£_01
22 v an 3.2538E00 1.1631500  1.3806800 ~6.5712E701 &.4784E°01
23 [T 1] 3.1268£00 1.1777E00  1,3958E00 ~6.953GE_01 &.99945701
246 & %01 3.0794500 1.1905£00  1.4191E00 76.9126£701 &.9051F°01
28 L 817 2.9567E00 1.2413£00  1.5458E00 ~6.6256Z701 &,.4919E_01
26 L 635 2.4254800 1.2839E00  1.6382E00 ~6.0128E701 3.7144E°01
27 L 6S2 2.5623E00 1.3573£00  1.8338E00 “4.5276E°01 2.22045701
28 [ ] 2.5010E00 1.3441E00  1.8076E00 “4.S745E°01 2,0865E01
29 & .86 1.9926200 1.3835500 1.9158500 “2.1881E°01 5.6012E702
30 & s10 1.7747E00 1.3980£00  1.9570500 "1.0740E701 2.2494E02
31 L 526 1.5361£00 1.4192500  2.00L1E00  2.31785702 3.9560£03
32 L 539 1.3258E00 1.4139500  1.9999£00  1.3001E701 2.1081E702
33 L 55§ 1.1472500 1.4104£00  1.9909E00  2.3657E701 5.2709E02
3 b ST 1.1332590 1.4111£00  1.9813E00  2.4626F 01 5.6185E°02
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789.6
“380.23
51.11
“18.93

596
613
632
649
(213
686
700
718

729

7.5
763
779
794
$09
¥23
s
$61
(113
96

9213
929
96s
959
977

993
1007
1023
1036

1052
1064
1078
1096
1112

1131
1160
1178
1193
1207
1221
1237
1257
1271
1298
1301
1315
1330
1388
1356
1378
1396
1415
1632
RCED
18546

JOHN GREENSTADT

TABLE 3 (continued)

1.0277200
¥.20552_01
7.59168701
6.794857 01
4.67758701
3.40078701
3,35665°01
3.27608701

3.227758701

3.12088701
2.7200£701
2.69385°01
2.67015701
2.554SE_01
2.25282701
1.4381£701
1.33945701
1.2502E701
1.2228E701

1.21305701
1.20098701
1.1956E701
1.18088702
1.1710E701

1.11855°01
1.07%45701
¥.0772E702
7.6021E702

5.6929E702
$.3193£°02
§.66025702
3.63985°02
3.5651£702

3,5075L702
3.13758702
2.32608702
1.3796E702
9.51392703
7.6878E703
6.87992°03
$.9964E703
3.109%E703
3.5876E” 0%
3.8049E708
3.0320&708
1.7208E708
1.84912706
2,2074L708
1.1622E" 08
6.1348E709
2.5295E709
1.0726£709

8.92802710

2.6154275 0,000

2
[

“380.23
205.12
T23.93

31.517

1.3837200
1.3378800
1.2964500
1.27313E00
1.1978£00
1.2373200
1.2876500
1.2069F00

1.2468500

1.2469500
1.2617500
1.2409%00
1.2391£00
1.,2326E00
1.2223k00
1.1829E00
1.1752E00
1.1725£00
1.1701£00

1.1702E00
1.1689200
1.1688%00
1.1673E00
1.1673F00

1.1631F00
1.1602F00
1.1341F00
1.1183F00

1.1166200
1.1112800
1.0950E00
1.0962£00
1.0961£00

1.09%0200
1.0882E00
1.0656£00
1.060SE00
1.0461F00
1.0457500
1.0432800
1.0388£00
1.0292E00
1.0074£00
1.0032Z00
1.0029£00
1.0019£00
9.999v8701
9.9998E701
9.9997C701
9.9996E701
9.9998E°01
9.9999£701

9.99995701

10617 “4,917987

1.9162%800
1.7916£00
1.6777500
1.6346200
1.4474800
1.5320800
1.5567800
105565800

1.5570400

1.5558500
1.5629E00
1.5366£00
1.5351%00
1.5199500
1.4948800
1.3983800
1.3786£00
1.3698E00
1.3700500

1.3672E00
1.3669500
1.3655K60
1.3633£00
1.3610F00

1.3533k00
1.3465E00
1.2857500
1.2691E00

1.2671F00
1.2352E00
1.1985F£00
1.2024800
1.2003F00

1.1995E00
1.1884E00
1.1352E00
1.1206£00
1.0938£00
1.0932800
1.0884E00
1.0793£00
1.0592£00
1.0149E00
1.0063£00
1.0058500
1.0037£00
9.99885”01
9.9996£ 01
9.99932701
9.9992E 01
9.9997E701
9.99985701

9.99985701
s

_s1.112 “18.938
23,93 _ 31,517

727,31 378.26

378,26 224,25

2.41518701
3.71918701
&.8681E701
&.97815701
6.8818E°01
6.38708"01
6.40138701
6.46358701

6.46235701

6.52212"01
6.90215701
6.89215701
6.88798°01
6.9361£°01
7.1959E8°01
7.9962E701
¥.13028701
$.0759E701
¥.05655701

¥.0594E701
¥.0893E 01
¥.06458701
¥.0736E701
¥.0857E701

¥.12798701
¥.15778701
¥.33308701
¥.50592701

¥.6497E701
$.6917E701
¥.81528701
¥.97668701
8.9972E701

9.00282701
9.0142E701
9.1¥98E701
9.3¥S1£701
9.60615701
9.5537E°01
9.5757E°01
9.5788E°01
9.70558701
9.9491F701
9.9671£°01
9.97305”01
9.9¥585701
1.0003£00
1.0000£00
1.0000£00
1.0000£00
1.0000£00
1.0000E00

1.0000£00

6.5163£702
1.4986E8701
2.01382701
2,53758701
&.17688701
&.15178701
L.0u9LE701
4.13512701

L.1788E701

&.27788701
&.7460E701
&,7337E701
&.7%70E701
&.91728701
$.1652E701
6.37645701
6.61768701
6.50585701
6.4742E701

6.49215701
6.47958701
6.49328701
6.50012701
6.5203E701

6.60295°01
6.6L4LE701
6.9430E701
7.2376E701

7.48325701
7.56458°01
7.77%8E701
¥.0689E701
¥.09238701

¥.09905701
¥.13188701
8.44965701
s.80452701
9.23175701
9.12528701
9.16662°01
9.1758E°01
9.41905701
9.89085701
9.93%3E701
9.9459E701
9.97188701
1.0005£00
1.0001£00
1.0001500
1.0001500
1.0000£00
1.0000500

1.0000£00
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TABLE 4
Comparison with Other Methods
(Figures taken from [14])
Method QNWD H-J Ros SPLX Pow Stew

Function
Rosenbrock 208(—11) 250(—8) 200(—6) 200(—8) 151(—10)* 163(—12)**
Beale 77(—13) 100(— ) 130(—7) 100(—8)
Powell 1 978(—7) 433(—13)* 407(—10)**
Cube 254(—15) 200(— =) 140(—7)
Box 191(—11) 100(— =) 290(—5)
RTFQR)*** 130—284 96—120

Av. = 189 Av. = 108
RTF(5)*** 312—406 166 — 167

Av. = 370 Av. = 166

* These figures come from [10].

** These figures come from [4].

**#* These are Random Trigonometric Functions of dimension 3 and 5. The accuracy criterion
used is that the maximum error in any x-component is <10~7, The smallest and largest numbers of
evaluations taken are listed, as well as the averages.

down to a certain value is listed. The number in parentheses is the exponent, to base
10, of the least calculated function value. The value “— «” indicates that f was
reduced to zero.

7. Acknowledgments. I am especially indebted to Dr. P. G. Comba, whose
suggestions and criticisms sowed the seeds for many of the ideas in this work. I am
also grateful to Drs. D. Goldfarb and Y. Bard for very helpful discussions, and to
Jean-Claude Cohen for his help in setting up the program.

Thanks are also due to M. J. D. Powell whose criticisms resulted in a simplification
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Appendix A.

Limiting Cases of v —>0andv — .

Case 1: v — 0. If v is set to zero in Eq. (4.17a), the formula for 6, is not defined,
since 7 = ¢7. Therefore, we must consider 6, (and 7,) separately. The formula for
6, is:

(A1) 0, = (a1 — 2P1)/‘7?
and for 75,, we have:
(A2) n = &’p, /o — 26,.
When i # 1, we have:

2
3 o, = 25 =200 4 o4,

3, 2 2
oi(ri — a7)
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4°
(A4) Ne = ~1 P — 20,‘.
0,
When » — 0, every term in formula (4.5a) goes to zero, except the first term

(for i =_1). The result for v is (also replacing A by L):
(AS) ¥ — Lb,o,.

For I, we must be more careful. When we replace M by L/», we have a denomi-
nator which converges to 0, whereas 6, and #, do not. However, if we evaluate the
terms in the brace in formula (4.5b) for i = 1, we obtain:

(A6) { }.’-1 = 7710'10'3' + 2010'10'1T

since r, = ¢,. Replacing », by expression (A2), we then have:

4
A7 { Jems = S5 powol — 2610007 + 2610307,
1
so that all we have left is the first term. There is no difficulty with the rest of the
terms in Eq. (4.5b).
For convenience, we define:

— 2(e; — 2p;) .
(A8) b= —ons AL
. _ 4
(A9) =2,
~ 4p; = .
(A10) =5 = 20;; i#1,
so that

6./v* = 8, + 06"y and n./V* = 4 + 06°).
Then T becomes (replacing M by L/v):

2 T
I'= ‘2_1‘5 L{iy‘pl_glgl’ + Z [77-'0'.'0'? + 0.'(0'.'7'.?' + T-'U'{")]}L
V [} i%1 -

(Al1)

= %L{ﬁlalalr + Z:l [ﬁ.‘a'ea'? + 55(0'.'1'? + 7'.‘0'1"')]}14 + O(Vz)
and when » — 0, the last term vanishes.

Clearly, this limiting procedure has the effect of correcting g, from the results of
the first minor step only, and of removing part of the first minor step discrepancy
from the correction to G.

Case 2. v — «. In this case, there is no need to separate out the first minor step.
The limit for 6, is:

(A12) 6; = (e — 2p:)/0%,

but 7 still contains a multiple of »°. The formula for y remains the same as (4.5a),
but that for I' becomes:
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(A13) r=1 L{Z 4o mf}L + o(—i)
2 —~ o; v
and the last term vanishes for » — . In this case, g, is corrected in terms of all the
minor steps, but the G-correction does not contain the 6.
In the program used to run the test problems, L was set equal to the unit matrix 7,
as mentioned in the text.

Appendix B.

Comparison with Fiacco-McCormick Method. The method described by Fiacco
and McCormick in their book [16] is based largely on a relation identical with Eq.
(3.15a). Let a step ¢ be made up of a linear combination of at most two coordinate
directions, viz.:

(B1) oun = ae; + ae;.

That is, let the direction S;; be specified in terms of coordinate directions e; and
e;, and do a line search for the minimum of f along that direction, starting at a point
Xo. Then the minimum is found at x; (= x, + ¢(:j,) and the difference between
starting and minimum values of f is denoted by Af:;. We then have, rewriting
(3.15a):

(B2) Afun = —300nG* o
and, replacing o (:;, according to (Bl), we obtain:
(B3) Afun = —3{aleG%e; + 20,0, G*e; + ale’G¥e;}

(remembering that G* is symmetric). But, because the coordinate-direction vector
e; has the structure: e; = (0,0, --- ,0, 1,0, --- , O)—where the 1 is in the ith
position—each of the products singles out a component of G*. Thus, e.g.,

(B4) eiG*; = G¥,
so that (B3) becomes:
(B5) Afupn = —3{aiGY + 20.0,GY + iGY}.

Now, we choose the first set of directions for ¢ so that they lie along the
coordinates, Then, we have:

(B6) Af(.'-') = _%afc?h

from which we can solve for the diagonal elements G X.

Next, we arrange that o; = «; (and denote them both by a;), i.e., we search in a
direction (always starting at x,, as before) which bisects the right angle between e;
and e;. We then have:

(B7) Afun = —3ai,(G% + G% + 2G%),

from which we can solve for G#, since everything else is known. Clearly, since G* is
symmetric, we need only have done ¥ N(NV + 1) line searches.

Once we have estimated G* in this way, we make use of Eq. (3.15b), using the
results of the searches along the coordinate directions. (7 is, of course, the same as ¢
for a single line search.) We then have:
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(B8) ;g8 + agG:'ki =0,

from which we solve for {gg}. We may then translate g* to any other point, using

(3.12). )
The main differences between this method and the QN method outlined in this

paper are:

F-M QN

1. % N(N + 1) line searches N line searches

2. Complete estimate of g, and G Incomplete estimate of g, and G
(exact for a quadratic function)

3. Completely new estimate at next Improvement of previous estimates at
major step next major step
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