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On the Gaussian Integration of Chebyshev Polynomials 

By A. R. Curtis and P. Rabinowitz 

Abstract. It is shown that as m tends to infinity, the error in the integration of the Cheby- 
shev polynomial of the first kind, T(4n+2)1 *2(x), by an m-point Gauss integration rule 
approaches (-1)i * 2/(412 - 1), I = 0, 1, * *, m - 1, and (-1)i - ir/2, 1 = m, for all j. 

1. Knowledge of the errors in the numerical integration of Chebyshev poly- 
nomials of the first kind, T"(x), by given integration rules has proved to be useful in 
various situations. On the one hand, they can be used in estimating the error in 
integrating functions of low-order continuity [4] or with branch-point singularities 
[5]. On the other hand, they are needed in computing the norm of the error functional 
of the given rule in a certain family of Hilbert spaces of analytic functions [7]. For 
certain rules, namely for Gauss, Lobatto and Radau rules, asymptotic, and in some 
cases exact, values of these errors for certain values of the parameters involved were 
given in [3]. In this paper, we give further asymptotic results for the case of Gauss 
integration which are valid for all values of the parameters, thus completing the 
picture in this particular but very important case. These asymptotic results, which 
agree with the true computed results quite early, have been used to explain why the 
use of a Gauss rule with an even number of points, say 2n, is superior to one with an 
odd number of points, 2n + 1, in integrating a function which is not analytic at the 
midpoint of the integration interval [6]. Numerical evidence suggests that similar 
results hold for a second family of important rules, the Lobatto rules, but the tools at 
our disposal in this case are not as powerful as in the well-investigated Gauss case 
and, hence, we were unable to prove these results. 

2. The Chebyshev polynomials of the first kind, Tn(x), are defined in I = [-1, 1] 
by Tn(x) = cos nO, where x = cos 0, 0 _ 0 < 7r. We shall denote the error in in- 
tegrating Tn(x), using a Gauss m-point rule, by 

I m 
Em(T) = 1:1 T(x) dx- wiTn(xi) 

where x, = xi ", , = 1, * * *, m, are the zeros of the Legendre polynomial of degree 
m and w, = w,,, i = 1, * * , m, are the corresponding weights which are all positive 
with E., w, = 2. Since Tn(x) is odd for n odd and since the Gauss rules are sym- 
metric about the origin, it follows that Em(T2,+i) = 0 for all k. Furthermore, an 
m-point Gauss rule is exact for all polynomials of degree ? 2m - 1. Hence, we shall 
only consider E.(T2k), where k > m. In this case, we have 
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2 m 
Em(T2k) = 2 _ w;T2k(Xi). 

For k = m + j, it has been shown in [3] that, as m -* co, 

Em(T2m+2j) = w/2 + O(m1'), j = 0, 

= -r/2 + O(m1'), j= 1 

= O(m-1), j> 1 

and, in fact, exact expressions have been given there for Em(T2m+2 j), j 2 0, 1, 2, and 
it has been indicated how to obtain exact expressions for larger values of j. In Section 
3, we shall derive an asymptotic expression for Em(T2k) for the case k = 2m + 1 which 
generalizes easily to k = (2m + 1)j, j = 2, 3, * . - . In Section 4, we do the same for 
the case k = 2m + 1 1,1 = 1, ,m. This again generalizes to k = (2m + 1)j d 1, 
j = 2, 3, * *, 1 = 1, - - , rm. Hence, we shall have obtained the asymptotic behavior 
of E.(Tak) for all k. 

3. In the Gauss m-point rule, the abscissas xi, i = 1, * * *, m, have the following 
asymptotic behavior [1, p. 787]: 

Let xi = cos 0,, then 

i = 0. = - +27r + cotI + 8+ Gi O~m =4m + 2 \4m + 2w1r ~ 

= Oi + cot 4i/8m2 + O(m8), 

where qi = 'im = 7r(4i - 1)/(4m + 2). 
It follows that 

T4m+2(xi) = cos((4m + 2)0,) 

4m +2 Cti+OM2 = cos((4i - 1)7r + 8+ cot , + O(m2)) 

= cos((4i - l)r + 2- cot 0j + O(m-1)) 

= cos((4i - l)r + hJ, 

where hi = (l/2m) cot ki + O(M-1). By Taylor's theorem, 

cos((4i - l)ir + hi) = - ' cos((4i - )r + tihi) 

with 0 < ti < 1. Hence, 
m m h . 

wiT4m+2(xi) = - Wi - wi cos((4i - l)7r + tihi) 
hi 

i-1 ~~~i-1 i-i2 

m h~~~~~~~~~~~2 
= -2- m wi cos((4i - l)r+ tih+ ) I , 

i-1 

so that 
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m m 

? WiT4m+2(xi) + 2 - w wihi/2. 
i-1 i-1 

We now show that Ej_ wih. = O(m-1) which will imply that 

E.(T4m+2) =J T4m+2(X) dx - 2 WiT4m+2(Xi) 

2 -(4 + 2- + 2 + O(m ) = 2 + O(m-1). -1-(4m + 2) 

Since h, = cot2 0,/4m2 + O(m-'), it suffices to show that _ w, cot2 4Oi O(m). 
This we do by showing that 

I (m+1)/21 < r/2 

?: Wj cot 2 i < K Cot2 q5 do 
i-1 r/(4mn+2) 

= (-cot 4 ,- 4 /(04m+2) = (m), 

since, by symmetry, 

1 (m+1)/21 m 

2 Wi cot24i ? wi cot2 40i. 
i-1 i-1 

Now, by [8, p. 351], wi = O(m-1) uniformly in i, i = 1, ***, [(m + 1)/2], so that 
wi < K(j - j-j) i = 1, ... , [(m + 1)/2], where 0 = 7r/(4m + 2). Since cot2 0 is 
monotonically decreasing in (0, 7r/2], we have that 

rOi 
wi cot2 4i < K(j _- i-) cot2 4i < K cot2 k d4, i = 1, , (( + 1)/2], 

which proves our result. 
Similar reasoning leads us to conclude that, for any fixed positive integer j, 

E(T(4m+2)j) = (1)+1 *2 + O(m-1). 

4. Let us now consider 

T4m+2k2l(Xi), I = 1, , m. 

This is equal to 

cos((4m + 2 1 21)0j) = cos((4m + 2)0j) cos 210i 

F sin((4m + 2)0j) sin 210j, 

so that 
m m 

W WiT4m+2*21(xj) = wi cos((4m + 2)0j) cos 210i 
i-1 i-1 

F E w; sin((4m + 2)0j) sin 210. 

Now 
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wi cos((4m + 2)0j) cos 210i 

i-i~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= i -cos((4i - 1)7r + th) cos 2l0i 

m m 2~~~~~~~ 
-- wi cos 2l0i wi cos((4i - 1)7r + th,) "'cos 2106, 

- - WiT21(Xi) + O(M-1), 
i-i 

since 

w, cos((4i - 1)7r + tih,) - co21.~~wh = O(M-1). 
i-i ~~~~~~~2 imi 

On the other hand, 

sin((4i - 1)* + hi) =cos((4i 1)~r + uihij.h, 
where 0 < ui < 1, s0 that 

IEwi sin((4m + 2)0j) sin 210,j 1 : wi jhij, 
and we can show, as previously, that 

I[(m 41) /2J 
1 

h~ K ir/2 logd=O!9U?) 
m w/(4m+2) 

Hence, we have that 

~IWjT4m+2:k2j(XJ) = m o((Xom)M= 

But 

WT2(X)=fT2 (x) dx =14 I 

for 1 =I,.. m - 1., since Gauss integration is exact for all polynomials of degree 
< 2m, while 

-i~X J T2m.x dx -Em(T2m) = 2 M1) 

Hence., we have finally 

En( T4m+ 2 421)= WiT4mn+2:k2i(Xi) + O(m1) 

2 Mi 

Similarly., for n = (2m + 1)], we have 
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E(T(4m+2)i*21) 12-)4Z + ?( m ,*,m-1 

= (-1) 2 ( 1mI=m. 

We can combine the results of Sections 3 and 4 in the following theorem: 
THEOREM. As m -? X, the error in the m-point Gaussian integration of T(4m+2) ji*21(X) 

approaches (- l). 2/(412 -1), 1 = 0. 1, * , m - 1, and (-l)i 7r/2, 1 = m. 
Remark. Chawla [2] states that limit, E(T2,+a,2+2) = 0 for k 2 1, where k may 

vary with n. This has been shown to be incorrect by our results. A possible source of 
error in [2] is the use of Eq. (10) there 

i t, 
21+2 ? t2 - t2k - 

Ean(Tk) 4 JkP 

-which is valid for a fixed Tk(x), in the derivation of (11): 

EGa(Tk) ?7l/2 if k = 2n, 

~-r/2 if k = 2n + 2, 

0 O if k > 2n + 2. 

Department of Applied Mathematics 
The Weizmann Institute of Science 
Rehovot, Israel 

Atomic Energy Research Establishment 
Harwell, Didcot, Berkshire 
England 

1. M. ABRAMOWITZ & I. A. STEGUN (Editors), Handbook of Mathematical Functions 
with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, 
Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 
29 #4914. 

2. M. M. CHAWLA, "Asymptotic estimates for the error of the Gauss-Legendre quadrature 
formula," Comput. J., v. 11, 1968/69, pp. 339-340. MR 38 #5389. 

3. D. NICHOLSON, P. RABINOWITZ, N. RICHTER & D. ZEILBERGER, "On the error in the 
numerical integration of Chebyshev polynomials, Math. Comp., v. 25, 1971, pp. 79-86. 

4. P. RABINOWITZ, "Error bounds in Gaussian integration of functions of low-order con- 
tinuity," Math. Comp., v. 22, 1968, pp. 431-434. MR 37 #2447. 

5. P. RABINOWITZ, "Gaussian integration of functions with branch point singularities," 
Internat. J. Comput. Math., v. 2, 1970, pp. 297-306. 

6. P. RABINOWITZ, "Avoiding the singularity in numerical integration" (In preparation.) 
7. P. RABINOWITZ & N. RICHTER, "New error coefficients for estimating quadrature errors 

for analytic functions," Math. Comp., v. 24, 1970, pp. 561-570. 
8. G. SZEG6, Orthogonal Polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, 

Amer. Math. Soc., Providence, R.I., 1959. MR 21 #5029. 


