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Coefficients in Series Expansions for Certain 
Classes of Functions 

By P. D. Tuan and David Elliott 

Abstract. The problem of evaluating or estimating the coefficients for the expansion of a 
function in a series of classical orthogonal polynomials is examined. By restricting the 
functions under consideration to the classes of integral transforms and inverse integral 
transforms, the coefficients may be expressed in alternative forms which often are more 
amenable to analysis. 

1. Introduction. Let {1,,(t)} be a sequence of functions orthogonal over [a, b] 
with respect to a positive real-valued function w(t). Suppose that f(t) is a function 
satisfying certain conditions in order that it may be represented by a uniformly con- 
vergent series of the form 

co 

(1.1) f(t) = f ano.(t) (a < t < b), 
n-O 

with 

(1.2) an = h f w(t)4n(t)f(t) dt, 

where he is the orthogonality constant. 
The series expansions of special interest are those in terms of classical orthogonal 

polynomials. The conditions under which a function may be expanded into a series 
of these polynomials have been thoroughly investigated, see, for example [1]. The coef- 
ficients, on the other hand, are not in general available since their integral representa- 
tion (1.2) cannot be evaluated in most cases. The knowledge of the coefficients is 
valuable from a theoretical as well as a practical standpoint. Indeed, we may associate 
with a function f(t) a formal series without any consideration as to its convergence 
and its validity as a representation of f(t). Once the coefficients are known explicitly, 
the resulting series may be studied on its own merits. On the other hand, known values, 
either exact or approximate, of the coefficients are useful in many problems in numeri- 
cal analysis, of which the most frequently encountered is the numerical approximation 
of special functions. The problem of determining the coefficients has received some 
interest from many authors, see [2H9]. In these references, the coefficients in the 
expansions of functions in series of either Jacobi polynomials or their special cases 
were considered. In particular, Elliott and Szekeres [6] determined the Chebyshev 
coefficients in the expansion of inverse Laplace transforms; the Laplace and Fourier 
transforms were considered by Wimp [2]. In [2] and [6], the authors derived alternative 
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expressions for the coefficients in terms of the transforms. These results are in fact 
special cases of two general formulations, one caters to the inverse integral transforms 
while the other covers the integral transforms. It is the purpose of this paper to 
present techniques by which the coefficients in the expansions of integral transforms 
and inverse integral transforms may be determined, the expansions being in series of 
any classical orthogonal polynomials. Our techniques which lean more heavily on 
the results of classical theories and, in one particular instance, on the theory of 
generalised functions, offer a more general approach to the coefficient problem. 

Some preliminary remarks and notations are given in Section 2. Sections 3-5 and 
Sections 6-8 give what we shall term as the inverse integral transform techniques and 
the integral transform techniques, respectively. We describe the two types of tech- 
niques in general terms in Sections 3 and 6 before examining in detail their particular 
cases in the remaining sections. 

2. Preliminaries and Notations. Let f(t) be a function defined over the real 
line and K(x, t) be a function of two variables x and t, then the function F(x) defined by 

ad 

(2.1) F(x) = f (t)K(x, t) dt 

is said to be the integral transform of f(t) if the integral in (2. 1) converges for some set 
of values of x. K(x, t) is called the kernel of the integral transformation. Several 
forms of the kernel may be taken which result in different transformations, see [10], 
[11]. 

On the other hand, it is possible, under certain conditions, to determine a solution 
of the integral equation (2.1) in the form 

(2.2) f(t) = f F(x)H(x, t) dx, 

where oy and a are not necessarily restricted to the real line, and H(x, t) is a function 
of x and t which may or may not be equal to K(x, t). When such a solution exists, 
f(t) is said to be the inverse integral transform of F(x). 

Another concept which we shall need in the subsequent analysis is the convolution 
of functions. The convolution of two functions f(t) and g(t) over (c, d), generally 
denoted by f(t) * g(t), is defined to be the function h(y) given by 

d 

(2.3) h(y) f(t)g(y - t) dt, 

provided the integral converges for certain values of y. 
Within the framework of integral transformations, one may express, under 

certain circumstances, the integral in (2.3) in an alternative form in terms of the 
integral transforms of f(t) and g(t). For example, if f(t) and g(t) are the inverse Fourier 
transforms of F(x) and G(x), respectively, then we have [12] 

00 1 0' 
(2.4) J f(t)g(y - t) dt = -J F(x)G(x)eCi-' dx. _co 2r 

Such equality is called a convolution theorem. It will be seen in Sections 3-5 that 
the convolution theorems play an important role in our analysis. 
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Throughout this paper, we shall denote the integral transform of a function 
f(t) by F(x) or more specifically by 4f(t)], where g is replaced by the appropriate 
initial for a particular integral transformation; for example, 5f(t)] will denote the 
Fourier transform of f(t). It is then understood that f(t) is the inverse integral trans- 
form of F(x) if it exists. 

Let us next define two classes of functions to which our techniques apply. 
Definition 1. A function f(t) defined over an interval (a, b) is said to be of the 

class A[9; (a, b)] if a function f(t) may be found such that 
(i) J(t) is defined over (c, d) D (a, b) and ](t) = f(t) for a < t < b, 
(ii) the integral transform FP(x) of ](t) exists. 
We note that if f(t) is a function defined over (c, d) and if the integral transform 

of f(t) exists, then f(t) belongs to A[4; (a, b)]; in this case we have f(t) = f(t) 
for c < t < d. 

Definition 2. A function F(t) is said to be of the class B[s; (a, b)] if F(t) is the integral 
transform of a function f(u), at least, for all values of t for which a < t < b. 

Finally, we assume throughout that the function under consideration has an 
expansion given by (1.1) and (1.2). 

3. The Inverse Integral Transform Techniques. Let f(t) be a function of the 
class A[4; (a, b)]. The coefficients an for f(t) may be written in the form 

(3.1) an = At f !@)sn(t) dt, 

for n = 0 ,1, 2, ,if we define 

(3.2) sM(t) = W(t)0n(t) (a < t < b), 

=0 (t < a, t > b). 

From the definition of sn(t), it is obviously immaterial how i(t) is defined outside 
the interval (a, b). All we require is that its integral transform (x) should exist. 

Suppose that the integral transform 4[sn(t)] exists. Suppose further that there is a 
convolution theorem of the type (2.4) for the particular integral transformation 
concerned. Then, it may be possible to write (3.1) in the form of an integral involving 
the integral transforms of sn(t) and J(t). A general expression for this integral cannot 
be explicitly given here since not only is it dependent upon the particular integral 
transformation but also upon each orthogonal system 14?n(t)}. 

In the next two sections, we shall examine in some detail two special cases in 
which the transformations concerned are, respectively, of Fourier and Laplace types. 
In each case, the problem we shall consider is that of determining the coefficients 
a,, in the expansion in series of shifted Jacobi polynomials, 

(3 *3) f(t)= an(Pn (t) aO > -II s > - Ov 
n-0 

where 

(3.4) a.Pn )(t) - pIa.)( 
2 a - h - (a ? t ? b). 
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The weight function for the orthogonal system t(PI"01(t)} is 

(3.5) w(t)= (b - t)(t - a)0, 

and the coefficients a,, are defined by 

(2n + a + /3 + 1)r(n + 1)r(n + a + /3 + 1) 
(3.6) an a (b - a)"+O+lr(n + a + 1)r(n + /3 + 1) 

,b 

X f (b - t)Y(t- a)0G,. 0(t)f(t) dt. 

Similar results may be derived for other systems of classical orthogonal poly- 
nomials, for details we refer the reader to [13]. 

4. The Inverse Fourier Transform Technique. We derive in Theorem 1 an 
alternative expression for the coefficients a,,. Theorem 2 gives an extension of the 
technique through the use of generalised functions. The results will be illustrated 
by means of some particular examples of interest. 

THEoRim 1. Let f(t) be a function of the class A[5; (a, b)]. Then the Jacobi coeffi- 
cients for f(t) are defined by 

2niYr(n + a + ,3 + 1) 

(4.1) 7r(b-a)r(2n + + + 1) 

X (b a)xe a/(b)Fl(n + a + 1; 2n + a + + 2; 2ix) dx, 

for n = 0, 1, 2, * , where 1F1(k; 1; x) denotes a confluent hypergeometric function 
(see [14]). 

Proof. Define the function s,,(t) by 

(4.2) s"(t) (b - tO(t - a)0 PGa',0(t) (a < t < b), 

o (t < a, t > b). 

The Jacobi coefficients for f(t) may be written as 

(2n+ a+/+ l)r(n+ 1)r(n+a+ a + 
(4.3) a,, (b)- )~01(+ +~~ 31 ~ws,(t)f(t) dt. ( . ) an- (b - a a++lr(n + ac + t)r(n + hi + 1) () 

Let S,,(x) denote the Fourier transform of s,,(t). By a special case of the convolution 
theorem for Fourier transforms, namely Parseval's theorem (see [12]), we have 

(4.4) f s,(t)f(t)dt = 2 f Sj(-x)P(x) dx. 

From [10, p. 123, Eq. (4)], we deduce that 

S.(x)-= (b - a)n+ xx+#+'(_ 
P r(n + a + 1)r(n + /3 + 1) 

(4.5) S r(n + 1)r(2n + a + /3 + 2) 

X xne-iFi(n + a + 1; 2n + a + /3 + 2; - i(b - a)x). 

From (4.3), (4.4) and (4.5), the result as given by (4.1) follows after a simple change 
of variable. 
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It can be seen that the inverse Fourier transform technique depends upon finding 
a function J(t) which, as well as being equal to f(t) for a < t < b, also possesses a 
Fourier transform. Thus, if we consider f(t) = tN, a < t < b, where N is a nonnegative 
integer, and choose f(t) = tN for - < t < c, then, the Fourier transform of 

A(t) does not exist. However, from the theory of generalised functions [15], it is well 
known that every generalised function possesses a Fourier transform. In particular, 
tN, when treated as a generalised function, possesses a Fourier transform, and is 
equal to the ordinary function over the finite interval (a, b). Thus, we would like 
to extend Theorem 1 so that generalised functions are also included. In the following 
theorem and its applications, we shall employ the definitions and associated theorems 
as given in Jones [15]. 

THEOREM 2. Let f(t) be a function of the class A[fg; (a, b)], where ](t) is a generalised 
function in Kq which is equal to the ordinary function f(t) in (a, b), and its Fourier 
transform P(x) is a generalisedfunction in L1, I/p + l/q = 1 and 1 < p < 2. Then, 
the Jacobi coefficients for f(t) are defined by 

(2n+a +( +1)WOn+1)WOn+ a +f + 1) 
(4.6) a. = 27r(b - a)a++lJr(n + a + 1)r(n + 0 + 1) [F(x) * 

Sn(X)]V of 

where for each n = 0, 1, 2, ... , ft(x) * Sn(x) is a function of y and S,(x) is as defined 
by (4.5). 

Proof. Since a > -1, ,3 > -1, it is clear that the function s,(t), as defined by 
(4.2), is in K1, 1 < p _ 1 + e for some e > 0. If we further restrict a and fl, say 
XX > -24,3 > -1, then sQ(t) 1 K4, 1 < p < 2. On the other hand, from [14, p. 59, 
Eq. (4.1.3)], we have, for large IxI, 

1F1(k; 1; -x) = x k 17(l) { + O(jx 1)}. r (l - k) 

It follows that Sn(x) = O(x-a-1) as lxi --c. Since a > -1, we have S.(x) E Las 
q> 1, and therefore, Sn(x) E La, q > 1. Hence, if F(x) ? L' and J(t) E Kq, by 
putting g= P(x) and g2 = Sn(x) and using the fact that 27rf(- t) = 6[P(x)] and 
27rs,(- t) =F[S,(x)], we have from [15, Theorem 6.14] that 

5;[F(x) * Sn(x)] = 472f -t)S.(-t), 

or alternatively, 

(4.7) P(x) * S.(x) - 27rg[f(t)sJ(t)]. 

It follows from the definition of (t) and s(t), and (4.7) that 

(4.8) P(x) * S.(x) = 27r f f(t)(b - -a)#G< ?(t)ettv dt. 

The left-hand side of (4.8) gives rise to a generalised function which agrees with the 
ordinary function defined by the right-hand side. Upon identifying these two entities 
and setting y = 0, we obtain the required result. 

It is important to note that the convolution F(x) * S,(x) should be treated in the 
generalised sense unless F(x) is equal to an ordinary function, in which case the 
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convolution may be interpreted as the integral frag P(x)S,(y - x) dx, and (4.6) reverts 
to (4.1). 

The expressions for the Jacobi coefficients in Theorems 1 and 2 are reduced to 
fairly simple forms when a and ,8 assume special values. In particular, when a = , 
the confluent hypergeometric function 1F1(n + a + 1; 2n + 2a + 2; 2ix) may be 
expressed in terms of a Bessel function (see [16, Eq. (9.1.69)D. Theorem I then es- 
sentially covers the results obtained by Wimp [2] but Theorem 2 enables us to apply 
the technique to a considerably larger range of functions. 

The factors x' and e2"'x b- a) in (4.1) indicate that the integral may be reduced 
to a known Mellin or Fourier transform. For the particular case a = , the ap- 
pearance of the Bessel function in the integrand means that a,, may also be evaluated 
as a Hankel transform. 

We shall now consider some examples of the use of Theorem 2. For simplicity, 
we shall consider the coefficients in the expansion of a function in series of Chebyshev 
polynomials T,(t), -1 c t c 1. Putting a = = -i in (4.1) and (4.6) and adjusting 
the orthogonality constant, we obtain the Chebyshev coefficients as 

.n amt 

(4.9) an = -f [fIP(x) + (-_)"p(-x)] J,(x) dx, 

and when J(t) is a generalised function, 

(4.10) a. = ()r [P(X) * J,(x)Lt..o 

We again note that (4.10) reverts to (4.9) when P(x) equals an ordinary function. 
Let us first consider the function f(t) = (1 - t), where 'y is a positive real number 

not an integer. We shall choose f(t) to be the generalised function (1 -t)H(1 - t) 

where H(t) denotes the Heaviside step function. From [15, p. 469 and Theorem 3.10], 
we have 

P(x) = r(1 + 1) exp[Jivr( + 1) sgn x -ix] jxlj'-1. 

Since (1 - t)H(l -t) ? Ka, q > 1, for y > 0, and (x) E L1, i/p + l/q = 1, 
Theorem 2 applies. Furthermore, A(x) is equal to the ordinary function denoted by 
the same symbol, and we have 

a, - 2(-i){r(y + I) {cosafI x- cos xJ4(x) dx 
7r 

sin f x"-1 sin x J,(x) dx> 

where = (n - y - l)ir. These two integrals may be evaluated in closed form 
[11, p. 33, Eq. (7)], to give after some algebra 

4 21- sin(7r'y) r(n - y)r(2y + 1) 
(4.11) an,= - 7r(n + y + 1) 

provided 0 < y < n. For large n, an = 0(n 2,-I). 

The Chebyshev coefficients for the function (I + t)' may be similarly deduced to 
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be 

(4.12) a~ = (-l1)n+12'-1 sin(7y)(n- y)r(2y + 1) (0 <y < n), 
7rr(n + y + 1 

which, for large n, is O(n28 -1). 

We can proceed in an analogous fashion for functions with an algebraic singu- 
larity at any other point inside or outside [-1, 1]. We shall discuss below a technique 
for dealing with functions possessing two or more singularities. 

We first note that if f(t) is of the form (1 - t)g(t) or (1 + t)'g(t), where g(t) 
is a function possessing a Taylor series with nonzero radius of convergence about 
t = 1 and t = -1 in the respective cases, then it may be shown that their Chebyshev 
coefficients are given, respectively, by 

(4.13) a g(1)21- sin(7ry)r(2"y 
+ 1) 11 + O(n 2)}, 

71-n 

and 

(4.14) = (-1) n1g(-1)2' sin(77)r(27y + 11 + O()2)} 
7rn~ 

for large n and 0 < <y n. 
Suppose now that we have a function, say 

f(t) = U - t)"(1 + W)g(t) I- ;5 t ;5 O) 

where y and a are positive real numbers not integers. The results (4.13) and (4.14) 
would immediately apply if we could separate the singularities at t = 1. In other 
words, if we could find functions g,(t) and g2(t) having a Taylor series with nonzero 
radius of convergence about 1 and -1, respectively, such that 

f(t) = (1 -t)"g1(t) + (1 + t)'g2(t) (-1 : :5 1), 

then an asymptotic estimate for the coefficients may be obtained by superposing the 
contributions from the singularities. 

We present here a technique by which the separation of singularities may be 
achieved. Let us consider a function of the form 

(4.15) A(') = 9(t) rlIt - tI'it - t 51 
i -1 

where t = -1, 4t < t+ 1, t. = 1, and y,, i = 1, 2, ... , m, are positive real numbers 
not integers. 

Let to and tm+l be two arbitrary points such that to < tj and t+l > t,. We define, 
for i = 1, 2, * , m, the functions 

Oi (t) = ? (t < ti-I)p 

(4.16)~~~~~ i- 1r(t) (ri- < t -<9 09+ 

= 0 (t > ti+1), 

where 
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(.t J exp[-1/(t - ti-1)(t. - t)] dt 
(4.17) Ti(t) twi (ti-l :5 t 

t;). 

Iexp[- 11(t -ti-1)(ti - 01 dt 

It can be readily verified that 
(i) @,(t) is infinitely differentiable for all t and i = 1, 2, 9 , m. 
(ii) G,(t,) = 1, P)(t4) = 0, for i = 1, 2, ... , m and all positive integers k. 

(iii) G(t, ) =-)(t+) = 0, for i = 1, 2, ... , m and all nonnegative integers k. 
(iv) Oi- i(t) I , for -1 :5 t :!! 1. 
Making use of the functions O,(t) we may write the function f(t) as 

(4.18) A(t) = Et - tji gi(t), 
i-1 

where 

(4.19) gi(t) = Xt)oi(t) tI It -ti ll'. 

Each of the functions It - til"g,(t), i = 1, 2, ... , m, has exactly one singularity 
at t = ti. Furthermore, each gQ(t), i = 1, 2, * * *, m, can be expanded in a series with 
nonzero radius of convergence about the point t = A. The expressions (4.18) and 
(4.19) thus give us the required result. 

As an example, let us estimate the Chebyshev coefficients for the function f(t)= 
(1 - t2)12. We have, in this case, 

(4.20) f(t) = (1 - t)1/2g1(t) + (1 + t)1/2g2(t), 

with 

gl(t) = (1 + t)12 01(t) and g2(t) = (1- t)"'202(t). 

From (4.13), (4.14), and (4.20), we deduce that, for large n, the Chebyshev coefficients 
for (1 -t2)12 are given asymptotically by 

an= - [g1(1) + (-l)92(-1 + Q(12)]O 

Since g1(1) = g2(- 1) = \/2, we have finally, for large m, 

a2m+l = 0 and a2m = - 2 [1 + O(m2)]. 

These estimates compare favourably with the actual values 

a2m+i = 0 and a2m = -r(m2 - 

5. The Inverse Laplace Transform Technique. In the inverse Laplace trans- 
form technique we derive, by means of the convolution theorem for Laplace trans- 
forms, an alternative expression for the coefficients in terms of an integral whose 
range of integration is a line parallel to the imaginary axis in the complex x-plane. 
It is clear from the general technique of Section 3 and Definition 1 that the interval 
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(a, b) over which the function is to be expanded must be contained in (c, d), the 
range of integration of the integral defining the transformation. Consequently, the 
consideration of an expansion over an arbitrary interval (a, b) would necessitate the 
use of two types of Laplace transformations, namely the one-sided and the two-sided 
Laplace transformations. These two integral transformations are defined, respec- 
tively, by [17], 

21[f(t)] = F1(x) = f f(t)eCt dt (Re x > a'), 

co 
?2[f(t) = F2(x) = f(t)e7Xt dt (erl < Re x < a"), 

where x = Cf + ix, af and co being real numbers. 
The two-sided Laplace transform may be alternatively defined by 

F2(x) = F(1)(x) + F(2) (_x). 

where 

Ft' (x) = f(t)e-t dt = .2[f(t)] (Rex > a'), 

co 

F(2)(x) = f f(-t)e-0t dt = ?1[(-t)] (Rex > -a"), 

provided that a' < a". In other words, the two-sided Laplace transform may be 
looked upon as the sum of two one-sided ones whose regions of convergence overlap. 
This common region is then the region of convergence of the two-sided Laplace 
transform. 

On the other hand, every one-sided Laplace transform is related to a two-sided 
one through 

ZAAM = ]-22[f(t)H(t)], 

where H(t) is the Heaviside step function. 
Finally, a two-sided Laplace transform of a function f(t) converges absolutely 

on a line Re x = if 

_co f~)Ie 'dt < co. 

Before going into the actual technique, let us first look at a simple example which 
may serve as a motivation for the subsequent analysis. Consider the function f(t) = 

e't, y real, over the interval (a, b). Since e'ty is a function of bounded variation in 
any finite interval (a, b), say a < 0 < b, a convergent Jacobi series exists such that 

co 

e = a6,Va"o) (t) (a < t < b), 
nO0 

where 

(2n + ca + + l)P(n + l)r(n + a +13 + 1) fd d a0 - 
(b - a)C+P+lr(n + a + l)r(n + , + 1) j 

e0t s(i) di, 

s,(t) being as defined by (4.2). 



222 P. D. TUAN AND DAVID ELLIOTT 

It is further known that 

(5.1) Fl)W(x) = e ee dt = (Re x > y), 

(5.2) F('2(-x) = Jefte-xt dt = - - (Rex x<y). 

Since Fil1(x) and F'2_(-x) have no common region of convergence, it follows that 
?2[eT ] does not exist. Hence, the general technique of Section 3 does not apply here. 

This example suggests that something other than the standard approach is re- 
quired. We shall deal with functions of this type in Theorem 3. A function possessing 
a two-sided Laplace transform is treated as a special case of Theorem 3 and the result 
is summed up in the form of a corollary. 

To prove the main result, we need the following lemma. 
LEMMA 1. Let the functions f(t) and g(t) be piecewise continuous over (- c>) 

Let the two-sided Laplace transforms F2(x) = 22U(t)] and G,(x) = ?2[g(t)] converge 
absolutely on the same line Re x = a in the complex x-plane. Then the function h(r) 
defined by 

ow 
h(T) = f f(t)g(t - T) dt 0@ 

is a continuous function of r, andfurthermore, 

1i1 
h(r) = lim J F2(x)G2(-x)e'T dx. 

Proof. This lemma is a modified version of Theorem 11.2 in Le Page [17] to which 
the reader is referred for details. 

We are now in the position to state and prove the fundamental result of the 
inverse Laplace transform technique. 

OREM 3. Let f(t) be a piecewise continuous function over (- c, o) such that 
(i) f (1)(t) = f(t)H(t) E A[22; (- a, )], where F2(1(x) = C2U (l (t)] converges 

absolutely on some line Re x = a- (IuI < o) 

(ii) f 2'(t) = f(t)H(-t) E A[.2; (-'Co, o)], where F222(x) - ?2U2<(t)] converges 
absolutely on some line Re x = a2 (1a0l < Co). 

Then, the Jacobi coefficients for f(t) are defined by 

(b - a), r(n + a + (3 + 1) 
a 27rir(2n+a+3+ 1) 

(5.3) 2 wf+iw 

X EI lim j F 
i-l 0-a ai_ 

1Fl(n + a + 1; 2n + a + + 2; -(b - a)x) dx, 

for n = 0, 1, 2, - -. 
Proof. Let us first assume that a < 0 < b. Since 

f(t) = fl)(t) + f(21(t) = fQ)H(t) + f(t)H(-t) (-X < t < co), 
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the Jacobi coefficients an for f(t) may be written as 

(5.4) a, = an(1) + a", 

where 

(55) a;) (2n + a + ,8+ i)r(n + i)r(n + a + ,B+ f) U) (i)st)d (5 n= (b - a)c+P+lr(n + a + l)r(n + $ + 1) J_ 

for j = 1, 2, and sn(t) is as defined in (4.2). The existence of a. implies the existence of 
a,( and a.2 and vice-versa. 

From conditions (i) and (ii), F"l(x) and F2'(x) converge absolutely on the lines 
Re x = oi (jail < co) and Re x = a2 (Ia2l < co) respectively. On the other hand, the 
two-sided Laplace transform S"(x) of s*(t) is given by [18, p. 213, Eq. (4)] 

S -(x) 1) ( -b a)+a+p+l r(n + a + l)r(n + + 1) 

(5.6) r(n + l)r(2n + a + 8 + 2) 

X x'e- 1F1(n + a + 1; 2n + a + 3 + 2; (b-a)x). 

for all (real or complex) values of x. Furthermore, S*(x) converges absolutely on any 
line Re x = a (jfoi < co'). Thus, we can apply Lemma I with r = 0 to the integrals 
(5.5) to get 

(2n + a + i + l)r(n + i)r(n + a + + 1) 
a.)w 2iri(b - a)y+"+Ir(n + a + 1)r(n + jS + 1) 

2 vj{+s 

X Z lim J F2'"(x)Sn(-x) dx. 
j-1 W- Ha j-i so 

Equations (5.6) and (5.7) give the required Eq. (5.3). 
When a and b are of the same sign, it is obvious from (5.5) and the definition of 

s.(t) that either a,() or a,,) is zero depending on whether a and b are both negative 
or both positive respectively. The same analysis is still valid, and (5.3) also holds 
in this case. More precisely, we have 

(a ) (b-a)nr(n+a+#+ 1) 
27ir(2n + a + +1) 

(5.8) i) (XXn b- 
X limf Fi)(x)x e 

W-.0 Oj-i$( 

.1Fl(n + a + 1; 2n + a + a + 2; -(b - a)x) dx, 

where j = I and j = 2 correspond to the cases b > a 2 0 and a < b 5 0 respectively. 
It is interesting to note that F2'`(x) and F2 (x) are actually one-sided Laplace 

transforms of f(t) and when a and b are of the same sign, the knowledge of only one 
of F.' (x) and F22(x) is needed. 

An immediate consequence of Theorem 3 is 
COROLLARY 1. Let f(t) be a piecewise continuous function over (- co, co) such that 

f(t) E A[C2; (- cX, co)] and F2(x) = 2,U(t)] converges absolutely on some line Re x = 

a (IaI < co'). Then the Jacobi coefficients for f(t) are defined by 



224 P. D. TUAN AND DAVID ELLIOTT 

(b-a)r(n + a + 6+ 1) 
a, 22ir(2n + a + a + 1) 

(5.9) X lim fm F2(x)xnebx 

.1Fl(n + a + 1; 2n + a + ( + 2; -(b- a)x) dx, 

forn = 0, 1,2, .. 

Proof. If 22U(t)] exists then, by definition, ?2U(t)H(t)] and ?2U(t)H(- t)] must also 
exist and their regions of convergence overlap and we can write 

(5.10) 22[f(t)] = 432[f(t)H(t)] + 32[f(t)H(-t)], 

for a' < Re x < a" say. Furthermore, the absolute convergence of 2U2(t)] on some 
line Re x = a (la-1 < co) is a necessary and sufficient condition for 2UQ(t)H(t)] and 
?2U(t)H(- t)] to converge on the same line. Thus, f(t) satisfies the conditions of 
Theorem 3, and (5.9) follows from (5.3) with a- = 0,2 = a. together with (5.10). 

Putting a = A = -* in (5.3) and adjusting the orthogonality constant, yield 
the results obtained by Elliott and Szekeres [6]. 

Let us now consider some examples of the application of Theorem 3. We first 
return to the preliminary example f(t) = et ', y real. F(')(x) = 42[e7 tH(t)] and F2(2(x) 
= 2[e tH(- t)] are given, respectively, by (5.1) and (5.2). Moreover, one could 
readily verify that F2(1(x) converges absolutely on any line Re x = O1, 7 < 1 < co, 
and so does F,2)(x) on any line Re x = a-2, - < a-2 < y. Theorem 3 applies to the 
function et' to give 

a.=(b 
- a)'r(n + a + (3+ 1)M (xfc dx& 

27rir(2n + a + ( + 1) " Jit0 

where 

(5.12) +(x) = x ebiFI(n + a + 1; 2n + a + ( + 2; -(b - a)x)/(x -). 

To evaluate the integrals on the right-hand side of (5.11), we consider the contour 
integral fJ 4(x) dx, where the contour e is chosen to be the rectangle described in 
the positive (anticlockwise) direction in the complex x-plane, with vertices at the 
points a, i i1w, j = 1, 2. Letting w -c co, it. could be shown that the contributions 
from the horizontal sides of the rectangular contour vanish and we have 

W l+iW 02+ %'W 

(5.13) f q(x) dx = uim - f: (x) dx. e ~ ~ ~~ ta#co alio 2,-iw 

Since +(x) has only a simple pole at x =y, we have, from the theory of residues, 

(5.14) f4(x)dx = yVe F1(n + a + 1; 2n + a + (3 + 2; -(b - ay). 

From (5.11), (5.13), and (5.14) we obtain, finally, 

(b-a)Yr(n+ a +(3+ 1) nbT 

a.S r(2n + a + 
e 

+ 1 
(5.15) 

.1F1(n + a + 1; 2n + a + (3 + 2; -(b - a)'y). 
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As a further illustration of the inverse Laplace transform technique, we consider 
the function e'as, A > 0. We wish to find the coefficients a* in the expansion for 
e-Alt in a series of T*,(t) = Tn(2t - 1), 0 gg t < 1. The two-sided Laplace transform 
of eA/ 'H(t) exists and is given by, [10, p. 146, Eq. (25)], 

?2[IeAt H(t)]= 2 A"2x- 12 K(2A"12X"2), 

where K"(x) is the modified Bessel function of the second kind of order m. It can also 
be easily checked that ?2[eAl'H(t)] converges absolutely on any line Re x = al, 
0 < al < c. Theorem 3 gives in this case 

2XAl1/2 Ti+iw / / / 
2"I)d (5.16) a, lim j X112 K(2A /xl/2)ez/lIn(4x) dx 

In order to evaluate this integral, let us consider the contour integral 

(5.17) f +(x) dx = f x Kl/l(2Al/ xl/2)e/lh(lx) dx 

where e denotes a closed contour described in the positive direction in the complex 
x-plane cut along the negative real axis. e consists of 

(i) a line segment AB parallel to the imaginary axis joining the point A, 
x = a- iR, to the point B, x = a, + iR, where R > al > 0, 

(ii) an arc BC, with radius R and centre x = o,, joining B and the point 
C, x,= (R-o , 

(iii) a line segment CD from C to the point D, x = reil, 0 < r < r., 
(iv) a circle DE, with radius r and centre x = 0, joining D to the point E, x = re-id, 
(v) a line segment EF from E to the point F, x = (R -a)ei 

(vi) an arc FA with radius R and centre x = al. 
Since the integrand 4(x) is analytic on and within the contour G, we have from 

Cauchy's theorem that 

(5.18) f (x) dx = 0. 

Letting R co and r -+ 0, it could be shown that the contributions to the contour 
integral (5.17) from the circular arcs vanish. We thus have 

(5.19) lim j +(x) dx = lim | (x) dx = - lim 4j +| J(x) dx. 
wham ?1-i Z or_ A B ~~R-00; r- CD Jo 

On CD and EF, one may write x = ue i and x = ue"v, respectively, where 
o < u < co. Combining the two integrals on the right-hand side of (5.19), with 
4(x) as defined in (5.17), we obtain, after some algebra, 

(5.20) = 4(-1'+l A1/2 f e-'/2I,(l 2)J,(2A"/2V) dv. 

The integral in (5.20) is of Hankel form, and from [11, p. 68, Eq. (8)] we have finally 

(5.21) as= K IA I-n 1, + n) 1/2 23 I, 1,I0 
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where 

G fan a,, a2, ' * ** a 
b1,'b2o *, bqJ 

denotes a Meijer G-function (see [19, p. 206]). The coefficients a., as given by (5.21), 
are exact. Asymptotic estimates of a,, for large n have been obtained by Miller [7]. 

6. The Integral Transform Technique. Let F(t) be a function of the class 
B[i; (a, b)]. The coefficients for F(t) are thus defined by 

1 tb 
d 

(6.1) a. = - f dt ff(u)K(t, u)w(t)ek,(t) du. 

Under suitable conditions, we can invert the order of integration in (6.1) to get 

(6.2) a, = h f f(u)S,(u) du, 

where 

(6.3) Sn(u) = w(t),,(t) Kt, u) dt. 

We note that if (a, b) C (c, d) and if we define s,,(t) as in (3.2), then S,(u) is in 
fact the integral transform of s,,(t). 

Eqs. (6.2) and (6.3) give us an alternative representation for the coefficients a". 
It is seen from above that the technique is based on the invertibility of the iterated 

integral in (6.1). The conditions under which a change of the order of integration 
may be carried out have been set out in [20, Chapter I] to which the reader is referred 
for further details. More general conditions are given by Fubini's theorem, see, for 
example, [21]. For convenience, we define the class of functions C[(a, b); (c, d)] as 
follows. 

Definition 3. A function 4(t, u) is said to be of the class C[(a, b); (c, d)] if 

rb rd rd 

f dt f 4(t, u) du = f du f 4(t, a) dt, 

Where a, b, c, and d are real numbers finite or infinite. 
In the next two sections, we shall restate this technique in two special cases in 

which the integral transforms are of Laplace type and Stieltjes type respectively. 
In both cases, we wish to determine the Jacobi coefficients as defined by (3.6). The 
results for the coefficients in the expansions in series of other classical orthogonal 
polynomials may be obtained in an analogous manner (see [13]). 

We finally note that if F(t) is the Fourier transform of a function f(u) then 27rf(- U) 
is the Fourier transform of F(t). Thus, F(t) may be looked upon as one whose Fourier 
transform exists; such functions have already been considered in Section 4. 

7. The Laplace Transform Technique. Consider a function of the class 
B[21; (a, b)], i.e., a function which satisfies 
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co 

F(t) = .C[f(u)] = f e-"f(u) du (a < t < b). 

The Jacobi coefficients for F(t) are given in the following theorem. 
THEOREM 4. Let FQt) be a function such that 
(i) F(t) E B[.e1; (a, b)], where F(t) = 2(u)]. 

(ii) f(u)e- "(b - t)(t - a) xpa '@)(t) E C[(a, b); (0 , ] 
Then the Jacobi coefficients for F(t) are defined by 

(-.1)(b - a)"r(n + a + g + 1) 

(7.1) r(2n+a+t+ 1) 

X f f(u~une~bIXFi(n + a + 1; 2n + a + . + 2; (b - a)u) du, 

for n = 0, 1, 2, 
Proof. The result is readily obtained by the same argument used in the previous 

section, S.(u) being given by (5.6). 
When a = (, (7.1) becomes 

(-_)I7r1/2(2n + 2a + l)r(n + 2at + 1) 
(7.2) u-a= (b - a)al/2r(n + a + 1) 

X f f(u)u/-a-12e-(b+*)u/2I ,(b- a du. 

The expression (7.2) was previously obtained by Wimp [2] although his method of 
derivation is somewhat different. Since I"(u) = em"`u2J,,(iu), the integral in (7.2) 
is of Hankel type (see [11]). Moreover, when b + a # 0, the integral may also be 
reduced to known Laplace transforms. Thus, in many cases, with the aid of tables 
of integral transforms [10], [11], the coefficients a. may be immediately determined. 
Various functions satisfying the conditions of Theorem 4 have been considered in 
[2] and we refer the reader to this paper for examples. 

8 The Stieltjes Transform Technique. In the Stieltjes transform technique, 
we shall derive an alternative expression for the coefficients of a function F(t) be- 
longing to the class B[S; ( a, b)], i.e., F(t) is such that 

(8.1) F(t) = 8[f(u)] = f 4f+ dt, 

for a < t < b. The requirement that F(t) should belong to B(S; (a, b)] implies that 
F(t), considered as a function of a complex variable t, must be analytic in the com- 
plex t-plane cut along the negative real axis (see [22, p. 328D. In other words, F(t) 
can only be represented by the integral in (8.1) for all t for which jarg tj < v. For 
this reason, it is only possible to consider the expansion of such F(t) over an interval 
(a, b), where 0 : a < b. We shall give here the fundamental result and a generalisation 
of the technique in a particular case. 

We have, from [18, ?10.8, Eqs. (18) and (20)], 
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S (u) f (b - t)c(t - a)(Pn (t) dt 

(8.2) (-I)n(b - aP+ r(2n + a + 13 + 2) 

X (U + a) Y'2Fi(n + 1, n + , + 1; 2n + a + P8 + 2; + 

where 2F1(k, 1; m; u) denotes a hypergeometric function. 

Making use of (8.2) and employing an argument similar to that described in 
Section 6, we may prove 

THEOREM 5. Let F(t) be a function such that 
(i) F(t) E B[8; (a, b)], where 0 ? a < b and F(t) = SU(u)]. 

(ii) f(uXu + t)-'(b -t)a(t - a)a "a?)(t) E C[(a, b); (0, co)]. 

Then the Jacobi coefficients for F(t) are defined by 

a,, =(-1)(b - aF r(n + 1)r(n + a + 0 + 1) 
r(2n + a i+ 0 1) 

X f(u)(u + a)n1 
(8.3) 

2F, n + 1, n + 3 + 1; 2n + a + /3 + 2; - du 

for n = 0, 1, 2, 
The expression (8.3) does not reduce to any simpler form with the exception of 

the case in which a = 6 = -i. (Expansion in series of shifted Chebyshev polynomials 
of the first kind VI(t) = T.(2t/(b - a) - (b + a)/(b - a)), for a 5 t 5 b.) In this 
case, the hypergeometric function 2F1(n + 1, n + i; 2n + 1; - (b -a)/(u + a)) 
becomes an elementary function [19, p. 101, Eq. (5)]. The Chebyshev coefficients 
may be deduced from (8.3) to be 

I'0 1(u) ( b - a1/2 F ( b -a~1/2 1 -2 
a,, = 2(-1) (b a)- O (u + a)n+l I + Ll a + (I + ) J du 

which, on putting (u + a)/(b - a) = sinh2v-and applying the inversion theorem for 
Stieltjes transform [22], becomes (with a = 0, b = 1) 

(8.4) an= - )i( [F(eST sinh2 v) - F(e iT sinh2 v)]e 2n dv. 
7r 

The expression (8.4) was previously obtained by Miller [7]; however, his method of 
derivation was based on the theory of functions of a complex variable, and the 
relation of this result to the Stieltjes transform was not considered. 

We shall next consider a generalisation of the Stieltjes transform technique in 
the particular case of Chebyshev coefficients. The above technique may be extended to 
give the Chebyshev coefficients for a function of the form G(t) = pm(t)F(t), where 
Pm(t) is a polynomial of degree m, and F(t) is a function of the class B[S; (a, b)]. For 
simplicity, we shall assume that a = 0 and b = 1, and the Chebyshev coefficients 
which we wish to determine are defined by 
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(8.5) an w o 1"2(i -t)7 dt, 

where T*(t) = Tn(2t - 1) for 0 < t < 1. 
We first prove a lemma. 
LEMMA 2. If, for integers n ? m 2 0, we define 

v,".(t) = T*(t)pm(t)t- 12(1 - t)-"/2 (O < t < 1), 

=0 (t> I 

where p.(t) is a polynomial of degree m, then the Stieltjes transform V, ,m(U) of vn,,,(t) 
is given by 

(8.6) V.,m(U) = ( 1)n [(U + 1)1/2 - 
U1/2 

1/2 1U+i)1/2 
PM-) 

Proof. Consider first the integral 

S. m(aU) =f (1 _ t)),,(t)+ U) dt. 

For all integers n 2 m> 02 we have 

2TT*(t)TI(t) T,*+m(t) + T!,?m(t), 

so that we can write Sm,.(u) as 

(8.7) Smm(U) = 2[Sm+m(U) + S.-m(U)], 

where 

(8.8) Sk(u) = A 1/2(1 -t)dt+ 
- t)1"2(t + U) 

for k _ 0. Sk(U) may be deduced from (8.2) to be 

(_1k [(U + 1) 1/2 - ~1/'22k 
(8.9) Sk(U) = (1)w7 1u2(U + 1)1/2 

We find from (8.7) and (8.9) that 

Sm~m() = (~1) [(a + 1)1/2 - Ul/2]2m 

(8 .10) u"u +(1)1/2) = (_ 1) [a + | ) 

X 2 1)n { [(a + 1)/2 - U/2]2m + [(a + 1)1/2 + Ul/2]2m} 2 

Making use of the definition of the shifted Chebyshev polynomials for an argument 
outside [0, 1], i.e., 

T*(u) = W{[u/2 + (U _ 1)1/2]2q + [U1/2 _ (U- 1)1/2]2I 

for q = 0, 1, 2, * * we may write (8.10) as 

(8.11) Smn"(U) = ir(-1Y l'z1/2(1 + u)-1"2[(u + 1)1/2 - Ul/2]2nT,(-U) 

Since Pm(t) may be expressed as 
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Pm(t) = cT*(t), 
k-O 

the Stieltjes transform V ,m(u) is given by 

V,,,(u) = E CkmS.k(u). 
k*o 

The result follows immediately on making use of (8.11). 
We can now state and prove the theorem. 
THEOREM 6. Let G(t) be a function of the form 

(8.12) G(t) = pm(t)F(t), 

where pm(t) is a polynomial of degree m and F(t) satisfies the following conditions: 
(i) F(t) E B[S; (0, 1)], where F(t) = SU(u)]. 

(ii)pm(t)f(U)(U + t)- t-1/2(1 _ t)-112T*n(t) E C[(O 1); (0, Co 
Then the Chebyshev coefficients for G(t) are defined by 

(8.13) an = 4(-l)" f (sinh2 v)p.(-sinh2v)e-2' dv, 

for n > m : 0. 
Proof. From conditions (i), (ii), and (8.5) the Chebyshev coefficients for G(t) may 

be written as 

an = - P f(u) duIf dt, 

which, by Lemma 2, becomes 

f~ 0 
Ru + 1 )1/2 - 

/22 
(8.14) a,, = 2(-l) [(j2 u k + 1)1/2 _(u)p,(-u) du, (n 2 m 2 0). 

Putting u = sinh2v in (8.14) we obtain the required Eq. (8.13). 
As an illustration of Theorem 6, let us consider the function 

(8.15) G(t) = tv2FI(l, w; 1 + X;- i 

where p is an integer greater than or equal to -1, p + w > -4, and X -w> 1. 
It can be readily verified that the function 

F(t) = ! 2F1(l, w; 1 + X; 

is the Stieltjes transform of 

r(x + 1)-wW- 
A(u) = - 

w + 1)r(w) (1 - u)Xwuw1 (O < u < 1), 

=0 (U> 1), 

(see [19, p. 59, Eq. (10)]). Thus, G(t) is of the required form (8.12) with Pm(t) = 
The verification of condition (ii) is rather cumbersome since the function 
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0(t, U) = (U + t)-'Pr(t)f(u)t'12(l _ t)-1/2T*(t) 

is infinite at the endpoints of both ranges. However, repeated applications of the 
theorems in Titchmarsh [20, Sections 1.84 and 1.85] show that 4(t, u) is indeed in 
C[(O, 1); (0, 1)]. Thus, we can apply Theorem 6 to the function G(t) defined by (8.15) 
and obtain 

(8.16) a. 4(-l)e F + 1) A V2n(.h)2(,+w)(I - sinh2v)" dv, r(w)rG\ - w + 1) J 

where sinh vo = 1. The evaluation of this integral depends on the values of p, X, 
and w. 

Let us first note a special case; with p = -1, X = w = 1, the function G(t) 
log(l + l/t), and we have 

(8.17) an ( = [(v\/2 + 1F2 - 11, n 

forn = 1,2, 3, . withao=4log(\/2+ 1). 
If we now assume that p + w > 0 and X - w > 0, then we can use Laplace's 

method (see, for example, [23]) for approximating the integral in (8.16) for large n. 
We find after some algebra 

4(-1) n+V+lr1/2Ir(x + l)(p + W)2(v+w)+1/2e-2(V+w) 
(8.18) an '-~' r(w)r(x - w + i)n 

for large n. 
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