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Block Five Diagonal Matrices and the Fast Numerical 
Solution of the Biharmonic Equation' 

By Louis Bauer and Edward L. Reiss 

Abstract. A factoring and block elimination method for the fast numerical solution of 
block five diagonal linear algebraic equations is described. Applications of the method are 
given for the numerical solution of several boundary-value problems involving the bi- 
harmonic operator. In particular, 22 eigenvalues and eigenfunctions of the clamped square 
plate are computed and sketched. 

1. Introduction. The system of linear algebraic equations 

(I.la) Mw = r 

is of block five diagonal form if the matrix M is given by 

M = [Ai, Bi, Ci, Di, Ei] 

C1 D1 E1 0 0 

B2 C2 D2 E2 0 0 

A3 B3 C3 D3 E3 0 0 

(l.lb) 0 A4 B4 C4 D4 E4 0 0 

0 

O 0 Aq-1 Bq_1 C1-I Dq-i 

O 0 . . O A a Ba Ca 

Each of the matrices A , Bi, Ci, Di and Ei has pi rows and each of the matrices 
Ei-2s Di-, C1, B1+1 and Ai+, has pi columns. Thus, the main diagonal matrices 
Ci are square and M is square of dimension v-D' pi. 

Linear algebraic equations of the form (1.1) are obtained, for example, from 
difference approximations of boundary-value problems for fourth-order elliptic 
partial differential equations. A specific example is 
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(1W 2aw & w 
(1.2a) ax-'+ aX2 ay? r(x, y), in R, 

(1.2b) w=n*Vw= 0, onB. 

Here, R is a region of the x, y plane, B is the boundary of R, n is the unit vector 
normal to B and r(x, y) is a prescribed function on R. 

When R is a rectangle and the standard 13-point difference approximation of 
the biharmonic operator is employed, then (1.2) is equivalent to the algebraic system 
(1.1), where p1 = P2 = *.. = pa = -p and 

Cl =Cq = C + I, 

(1.3a) Cj = C, j = 2, , q- 1, 
Bj = D = B, j = 2, q , 

Ai Ej_2 =I, j = 3, *i,q. 

Here, I is the unit p X p matrix. The p X p matrices B and C are of scalar three and 
scalar five diagonal form, respectively. They are defined by 

B [0, 2, -8, 2, 0], 
(I. 3b) f21, if k = l, p, 

C [1, -8, Ck, -8, 1] Ck = 

t20, if k = 2,** ,p- 1. 

In (1.3b), we have applied the notation of (1.ib) to scalar matrices. Other difference 
approximations of (1.2), which may be obtained, for example, by the finite element 
method, may also yield algebraic equations of block five diagonal form. Specifically, 
the algebraic equations obtained from the 25-point difference approximation of 
(1.2) are of the form (1.1). 

There are nonlinear problems and more complicated linear problems which 
involve coupled systems of equations like (1.2), cf. Section 6. Approximate solutions 
of these problems can be obtained by iterative procedures. Then, at each step, (1.2) 
must be solved one or more times, r being determined from the previous iterates. 
Since many iterations may be required for convergence, methods for the fast nu- 
merical solution of (1.2), and therefore (1.1), are desirable. In this paper, we present 
such a method. It is a direct method which is an extension to block five diagonal 
matrices of the factoring method previously suggested for block three diagonal 
matrices [1]. 

The unit inversion time for the solution of (1.1) by this method is significantly 
less than that for iterative methods such as the alternating direction method [2]. 
This speed is achieved at the expense of large fast-access memory storage require- 
ments. In Section 3, we present a modification of the method by applying a block 
elimination procedure which reduces the storage requirement. This procedure is 
related to the one proposed for harmonic boundary-value problems [3]. 

Applications of the factoring and block elimination methods are given in Sections 
4-6. In Section 4, the numerical results are compared with exact solutions and with 
numerical solutions obtained by other methods. In Section 5, we apply the present 
methods and Richardson's mesh extrapolation procedure to obtain accurate estimates 
of 22 eigenvalues (counting multiplicities) and eigenfunctions for the flexural vibrations 
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of clamped, square, elastic plates. The first 6 eigenvalues are in excellent agreement 
with the results of the Ritz method [4], [5]. However, the present numerical results 
show that the principal eigenfunction has nodal curves near the corners of the 
plate. This seems not to have been observed previously. Finally, in Section 6, we 
obtain numerical approximations for the lowest eigenvalue of the shallow, clamped 
cylindrical panel. They are in excellent agreement with the values obtained by the 
perturbation method described in the Appendix. Another application of the method 
is given in [6]. 

2. The Factoring Method. We factor the matrix M, (1.ib), into the product 
of an upper block triangular matrix U and a lower block triangular matrix L. That is, 

(2.1) M = L U 

where, using the notation in (1.1b), L and U are given by 

(2.2) L 
= 

[ai, fi, yi, 0, 0], 

U = [0, 0, Ii, Si, 7i]. 

The unit matrices Ii are p. X pi. The matrices ai, Oi, yi, 8i and nqi are determined 
by substituting (2.2) into (2.1) and then comparing both sides of the equation. We 
find that 

a,; = Ai, i = 3, .. q, 

(i = Bi - Aibi-2, i= 2, ...,q, 

(2.3) y = Ci - i i-j - Ai i = 1, 2, . ., q, 

Si = 7 '[Di -0 vi-,], = 1, 2, *, q- 1, 

s. = i Ei, i = 1, 2, *.., q- 2, 

where we define a,i = =- 0 for i ? 0. Thus, the factorization is possible 
if 'Y1,Y2, ''' , *Y,-1 are nonsingular matrices. 

To solve (1.1), we first substitute (2.1) into (1.1) and define the vector v by 

(2.4) Uw = v. 

Then, (1.1) is reduced to 

(2.5) Lv = r. 

Since the systems (2.4) and (2.5) are of upper and lower block triangular form, 
respectively, they can be solved directly. We partition r, v, and w into subvectors 
to conform with the partitioning of L and U. Then the solution of (2.5), the forward 
sweep, is 

(2.6) v, = y71(ri - 3ivi- - Aivi-2), i = 1,2, * , 

where vi 0 for i ? 0. The solution of (2.4), the backward sweep, is 

(2.7) Wi = Vi - aiwil - 7iWi+2 - q, q - 1, , 1, 

where wi 0 for i > q. 
Thus, only the intermediate matrices y7-1, , Ai, Aj, &i, and 7ri are required to deter- 

mine w. In the repeated solution of (1.1) for different vectors r, these matrices need 
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only be computed once. To achieve greater speed in the computations, they are 
stored in the fast-access (core) memory of the computer. The solution formulas 
(2.6) and (2.7) involve only matrix-vector multiplications for which efficient machine 
language subroutines have been developed. 

We shall use a unit inversion time r to discuss the efficiency of the method. It 
is defined as the time required to evaluate w from (2.6) and (2.7) for a fixed vector r. 
Thus, r does not include the computing time necessary to generate and factor M, 
since this occurs only initially. 

The large storage requirement is clearly a disadvantage of the method, since it 
restricts the size of the matrix M which can be considered. The intermediate matrices 
could be stored in a slow-access memory device such as a tape or a disc. Then, sig- 
nificantly larger matrices could be accommodated, but the large increase in r would 
be inconsistent with the purpose of the method. 

To give an indication of typical storage requirements, we consider the system 
(1.1), (1.3). Since Ai = Ei = I, and 77i -y, , we need store only the matrices ,Si, 
y, and bi. The total storage requirements for these matrices, when p = q = 25 
are 15000, 15625, and 15000 words, respectively.2 

The speed and accuracy of the method were evaluated by obtaining numerical 
solutions of several boundary-value problems involving the biharmonic operator 
on the unit square. In all problems, the boundary conditions (1.2b) were satisfied 
and the 13-point biharmonic approximation was employed. For other boundary 
conditions, such as w = wnn = 0, where w.,,, indicates the second normal derivative, 
it may be possible to factor the biharmonic operator into the product of two harmonic 
operators. Then, the solution could be obtained by successively inverting two-block 
three-diagonal systems. 

3. The Block Elimination Procedure. We shall describe the elimination pro- 
cedure for (1.1) with p, = P2 pg = p, and 

Ai = Ej_2 = I, j - 39 49 .. , q 

(3.1) Bi = Di = B and C, = C, j = 3, 4, .*., q-2, 

D2 = Bq_, = B. 

Here, B and C are not necessarily the matrices defined in (1.3b). We denote this 
special system by 

(3.2) MOW = r. 

The matrices defined in (1.3) are included in (3.1). We shall first eliminate the even 
indexed subvectors W2, W4, * * * from (3.2). Since we may wish to repeat the procedure, 
it is convenient to simplify the elimination formulas by assuming that q is odd and 
given by 

(3.3) q = 2 + 1. 

We consider the equations in (3.2) corresponding to the five blocks j - 2, 
j + 2 for any odd integer j in the range, 5 < j < q - 4: 

2 p-25 corresponds to a mesh width of 6 = 1/26 in the difference approximation of (1.2) 
and q = p means a square region. 
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Wj_4 + BW_3 + CWj-2 + BW-1 + Wj =rj-2 

Wj_3 + Bwi-2 + CWi_l + Bw, + wj+1 ri-1, 

(3.4) wi-2 + Bwi-I + Cw, + BWi+l + Wi+2 r;, 

W,.. + BWi + Cwi+l + Bwi+2 + wj.3 = r-+,, 

Wj + BWi+l + CWj+2 + Bwi+3 + W1+4 = ri+2- 

We multiply the second and fourth equations by -B and the third equation by 
K = BCB-1 and add the resulting five equations. This yields a reduced system in- 
volving only the odd indexed subvectors. Equations equivalent to (3.4) are considered 
for j = 1, 3, q - 2, and q separately. Special elimination formulas are then required. 
The resulting system of equations is 

(3.5) MowI = rl, 

where MO, w1, and r1 are defined below. The matrix MO is of the same form as Mo. 
The elimination can therefore be repeated. After the (j + I)st elimination, there 
are qi+l block rows in the resulting matrix MO+', where 

(3.6) = (q + 2q 1 -2 1)/2i+I 

and 

(3.7) MO lwi+ r+. 

Here, 

(3.8) w =w2-l, i- 1, 2, .. ,. 

The submatrices of Moi` are recursively defined by,3 

(3.9a) C'+1 = 2[I - (B')2] + KiCi, 

B = C - (B' )2 + K', 

for the general matrices, and 

= B'(C' - I)(D')- C C- B'B' + I, 

(3.9bj Ci+1 = B'(C' - C' + I)(D') - 2(B') + K'C' +I, 

D' - Bi(C' - I)(D') - (B')2 + Ci 

B+= B(C - C' + I)(D) 'C' - B'B2 + K', 

for the special matrices. The formulas for the special matrices Cr+1, Ca+1 Bi+', and 
DR+1 can be obtained from (3.9b) in an obvious manner. 

The reduced subvectors ri +1 are given by 

ri = B(C' - I)(D-) lr B'r' + r3, 

(3.10) r'+' = B(Cd - C' + I)(Dli)-r, - B'ry + K'ry - B'ry + r5, 

ri = r2i3- B'r'i2 -4-+ Kri- - B'r'i - r,, i = 3, 4, * **, j+ -2. 

J The superscripts in (3.9)-(3.11) are indices that indicate the number of eliminations. 
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The equations for the last two subvectors of r 1' are obtained in an obvious way 
from the first two equations in (3.10). 

The eliminated vectors w2, w4, ... , w7j are restored from w i1 by using (3.8) 
and 

w= (D I[ri - Ciwi -Wi], 

(31) w2i =(i [2X_ -1W _3- Ci2i_1 - w2i+l - 2i-2, 

i(=.2,)3, ,(q 1)/2. 

To solve (3.7) by the factoring method, it follows from (3.1), (2.6), and (2.7) 
that we must store 3q,+l - 2 matrices, each of dimension p2. In addition, we must 
store 8(j + 1) matrices, of dimension p2, of (3.10) and (3.11). They are required to 
form rl, * , r + and to restore the eliminated subvectors. The elimination reduces 
the number of matrices for the factoring method at each step by (q, - 1)/2. However, 
the addition of 8(j + 1) new matrices makes the reduction uneconomical after very 
few steps. A further consideration is that the matrices may become ill-conditioned 
for j sufficiently large. 

4. Applications to Biharmonic Boundary-Value Problems.4 Problems B1 and 
B2 are defined by (1.2) on the unit square with 

r(x, y) = r1(x, y) 

(4.1) = 8[3y2(1 _ y)2 
+ 

3X2(l _ X)2 + (6X2 - 6x + 1)(6y2 - 6y + 1)], 

r(x, y) = r2(x, y) 

= (27r)4 [4 cos 2irx cos 2iry - cos 2irx - cos 2iry], 

respectively. The solutions are 

(4.2) wI = x2(1 -x)2y2(l _ y)2 W2 = (1 - cos 2irx)(1 - cos 2iry). 

Numerical solutions of Problems B1 and B2 were obtained by the factoring method 
with a mesh width of 8 = 1/26 and the results were compared at the mesh points 
with (4.2). The pointwise error is defined as the difference between (4.2) and the 
numerical values, divided by the maximum value of (4.2). The maximum errors 
for Problems B1 and B2 occurred at the center x = y = 1/2 and were 1.13% and 
.98%, respectively. Numerical solutions of Problems B1 and B2 were obtained also 
by using the 25-point difference approximation of the biharmonic operator. Little 
or no improvement was obtained in the accuracy. 

To evaluate the speed of the method, we considered (1.2) on the unit square with 

(4.3) r(x, y) = 1. 

The solution of this problem is unknown. Numerical solutions were obtained in [2] 
using the alternating direction method. We repeated this calculation with a = 1/26 
and the iteration parameters that are suggested in [2]. The convergence criterion was 

4 All the computations were performed on the CDC 6600 computer at the AEC Computing 
and Applied Mathematics Center of the Courant Institute of Mathematical Sciences. 
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(4.4) max - Ww'w| < ( 
i,i 

Here, wii is the mesh function corresponding to w(x,, y,); the superscript on w11 
indicates the cycle number [2]; the maximum in (4.4) is taken over all mesh points; 
and e is a prescribed small number. For e = 10'5, the difference in the results for 
the present and the alternating direction methods were less than .03%. For e = 10', 
better agreement was obtained. For e = 10-5 and e = 10'-, 6.6 and 11 seconds of, 
computing time were required, respectively, to satisfy (4.4). By comparison, the 
unit inversion time for the factoring method is r = .09 seconds. Thus, if comparable 
accuracy is desired, the alternating direction method is 60 to 100 times slower than 
the factoring method. However, it is important to observe that finer mesh widths, 
e.g., a = 1/80, can be employed with the alternating direction method. It was possible 
to obtain a = 1/32 with the factoring method alone, and a = 1/40 and 6 = 1/46, 
using the block elimination procedure once and twice, respectively. 

We have made the comparison with the alternating direction method since it 
seems to be the most efficient method previously presented in the literature for the 
solution of biharmonic boundary-value problems. Elementwise, Gauss elimination 
methods, using the sparseness of M and its submatrices, might be competitive or 
superior to our method. However, applications of such methods to the system (1.1), 
for the size of M that we consider, have not, to our knowledge, been reported in 
the literature. 

5. Natural Frequencies and Modes of a Clamped, Square Plate. The natural 
frequencies and natural modes of vibration of a clamped elastic plate are obtained 
from the eigenvalues X and the eigenfunctions w(x, y) of 

(5.1a) A2w= =w, for x,yinR, 

(5.1b) w = nVw =0, for x, y on B. 

We assume that the eigenfunctions are normalized so that 

(5.2) IwI ffw2 dx dy = 1. 

The integral in (5.2) and all subsequent integrals are over R. If X is an eigenvalue 
and w is an eigenfunction of (5.1), then 

(5.3) X = A(w) ffA (W)2 dX dy. 

We denote the eigenvalues of (5.1), counting multiplicities, by XI, X2, ... , and 
the corresponding eigenfunctions by w"' (x, y), w (2) (x, y), * . We determine them 
numerically by an iterative procedure that is related to the power method [7]. Thus, 
we suppose that the first n- 1 eigenvalues and eigenfunctions are known. Starting 
from an initial estimate w', we define a sequence of iterates x, 1, X,2, ... * Xn, kg* 

and wn w * * w, * * by the recursions 

(5.4a) A2,kl= Xn- k Wk, Wk+1 - n*Vwk, = on B, 
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n-i 

(5.4b) VP (n1 - k a' w 
" 

j I 

(5.4c) -k+s = wk+,/ IWI IV|n k = 0, 1, 

where ),, * and ak are defined by 

(5.4d) Xa,k = A(w,"), ai+l = ff w "V1w() dx dy, j = 1, 2, , n- 1. 

Thus, w, (+ is the normalized projection of the provisional iterate 0 (+' into the or- 
thogonal complement of the subspace spanned by w(), w(2, * ,' (i) We em- 
ployed the following convergence criterion for the iterations 

(5.5) IX^,k+l - Xn,kI < 10. 

Each iterate was numerically determined by solving (5.4a) by the factoring and 
block elimination methods. The integrals in (5.4) were evaluated by Simpson's rule. 
We applied the numerical method (5.4) to the unit square plate. Numerical approxi- 
mations for each eigenvalue and eigenfunction were obtained for the three mesh 
widths 

(5.6) b5= 1/32, 62 = 1/26, 53 = 1/20. 

Richardson's mesh extrapolation procedure [7] was used to obtain an improved 
approximation of the eigenvalue. That is, if X,(Q) is the converged numerical value 
with mesh width a for the nth eigenvalue, we assume that 

(5.7) XA(a) = 2,, + a i2 + b54 

for some constants a and b. Here, , is the Richardson approximation of the eigen- 
value. We determine . by substituting the three values of X,(5) and a into (5.7). 
For n < 13, (5.4a) was solved by the factoring method alone. For n 2 13, the block 
elimination procedure was required because of the additional storage needed for 
the projection calculations (5.4b)-{5.4d). 

The number of iterations that are required to satisfy (5.5) depends on the values 
of 5 and n, and on the initial guess w("). The number of iterations usually increases 
with n. From 7 to 31 iterations were required to satisfy (5.5). For 5 = 1/32, the 
unit iteration time for the first eigenvalue was approximately .1 seconds. The unit 
iteration time increases with n because of the additional projection calculations 
(5.4b) and (5.4d). The computation of 20 eigenvalues required a total of 381 iterations 
which used approximately 4 minutes of computing time. According to the estimates 
described in Section 4, the same results would require approximately 45 minutes 
if the alternating direction method were employed. 

To test the accuracy of the numerical method (5.4)-(5.7), we applied it to the 
solution of the biharmonic eigenvalue problem consisting of (5. la) on the unit square 
and the simply supported boundary conditions, w = W. = 0. The eigenvalues and 
eigenfunctions of the simply supported plate are known explicitly. They are 

(5.8) X = Lmn 
= 

(m2 + n2)24, w = 2 sin m7rx sin nry. 

A comparison of the exact (5.8) and the numerically determined eigenvalues is 
presented in Table I. Similar accuracy need not occur for the clamped plate. We 
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TABLE I 

A Comparison of the Exact (A"/2) and the Numerically Determined Frequencies (A1'2) 
of the Square, Simply Supported Plate 

n p~~~1/2 p1/2 0Df n U n % Diff. 

1 19.7392081 19.7392088 .000035 
2,3 49.348020 49.348022 .000004 
4 78.956830 78.956835 .0000063 

5,6 98.69598 98.69604 .000061 

observe that the accuracy decreases as n increases, i.e., as the number of waves in 
the eigenfunction increases. 

The results for the clamped plate (5.1) are summarized in Table II. They are 
compared with the results of the Rayleigh-Ritz calculation in [4], [5] and the asymp- 

TABLE II 

Frequencies ( o1f2) of the Clamped, Square Plate Obtained by the Numerical Method 
(<1/2) the Ritz Method (R), and an Asymptotic Method [Bolotin]. 

The exact frequencies (A412) of the simply supported plate are also given. 

n 1/2 X1/2 R [4] % Diff. Bolotin [8] % Diff. 

1 19.7392 35.9844 35.99 .016 35.096 -2.47 
2-3* 49.3480* 73.3894 73.41 .028 72.897 - .67 
4 78.9568 108.1986 108.27 .066 107.47 - .67 
5 98.6960* 131.5626 131.64 .059 - 

6 98.6960* 132.1859 132.25 .048 131.63 - .42 
7-8* 128.3049* 164.9468 165.15 .123 164.39 - .34 
9-10* 167.7833* 210.4574 210.35 - .051 
11 177.6529 219.8986 219.32 - .26 
12 197.3921* 242.0102 - 

13 197.3921* 243.0087 243.10 [5] .038 242.20 - .33 
14-15* 246.7401* 296.039 295.69 - .12 
16 256.6097* 308.707 - - 

17 256.6097* 308.974 308.929 - .015 
18-19* 286.2185* 340.249 340.244 - .0015 
20 315.8273 370.761 370.66 - .027 
21 335.5665* 392.130 - 

22 335.5665* 393.326 392.80 - .13 

totic approximations of Bolotin [8]. The eigenvalues of the simply supported plate 
are also shown in Table II. Of course, there may be other eigenvalues between the 
ones shown in Table II that we failed to determine with our numerical methods. 
Multiple eigenvalues are denoted by an asterisk. All multiple eigenvalues that were 
found had multiplicity two. Multiple eigenvalues were not discussed in [4], [5], [8]. 
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5.1. Nodal Properties of the Eigenfunctions. Perspective sketches of the nu- 
merically determined eigenfunctions for the clamped, square plate are shown in 
Fig. 1. Their nodal lines are shown in Fig. 2. We shall refer to the eigenfunction 

1 2-3 4 5 

6 7-8 9-10 1 1 

1 2 1 3 14-15 16 

17 

L 

18-19 20 21 22 

FIGURE 1. Computer made sketches of the numerically determined eigenfunctions. The mode 
number is indicated under each sketch. For each double eigenvalue, only one eigenfunction is shown. 
The other eigenfunction is obtained by rotating the figure through ninety degrees about a vertical 
axis through the center. 

corresponding to the lowest eigenvalue as the principal eigenfunction. It is important 
to observe that the numerically determined principal eigenfunctions for the meshes 
6 = 1/32 and 6 = 1/26 have nodal curves near the corners of the plate.5 The existence 
of nodal curves for the principal eigenfunction was not reported in [4], [5], [8]. Since 
these nodal curves are close to the corners, we further studied their occurrence by 
three special computations. First, we solved (5.1) by the iterative method (5.4)-(5.7) 

5 The principal eigenfunction for the simply supported plate is free of nodes; see (5.8). 
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1 ~~~2-3 4 5 

6 7-8 9-10 1 1 

1 2 13 14-15 1 6 

F--1 1 1 1 ' (-1 g s 

1 7 18-19 20 2 1 22 

F1GuRE 2 
The nodal lines for the eigenfunctions sketched in Fig. 1. 

using a a = 1/80 mesh and the alternating direction method. We found that the 
nodal curves extended to approximately 1/20 of the length of a side. For this mesh, 
there were a total of 10 mesh points between each nodal curve and the corner. The 
amplitudes of the solutions in these corner regions were small and opposite in sign 
to the solution in the center of the plate. 

In the second computation, we used the numerical method to determine the 
lowest eigenvalue X and principal eigenfunction of 

(5.9) A2w- TA w = X w, w = n Vw = O on B. 

The eigenvalue problem describes the flexural vibrations of stretched, clamped, 
square elastic plates [9]. T is the prescribed uniform stretch on the boundary of the 
plate. When T = 0, (5.9) is reduced to (5.1). If T < 0, the plate is uniformly com- 
pressed. We determined the principal eigenfunction of (5.9) numerically for a de- 
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creasing sequence of T values starting at T = 57r2. For 3 = 1/32, it was free of nodes 
for T = 57r2. For T < 44, nodal curves occurred in the corners. The nodal curves 
moved very slowly into the interior of the plate and the amplitude near the corners 
increased as T decreased. For T =-50, the nodal curves extended to approximately 
3/32 the length of the edge.6 

Finally, we considered the intermediate eigenvalue problem, 

(5.10) A2w = Xw, w (1 - E)wnn + En Vw = 0 on B, 

for the square plate. The boundary conditions in (5.10) correspond to an edge that 
is elastically restrained against rotation. When e = 0 or e- = 1, (5.10) is the eigen- 
value problem for the simply supported or the clamped plate, respectively. The 
parameter e is related to the rotational spring constant of the edge. We determined 
the principal eigenfunction of (5.10) numerically for a sequence of values of E. The 
principal eigenfunction was free of nodes for e < .996 and corner nodal curves 
appeared for e > .996. Thus, the occurrence of nodal curves depends strongly on 
the rotational stiffness of the boundary. 

The computations demonstrate the existence of nodal curves for the principal 
eigenfunction of (5.1) for the square plate. Since the results are numerical and the 
amplitudes are small near the corners, a rigorous proof of the existence of the nodal 
curves is still required.7 We recall that Weyl and Courant [10] have shown for a 
class of second-order elliptic eigenvalue problems (including the vibrating membrane) 
that the principal eigenfunction is always free of nodes. 

Duffin and Shaffer [11] announced that for the vibrating annular plate with 
clamped inner radius r0 and clamped outer radius 1, the principal eigenfunction 
has a diametral nodal line if r0 is sufficiently small. Specifically, they found that r" 
must be < 1/715. This seems to be the only previous example of a domain for which 
the principal eigenfunction of the mathematical problem (5.1) has nodes. 

Rayleigh [12] conjectured and Faber [13] proved that, of all vibrating membranes 
of given area, the circular membrane possesses the smallest principal eigenvalue. 
Szego [14] proposed that a similar result holds for (5.1), i.e., of all clamped vibrating 
plates of given area, the circular plate has the smallest principal eigenvalue. To prove 
this theorem, Szeg6 assumed that the principal eigenfunction of (5.1) has no internal 
nodes. Our results suggest that this assumption is invalid and that the proof is in- 
complete, although the theorem may be correct. 

5.2. Properties of the Spectrum. We observe that the eigenfunctions shown in 
Figs. 1 and 2 may be classed in three groups according to the properties of their 
nodal lines: 

(1) Eigenfunctions 1, 4, 11 and 20 have an equal number of nodal lines parallel 
to the x and to the y axis. They correspond to simple eigenvalues. 

(2) Eigenfunctions 2-3, 7-8, 9-10, 14-15 and 18-19 have nodal lines parallel to 
the x and y axis. However, the number of nodal lines, N2 and N,, in the two directions 
is different. In addition, (N, + NJ) is odd. They correspond to double eigenvalues. 

I T z-52.34 is the lowest eigenvalue of the eigenvalue problem (5.9) with X = 0. 
7A related problem is to characterize the domains for which the principal eigenfunctions of 

(5.1) have nodes or are free from nodes. Additional numerical results are discussed in the note added 
in proof at the end of the paper. 
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(3) The remaining eigenfunctions in Figs. 1 and 2 can be grouped in the pairs, 
5-6, 12-13, 16-17, and 21-22. The eigenvalues corresponding to each pair are simple 
but close in value (see Table II). We refer to them as weakly simple pairs. The member 
of each pair with the lower eigenvalue has two diagonal nodal lines. For even values 
of N. + N,,, eigenfunctions only with nodal lines parallel to the x and y axis were 
not determined. Bolotin's method fails to approximate the eigenvalues corresponding 
to the eigenfunctions with two diagonal nodal lines. 

We observe, by comparing the eigenvalues of the clamped and simply supported 
plates in Table II, that to every simple eigenvalue of the simply supported plate, 
there corresponds a simple eigenvalue of the clamped plate. To every double eigen- 
value of the clamped plate, there corresponds a double eigenvalue of the simply 
supported plate. However, every double eigenvalue of the simply supported plate 
need not correspond to a double eigenvalue of the clamped plate. In fact, we see 
from Table II that there are double eigenvalues of the simply supported plate, e.g., 
n = 5 and 6, which apparently split to form weakly simple pairs of eigenvalues of 
the clamped plate. 

To further study the splitting, we numerically determined the variation with e 

of the eigenvalues of (5.10) which coalesce to the double eigenvalue n = 5, 6 for 
= 0 and split to the weakly simple pair n = 5 and n = 6 for e = 1. The results 

are summarized in Table III. We observe that the double eigenvalue apparently 

TABLE III 

The Splitting of a Double Eigenvalue of the Simply Supported Plate into a Weakly 
Simple Pair for the Clamped Plate 

e n=5 n=6 

0 9740.896 9740.896 
.1 9741.134 9741.113 
.2 9742.088 9741.990 
.3 9744.349 9744.075 
.5 9758.761 9757.518 
.9 10511.620 10507.691 
.99 15113.570 15244.616 

1.0 17308.092 17472.486 

splits immediately for e > 0. For e .91, the two eigenvalue branches intersect 
again. 

6. Natural Frequencies of Clamped Cylindrical Panels. We consider a thin 
circular cylindrical panel of radius of curvature a, thickness h, axial length L and 
circumferential length a0O. The natural frequencies and modes of the panel are 
obtained from the eigenvalues X and eigenvectors [w(x, y), f(x, y)] of 

(6.1a) A2w= Ktw + Xw, A2f = -w, forx, y in R 
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(6.1b) w=n*Vw= f=n.Vf= O, forx,yonB. 

The parameter K is defined by 

(6.1 c) K-- 12(1 - 2 a 

The region R is the rectangle: 0 < y < 1, 0 < x < I L/(a0O), where x and y are 
dimensionless axial and circumferential coordinates. The conditions (6.1b) imply 
that the boundary is clamped and stress-free with respect to the midsurface stresses. 
If K = 0, e.g., a -X c with (a00)2/h fixed, the differential equations in (6.la) uncouple. 
The first equation in (6.1) is then equal to (5.la). 

We assume that the eigenfunctions of (6.1) are normalized so that 

(6.2) W112= ff w2 dxdy = 1. 

The eigenvalues and eigenfunctions are related by 

(6.3) X = AK(W, f) =f w)2 + K(Af)2] dx dy. 

We observe that A0 = A, which is defined in (5.3). 
Approximations of the eigenvalues and eigenvectors of (6.1) were obtained by 

iterative and numerical methods analogous to the ones used in the previous section 
for the flat plate. For simplicity, we shall only consider the lowest eigenvalue. Thus, 
we define a sequence of iterates Xl,1, X1,2, * * , (W11f0) (W2,f2)) ... by the recursions 

(6.4) == Kf, /v = K + Xl,,w,, 

i,p = AK(Wp, fp), WP+i = wiP+1/ iPw+ 1l 

All the calculations were made for the square panel, I = 1. The Richardson ap- 
proximation of the eigenvalues, Sl, are summarized in Table IV. Usually, eight 

TABLE IV 
The Lowest Eigenvahle for the Clamped, Square, Cylindrical Panel Obtained by the 

Nuimerical (XI) and Perturbation (P) Methods [see (A.7)]. 

K SP % Diff. 

0 1294.88 - 

102 1306.50 1306.52 .0015 
103 1410.20 1411.24 .074 

2 X 103 1523.54 1527.60 .266 

iterates were required for convergence. The unit iteration time is slightly larger for 
this problem since it involves the solution of two biharmonic problems at each step. 

In Table IV, we also list the approximations of X1 obtained by a perturbation 
expansion for small K, i.e., an expansion in the neighborhood of the flat plate. The 
perturbation method is described in Appendix A. The agreement between the 
perturbation and numerical methods is excellent even for "large" values of K. The 
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results indicate that the lowest eigenfunction also has nodal curves near the corners 
of the panel. 

Appendix A. The Perturbation Method for the Shallow Cylindrical Panel. 
We assume that for small K the lowest eigenvalue and eigenvector of (6.1) are analytic 
in K, i.e., 

(A. 1) X1(K) X)K, ( ) () K 

The coefficients X "), w U) andfi') are determined by inserting (A. 1) into (6. la), (6.1 b) 
and equating coefficients of the same powers of K. This gives, for i = 0, 1, .--. 

(A2W(i - X(o) Wi= F(i) = J$z + E X'wU)i 
(A .2) = 

wi) =n.Vw(i) = 0 on B, 

and 

(A. 3) x2x)_ 
() 

f = n Vf- = 0 on B, 

where we define w - f(1) 0. For i = 0, (A.2) is equal to (5.1). Thus, '?)= 
X,1() and w (0) are the lowest eigenvalue and normalized eigenfunction of the clamped 
flat plate for which accurate numerical approximations are known. Since X`) is an 
eigenvalue of (4.1), each F't, i = 1, 2, - - , must satisfy the solvability conditions 

(A.4) Ff Fw'0) dx dy = 0 

In evaluating F'i, we consider, from (A.3), fi-'(x) as a functional of w(i1)* Thus, 
F(') depends only on w '?, w(1), , w ' For i = 1 in (A.4), we find, by using 
(A.3) and integration by parts, that X is given by 

(A.5) f 
= Af [f(0)]2 dX dy. 

Here, f[0) is the solution of (A.3) with i = 0. It is determined numerically by the 
factoring method using the numerical eigenfunction w('(. Thus, from (A.1), we 
have the following estimate for X,: 

(A.6) X, (K) X 3 (0 + ? (1) K. 

For the square plate, we obtain X ' ) .1 16361 1, and 

(A.7) X(K) ~ 1294.88 + (.1163611) K. 

Notes Added in Proof. 1. We have numerically solved the eigenvalue problem 
(5.1) for the clamped, rhombic plate with a 60? corner angle using the methods 
described in Section 5. The numerical principal eigenfunction had nodal curves near 
the 60? corners and no nodal curves near the 120? corners. The nodal curves occurred 
further away from the corners for the rhombic plate than for the square plate. The 
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results suggest that corner nodal curves disappear at obtuse angles and become more 
pronounced near acute angles. Furthermore, we observed that corner nodal curves 
occur in the first 9 modes for the rhombic plate. 

2. In an attempt to prove our results concerning the existence of nodal curves for 
the principal eigenfunction of (5.1), Professor S. Osher has proved that the Green's 
function for (5.1) changes sign near the corner. This is a necessary condition for the 
existence of corner nodal curves for the principal eigenfunction. 
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