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Norms of the Successive Overrelaxation Method 

By David R. Kincaid* 

Abstract. Norms, primarily of theoretical interest, of the successive overrelaxation method, 
with a relaxation parameter other than the optimum one, are studied. New results on this 
subject are presented and compared with those of Wachspress [8]. 

1. Introduction. A well-known iterative method for solving large systems 
of linear equations which arise from the discretization of elliptic partial differential 
equations is the successive overrelaxation method. Norms of this method with the 
optimum relaxation parameter have been studied by Sheldon [6], Golub and Varga 
[2], Young and Kincaid [9], and Young [11]. Until recently, the only study of norms 
of the successive overrelaxation method, with a relaxation parameter other than the 
optimum one, seems to be that by Wachspress [8]. New results on this subject are 
presented here and compared with those of Wachspress. 

We consider solving the system of equations of the form Ax = b, where 

(1.1) A ={D j 
D 

H2 D2, 

such that DI and D2 are square diagonal matrices. Here, A E R"N,N is a real, N X N 
nonsingular positive definite** matrix with nonzero diagonal elements, b E RN 
is a given vector, and x is the solution vector which is to be determined. Letting 
D = diag A, we note that 

(1.2) B= I- D-IA =K F 

G 0, 

where F = -D A'H1 and G = -D`'H2. 

2. Successive Overrelaxation Method. The successive overrelaxation (SOR) 
method for solving (1.1) is given by 

(2.1) = - F4m) + g,} + (1 - (i 
(m+I) = g2} - x2 W{GX~~m+l) + 2 + (1 W4)X) 
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346 DAVID R. KINCAID 

where w is the relaxation parameter such that 0 < w < 2. The optimum relaxation 
parameter is wb = 2/(1 + (1 _ 

a2)1/2), where , = S(B), the spectral radius*** of 
B. The SOR iterative matrix is 

=@- (I-wL)-'((1 -W)I + wU) 

(2.2) = K 0] O 
{(1 -w)I, wF)I 

-woG 19 0 O -()0I2( 

_[(1 -w)11 cF ]g 

, L1-W)wG w2GF + (I -w)I2J 

where L and U are strictly lower triangular and strictly upper triangular matrices 
such that B = L + U. After m iterations of the SOR method, we obtain the following 
iterative matrix: 

(2.3) 2m = - O)a,2,.-,(G, F, w) a27ll.1(F, G, w)1 
O - w)a2,771-I(G, F, w) a2n(F, G, w) 

where 

ao(G, F, w) = II, ato(F, G, cw) = I2, a (X, Y, co) -c X, 

ak(X, Y, co) = aAk,-( Y, X, w)w X + (1 - w)ak-2(X, Y, w), k > 2. 

3. Norms of the SOR Method. From Kincaid [4], we have the following 
general result for the A,'2-norm of the SOR method where A# = D(I - 1B).t 

THEOREM 3.1. If A is a positive definite matrix of the form (1.1), then, for mn 1 
andO < (3 ? 1, 

|LQ~IIA~"~ ? o <max 
Y 

i ( 11, ,, C) + ('4(ni, At, w) + (1 - 

(3.1) 
0 <w < 2, 

where 

'y#(Mn, c o) 2 ! {(2 - 1)2 coAV (a2 )2}I/2 mi, A)j 

and 

(3.2) 
a 

vo(A, c) = 1, a (, w) - WA 

ak(g, CO) = Cgak-1(g, CO) + ( - c)ak-2(, CO), k ? 2. 

The relevant 2 X 2 matrix for determining (3.1) from (2.3) is the following (see 
Kincaid [5] for details): 

*** The spectral radius of a matrix S is denoted S( S) and is the maximum of the moduli of 
the eigenvalues of 9. 

t By Kincaid [4], if A is positive definite, then AO = D(I - fB) is positive definite for 0 ? f ? 1. 
Moreover, the A"/2-norm of a matrix 9 is given by IfIS1 IA,3/ = IjIA /2 9A-1/21 12, where the spectral 
norm of a matrix 3C is given by HaClI2 - S(JCaCH). 
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(3.3) M.0u co) [( W)a2r,-(A, CO) 2m-I(A, c) 

( l v)c02rni(i',cv) (i} m J 
where ak(A, co) is given by (3.2). 

In Kincaid [5], an exact expression for the A`'2-norm of the SOR method was 
obtained for X = Wb only. We state these results here for reference. 

COROLLARY 3.2. If A is a positive definite matrix of the form (1.1), then, for 
m> 1, 

(.) l2@b Il =/2 (vh 1)b {7 1mf(p, cb) + (,n2o$(p c,) + )1/2j 

where 

03, 0 b) = { (2- cvb)/(h -1) + 4(1 - A)2/(1 M d )} 

By setting: = 0 and A - 1 in (3.4), the following well-established results for 
the D1/2-norm and the A 1"2-norm, respectively, are obtained. Similar expressions 
can be found in Sheldon [6, p. 501], Golub and Varga [2, p. 161], Varga [7, p. 152], 
Young and Kincaid [9, pp. 31, 43], Kincaid [5, p. 20], and Young [11, pp. 248, 258]. 

COROLLARY 3.3. If A is a positive definitei matrix of the form (1.1), theni, for 
m> 1, 

(3.5) 2 2b | D120=(c - 1) { _1ho(.L, cvb) +I- (,J2(, cvb) + 1)1/21, 

(3.6) 11| Jb IA/2 (cvb 
- 

) nTIO1 (T, cvb) + ( I2o-C(u ch) + 1)1/, 

(3.7) S(2Q) ) (Cob 

where 

o4fl, cvh) b 2 - 1 1 

(F(, cob) = 
- 1)1/2 - - - 

Jl(9, ,b) = 2 
- 

(1 p2) !2 1 

and r = Wb 1 

It is natural to inquire whether or not an exact expression for the A''2-norm 
can be found for values of X other than the optimum value. We shall show that for 
a restricted range of values of w the maximum in (3.1) always occurs at A = , for 
all 3, 0 ?, f < 1, and n > l. 

Without restricting c, A, or A, we are able to determine an exact expression for 
the A1/2-norm of ?, only when n71 = 1. Thus, we now determine IIIA,1/z 
for 0 < X < 2. 

COROLLARY 3.4. If A is a positive defintite nc7atr ix of the form (1.1), then, for 
0 < 3 < 1, 

(3.8) I = y:(l, A, o) + ('y(1, , w) + (1 - ) ))/2, 0 < c < 2, 

where 

'y(l, j, Co) = v _(2__+ - I 
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Proof. We see that the right side of (3.1) is maximized whenever yP(l, u, w) 
is maximized. Now, yg(l, ,u, co) is an increasing function of ,U for fixed co and ,3. There- 
fore, y,y(1, u, co) assumes its maximum value at ,U = p for all U such that -, < ?U < ?j. 
Since , is necessarily an eigenvalue of B, the right side of (3.1) is maximized at ,U = p 

for ,U ranging over only the eigenvalues of B. Thus, from the theory established in 
Young and Kincaid [9] (see, also, Kincaid [5] or Young [11]), we have (3.8) for all 
cosuchthat0 < c < 2. EO 

TABLE 3.1 

Comparison of I I?WHAI/2for 0 _ B _ I and S(CU) for O < c < 2 where g = .9877 

w / = O = = .2 o = .5 3 = .8 f = 1 S(2.) 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.1 .9988 .9988 .9987 .9987 .9987 .9887 

.2 .9986 .9982 .9977 .9974 .9973 .9973 

.3 1.0009 .9992 .9975 .9963 .9958 .9957 

.4 1.0082 1.0035 .9989 .9957 .9942 .9939 

.5 1.0240 1.0137 1.0031 .9960 .9926 .9918 

.6 1.0529 1.0327 1.0120 .9979 .9911 .9895 

.7 1.0098 1.0644 1.0275 1.0020 .9897 .9868 

.8 1.1695 1.1124 1.0519 1.0094 .9886 .9837 

.9 1.2651 1.1798 1.0874 1.0210 .9879 .9800 
1.0 1.3882 1.2686 1.1359 1.0377 .9877 .9755 
1.1 1.5393 1.3798 1.1986 1.0604 .9879 .9701 
1.2 1.7181 1.5141 1.2769 1.0899 .9886 .9632 
1.3 1.9245 1.6719 1.3719 1.1273 .9897 .9543 
1.4 2.1584 1.8535 1.4851 1.1743 .9911 .9422 
1.5 2.4199 2.0597 1.6180 1.2331 .9926 .9245 
1.6 2.7090 2.2910 1.7721 1.3068 .9942 .8952 
1.7 3.0259 2.5476 1.9490 1.3991 .9958 .8262 
1.729 3.1245 2.6281 2.0056 1.4303 .9962 .7294 
1.8 3.3705 2.8299 2.1496 1.5137 .9973 .8000 
1.9 3.7430 3.1382 2.3747 1.6541 .9987 .9000 
2.0 4.1435 3.4724 2.6247 1.8221 1.0000 1.0000 

As a consequence of this corollary, we now obtain expressions for the D`12-norm 
and the A112-norm of ?2, for 0 < w < 2. 

COROLLARY 3.5. If A is a positive definite matrix of the form (1.1), then 

(3 9) | |?.D | ID /2= 'Yo(l, A ,) + (_y2(1, ', c) + (1 - W)2)"2, 0 < w < 2, 

(3.10) 112 I IAI/2 1 Y(l, p, c) + (1Y1(1, ,U ) + (1 w)2)112 0 < w < 2, 

(3.11) S(2.) 
= [(4coU) + ((1l,A)2 _ 

(- 1))1/2]2 0 < < 
= CO W COb < _ < 2, 

where 
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tYo(l, p, w ) = 2p((2 ~_ 
W)2 

+ 

w202)1/2 -y(j, a, 
co) = 

hog(2 
- o). 

By comparing S(2,,(2),,) given by (3.11), since 0 < w(2 - co) < 1 < wb, and 
I11A~'~ /2given by (3.10), we obtain the relation 

I (. I I' A /2 
Young [10] establishes this result using a different approach. We note also that the 
AI/2-norm is symmetric about co = 1, so that 

min I 2 1 |A /2 = |21 IA1/2, 
O<w <2 

where ? ?; however, 

min S(GiU) S(,,b). 
0 <w< 2 

Notice that while the D'I2-norm of 2,, is not always less than unity, the A 12-norm 

and spectral radius are. This fact is illustrated in Table 3.1. 
We now investigate norms of the SOR method for m ? 2. When m > 2, the 

maximum in expression (3.1) does not necessarily occur at ,u = , for all X such 
that O < X < 2 and for all , such that 0 < , < 1, as was the case for m = 1. Never- 
theless, we shall show that for all w, such that 0 < X <_ b, this maximum is obtained 
at , = , for all ,i such that 0 < , < 1. In fact, numerical results indicate that this 
maximum seems to occur at , = , for all , such that 0 < , < 1, whenever co is 
restricted to the range 0 < W < KCOb - E(m, , j) where 0 < E(m, 3, a) < 2 - COb 

Here, the exact value of e depends on m, A, and ,. Moreover, numerical results 
indicate that this maximum seems to occur at , = , for many particular values 
of ,u near unity and many selected values of m without restrictions on X or /3. 

In order to establish an exact expression for the Al/2-norm of 2' for 0 < X-< cb, 

we first shiow that 

(3.12) max jak(c, W)I = ak(cu ,CO), 0 < W C_O Wb 
'I 

where cwaju, w) is defined by (3.2) for all k ? 0. Moreover, 

(3.13) (!k(A, Wb) = (k + 1)(Wb - 1). 

For each fixed A and co, ak(/I, co) as defined by (3.2) is a linear difference equation 
with constant coefficients which can be solved by assuming solutions of the form 
Xk(g X,). It can be easily verified that, for k > 0O 

k k-,-l - k+1 

(3.14) X I 
E 2 = __1 # X2 

= (k + I)\,, Xi X., 

where X, X-(AL, co), X2 X2(,, w) are the roots of X2 - (wA)X + (w- 1)- 0. 
We designate 

(3.15) 2= (?o'.) + (QwZ)2 - (C- 1))1/2, 

X (2 2c4L) 2 ((1)2 - ( 1 ))1/2 

Hence, 



350 DAVID R. KINCAID 

(3.16) Xi + X2 = COIA, X1X2 =c-1. 

Suppose that X is fixed such that 0 < co < 2. Notice that X1(-iA, co)- X2(/A, Cl) 

and X2(-Ms, c) = - X,(., c) by (3.15) so that ak(- IA, CO) = (- 1)k ak(M, co) by (3.14). 
Clearly, Ia,k(-, o)f = lak(,(, co)j. Therefore, we need only consider nonnegative 
values of ,. 

Suppose that 0 < co < 1. Whenever ,u $ 0, we note by (3.2) that a,k(I, co) is a 
polynomial in ju with positive coefficients. Therefore, ak is an increasing function 
of , and it assumes its maximum value over the interval 0 < M< _A at , = ,. If 
A = 0, then 0< ?ak(0, co)1 < jak(A, co)!. Thus, (3.12) holds for 0 < co < 1. 

Suppose that X = 1. Then, by (3.2), we have a,(MI, 1) = A for all k and (3.12) 
follows immediately. 

Suppose that co = Wb- We define 0 by A = , cos 0, 0 < 0 < 7r/2. It is easy to 
show that X1 = (Cob- 1)11'e" and X2 = (Wb- l)1/2 e- from (3.15), using (3.16). 
Therefore, by (3.14), we have, for k _ 0, 

a,k(M, COb) (CO - 
I 

)k2(k + 1 = p(0 = 0), 

(3.17) 
= (CO b - l)k/2 sin(k + 0 o < < p (O < 0 < r/2). 

sinG0 

By mathematical induction for any value of 0, we have 

(3.18) sin(k + 1)0 < (k + 1) 
sin 0 

(see, for instance, Golub [1]). Therefore, for any ,u such that 0 < ,u < ,u we have, 
by (3.17), la,k(I, C1b)I < (Cb - l)k'/2(k + 1). Moreover, (3.13) holds and, therefore, 
(3.12) follows for w = Wb. 

Suppose that I < X < W,. We now show that 

(3.19) max lak(A,i )I = ak(P, ,). 
0< sAj 

Since 2(co - l)I12/co is an increasing fuLnction of c in the range 1 < c _< cb and 
2(cob- 1)1/2/cob = , we have 0 < 2(w - 1)1/2/ow ! ,. Define 0 by 

Z =(2(w - 1) - /c)cos 0, O < < ir/2, 

for 0 < ,u < 2(w- 1)1/2/co and define i1 by 

A = (2(co- l)'/2/co) cosh iV, 0 < 4I ? cosh'(coA/2(co - 1)1/2) 

for ,u ? 2(co - I)' /co One can easily verify that for any value of A such 
that 0 < AA < , and 1 < c ? co, (see, for instance, Householder [3]) 

s'2 sin(k + 1)0 2((w - i1)1/2 
akj/A, co) = (co - Ij)k/ sin ' O< A< co 

(3.20) = (co- 1)/ (k + 1), < 2(c- )2 < 

=(c - k/2 sinh(k + )/ 0< 2(col- i12 

s inh V, co 
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By (3.18) and (3.20), we have 

(3.21) 0 < ak( (A, w) <- (c - ) k2(k + 1), 0 < A <? 2(w - 1) /1. 

Moreover, by induction it can be shown that, for any value of i& > 0, 

(3.22) sinh(k + ) ? (k + 1). 

Therefore, we have by (3.20) 

(3.23) 1k(j, c) > (C - l)k/2(k + 1) 2(w - 1)1/2/, ? A ? 

By (3.22) and (3.23), we observe that the maximum of cxk(M, c) occurs when 1A has 
a value such that 2(w- 1)1l2/w ? ,u ? ,. Moreover, sinh(k + 1)/'/sinh 4V is an 
increasing function of /' so that by (3.20) the maximum value of a,k(., ) occurs 
when Q/ is largest. But when + is largest, , is also. Hence, (3.19) follows. When ,c = 0, 
we have by (3.2) that 

akk(0, o) = 0, k odd, 

= (1 - a')k/2, k even, 

and 0 ? lak(0, a')t < (a - l)k/2(k + 1). Hence, (3.12) follows for 1 < X-< w, 
By (3.12) and Theorem 3. 1, we have 

max 'yS(m, ,u, o) = -y,0(m, 4, CO), 0 <' co _s. 

Hence, we have established the following corollary. 
COROLLARY 3.6. If A is a positive definite matrix of the form (1.1), then, for 

m ? 1 and 0 ?< /< 1, 

(3.24) IIQ~aIA~/a= _y#(11, p,g a) + (_y2(M, a, ca) + (I- )2?f)1/2 a (3 .24) 1 14 1 IA#/ - 0AMm,,U ^( ,,@ 1-@ < <Cb, 

where 

I) {( 2 ) 2( + _(l - (2)221/2 (2 +~~ -pJ3' a2m-1kJAa' ), 

and ak is defined by (3.2). 
As an immediate consequence, we have the following corollary; 
COROLLARY 3.7. If A is a positive definite matrix of the form (1.1), then, for 

m ? 1 and0 <13 < 1, 

(3.25) tI,,ttD'/' = y0(Mn, ', ,,) + (,y2(m, p, ,') + ( - 
)2m)1/2 0 ' 

a'b, 

(3.26) 1IVIAI/ =y(m, p, a) + (yl(m,I J, aI ) + (1 - ) )) 0 O < , b b 

where 

'yo(m, a, a) = 4((2 - a')2 + "2g2)"/2 ' Ia2m(fl a')f, 

'yl(n, ( , c, ) = 2(2 - C) fC2,mn1(,, ')|. 

Now, we see tlhat, for in ? 1, 

min LCwH42a/a 1f42,hA, 0 < X _'- , 
0 se' C: I 
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Hence, the A `2-norm is the "most desirable" of the A'12-norm for the SOR method 
with 0 < w _ 

Numerical results indicate that 

min I IQC'WIIA`/' = 11wb* E(m,) IIA"/2, 
0<w<2 

where I < wCb ? ((m, p) < 2 (see Table 3.2). For j fixed, the omega value that min- 
imizes the A'/2-norm is a function of m. By numerical experiments, we note that, 
for the first few iterations, this "optimum" omega is less than wi and, from then on, 
always greater than wOb. As m increases, it seems to approach wOb from above. 

For the D112-norm, numerical studies show that 

min I12MtID~1 / 12 2 DiW?(f,)ID/2, min | |?@ I ID1 /X = | | b -i f (tn ,#)||D 

O<c <2 

where 0 < bb ? E(mn, ) < 2 (see Table 3.2). For fixed a, the "optimum" omega 
with respect to the D"'2-norm varies with m. These values of omega are initially 
less than one but finally, after several iterations, greater than ct,. 

TABLE 3.2 

Valuies of omega at which mnin,< <212, I 2 occlurs for H = .98 antd Wb = 1.668 

1 .200 1.000 
2 .225 1.400 
3 .237 1.562 
4 .275 1.643 
5 .325 1.694 
6 .400 1.728 
7 .475 1.747 
8 .525 1.759 
9 .587 1.762 

10 .662 1.759 
11 .737 1.739 
12 .825 1.723 
13 1.719 1.717 
14 1.713 1.712 
15 1.704* 1.703 
16 1.708* 1.699* 
17 1.697* 1.697* 
18 1.796 1.694 
19 1.690 1.691 
20 1.680 1.689 
21 1.687 1.687 
22 1.684 1.684 
23 1.739* 1.684* 
24 1.683* 1.684* 
25 1.681 1.681 

I ncdicates that in formnUla (3. 1) the nmxiXniulUm did not occuLr t , - 
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We now show that (3.25) does not hold for all co such that 0 < cw < 2. We are 
able to establish that for 3 = 0 the right side of (3.1) is not maximized at A = ,u 
for all X such that 0 < X < 2 and all p such that 0 < , < 1, i.e., that the spectral 
norm of M,,(,, co) is not largest when A = ,. Numerical results indicate that, for 
various values of m, w must be restricted to the range 0 < wo< cb, in order for tha 
D"2-norm of ?n to be given by (3.25) for all , such that 0 < ,u < 1. We now show 
by an example that if , and/or m are not restricted, then (3.25) does not follow for 
all X such that cb < X < 2. Consider the case m = 2, a fixed such that p4 < 2, and 

= a such that a > 1 and p2 = 2(a - 1)/a '. Note that aO3(p, a) = 0 since a3 (,, co) = 

wy(22A - 2(cw - 1)). Since 4(COb - l)/cb = p = 2(a - l)/a2 < 4(a - 1)/- 

and 4(w - 1)/co2 is an increasing function of c, we see that a > cb. Clearly, for 
any other nonzero eigenvalue IA such that IAt 1 ms ,a3(C, a) > 0 = 

ja3(, a)1. More- 
over, -Y,(2, A, a) > 0 = y,(2, ,, a) for any nonzero eigenvalue ,u such that j.A # p. 
Hence, the right side of (3.1) does not assume its maxinium value at ,u = A for the 
case j3 = 0, m - 2, and co = a. The following numerical example illustrates this 
situation (see also Table 3.3). 

TABLE 3.3 

Valies of ,u in the range - p < A _ p at which (3.1) is maximized 
for the case = 2, .7, and I < w < 2 

co =0 3 a= 1 

1.0 .700 .700 
1.1 .700 .700 
1.167 .700 .700 
1.2 .700 .700 
1.3 .700 .700 
1.4 .420 .373 
1.5 .443 .373 
1.6 .467 .397 
1.7 .490 .397 
1.8 .490 .397 
1.9 .490 .397 
2.0 .490 .327 

Consider the rectangle with sides a = 3h and b = 4h, where h is the mesh size, 
e.g., 1.0 X 1.5 with h = 1. According to Young [11], the spectral radius of the Jacobi 
nmatrix B is given by 

U = 2 (cos-- + cos b (1 + 2'/2) .603. 2 a ~~b 4 

Henice, A- .364 and wc = 2//(l + (1 - )/_ 1.11. Choosing a 
1 + (I - 2gi-)' = 1.522, we are ready to determine which eigenvalue of B maxi- 
ilizes the right side of (3.1) with l3 = 0. The eigenvalues of B are given by 

- p,(cos- + cos- -) ' p- 1, 2, q = 1, 2, 3, 
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which are ?+(1 + 21/2) * ?.603, ?4 = ?.25, ?(1 - 2 12) - ?.103. Since 
a3(/, W) = W -(W2,U2 _ 2(w - 1)) and 'yo(2, A, w) -2 (-C)2 + W2A2} 1/2 Ia3(/z, w)t, 
we have 1a3 (i.603, 1.522)1 0, 1a3 (?.25, 1.522)1 .342, 1a3 (i.103, 1.522)1 = .159 
and 'yo(2, ?.603, 1.522) 0, 'yo(2, i.25, 1.522) .104, 74o(2, i.103, 1.522) .04. 
Hence, 

IIa IID1/- = yo(2, /Ua, a) + ('yO(2, /a, a) + (1 - a))' 

where a 1.522 and /'a = ? .25 which is not , and does not agree with (3.25) since 
a > w,. These results seem to reveal a slight oversight by Wachspress [8, p. 130]. We 
shall collate our results with his results in the next section. 

4. Approximate Norm Expressions. We now develop approximate expressions 
for the D 12-norm and the A 1/2-norm of ?m. This analysis is based on work 
by Wachspress [8]; however, the more compact notation of Young and Kincaid [9] 
is used (see, also, Kincaid [5] or Young [11]). 

THEOREM 4.1. If A is a positive definite matrix of the form (1.1), then, for m _ I 
andO K< < , 

(4.1) II Wm I Irn/] D Ja2m-1(/' w)I {I1 I-I+ IYa(P, w)I][ II+ (0o - 1)2 Iya(a, (w)1 1]11/2 

(4.2) |IISC IIA/ I A Ia2m-1(/ ,w)I (2 -C), 

where 

Ya(i1, c) =[(2w 4) + ((w)2 
_ _ 1 

-))1/2]2 

Proof: From (3.3) with /3 = 0 and Corollary 3.7, the D '2-norm of ?m is just 
the spectral norm of 

Mm(j o) |(1- w)a2m-2(9h Co) a2rn-1(, ), 

( 1 )a2. --I(Ft, C) a2m( (l, W) 

(For details, see Kincaid [5] or Young [11].) 
Following Wachspress [8], we now obtain approximate expressions that relate 

a2m-2 and a2m to a2m1.- Let 

71/2 _ 71/2( ) (w ) ? (Q1 )2 - ( - j))1/2 

71/2 _ 71/2 (= (1 ) - ((1 )2 - (c _ 

We also define 

E _E6(/ Co) = 1-4 22 I))14 r_ r(-, I = 12 

Therefore, it follows that 

1/2 = 1(1 + 2Yb = 1w"(1 

a= w2A2/(1 r)2, 'Yb = rw2)2t/(1 + r)2 = r2_y 

From (3.14), we have 
k 

X ~~~(k-0 )/2 i/2 
ak ak(/A, co) = (ka-)2/ 

j co 
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Thus, we see that 

ak _Ya (I + r + r - + rkl + rk). 

Hence, we obtain the following approximations: 
-1/2 1/2 (4.4) a2m.2 't-gt 'Ya 1/2^og2 tn-1 ta2m-1, a Ya 22m-1 

Therefore, we approximate Mm(,u, w) by the matrix 

Q,n(fl, w) -a2m-1(g, ~(l - )02p~ 1 | 
t (1 - () 'Ya2(p W)J 

Since Ta(j, w) may be complex-valued, we are interested in determining 
S(Qm(ji, W)QH(g, w)). The characteristic equation is, of course, 

(4.5) r2 - Tm(9U, O)r + Am = 0, 

where 

Tm(u, cw) = trace Qm(A, cA)Qm(Ai c) 

= 1a2m-I(g, W)12 [1 + LYa(i, w)II[1 + (1 ()2 I[Ya(P, )1 ']; 

Am = det Qn,,(j, wo)QM(A, w) = 0. 

Hence, 

and (4.1) follows. 
We now perform a similar analysis to obtain an approximation for the A 2'-norm 

formula. Recall from Kincaid [5] or Young [11] that the relevant 2 X 2 scalar matrix is 

V(p,w) - 

2 
2a.m (i w12i) 

V7tt,(y, ~ ~ ~ ~ ~ a.,, a2), (A=I(I 
(1 - 2 - -2 

where ,B- 1 and 

(4.6) p + ?/p = 2/, p2 + /p2 _ 4/2u-2. 

Again, we apply the approximations (4.4) to approximate Vm(ii, co) by the matrix 
( 1/2 - u/2 1 -oTip/2 1 

Um(P, () =a;m.- 
y WA g I2 

- ~~~1/2- I - co,/2p za -A c,/21 

= OgEj2 1 - Wpp/ 2 

1 - wgl/2p wUie/2 

where a,,,,-= a2,n-1(a, w), using (4.3). The relevant characteristic equation is again 
(4.5) where 

Tm(A, w) = trace UJn(j i) U(, co), Am = det Um(,, w) U (g, w). 

Hence, we have from (4.6) 
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det Um0U, w) = {a2-l 2 (l -2)( 2)} 

= a >{ IW(6 1)-l cO))-O 

using, (4.3). Therefore, Am = 0. Moreover, we note that 

Tm(T, w) = 1a2pl 1 2e + - 
2 -1 2 )} 

=1a2,,I!2 {( 1)2 + j ( E2 + 

= kX2Qin 1(2 _ 2)2, 

since, by (4.6), 

(1 -w,/2p) ? (1 - tp/2)l = ( - 1)2 - 2,u/2 + 1. 

Hence, 112S II/[ Tt T,,(jz, W), 1/2 and (4.2) follows. [] 
Equation (4.1) appears in Wachspress [8, p. 131] in a slightly different form. 

We note also that the restriction 0 < X- _ b must be added as previously mentioned. 
As an immediate consequence, we obtain the following corollary. 
COROLLARY 4.2. If A is a positive definite matrix of the form (1.1), then, for 

m_> 1, m>l~~~~i 
(4|7) 12 wb||2 f la.,,,,1(, J, Wb) I cb = 2 nwo0(, Wb)(Wb - ) 

4n(COb - l)tmjp = 2nir't-1/2(l + r), 

(4.8) 1 IPbI fA1'/2 . a (Hi wb)I (2 - ) = 2mcr4,zz, Wb)(Ob - l)m 

= 4m1(co, - 1)(1 - .2)1/2/.. = 2mr" -- 
r'/2(l - r) 

where r = COb- 1. 

Notice the agreement between Corollary 3.3 and Corollary 4.2. The expression 
(4.7) is given by Wachspress [8, p. 132]. 

By letting co = 1 in Theorem 4.1, we obtain the following results which agree 
with Corollary 3.7. In fact, by Corollary 3.7, we observe that we obtain the exact 
norm formulas. 

COROLLARY 4.3. If A is a positive de-finiite matrix of the form (1.1), then 

l lm t |fXt -' ~~1?-(JU, 1)1 (1 + p2)112 -= 2m-1(t + g2)12 
1-2_rn-1 

As noted by Wachspress [8], numerical studies indicate that if a significant error 
reduction is required, it is best to iterate a sufficient number of times with X = W, 
to accomplish this objective. It was shown in Kincaid [5] and in Young [II] that 
methods superior (in norm) to the ordinary SOR method can be obtained by either 
adopting a special procedure for obtaining the first iterant or by allowing the re- 
laxation parameter to vary in a schematic manner. 
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