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Norms on Direct Sums and Tensor Products

By P. Lancaster and H. K. Farahat

Abstract. We first consider the construction of a norm on a direct sum of normed linear
spaces and call a norm absolute if it depends only on the norms of the component spaces.
Several characterizations are given of absolute norms. Absolute norms are then used to
construct norms.on tensor products of normed linear spaces and on tensor products of
operators on normed linear spaces.

1. Introduction. In this paper, we consider the construction of norms on
composite linear spaces formed from direct sums and tensor products of normed
linear spaces and we consider properties of norms of operators on these spaces. The
notion of an absolute norm is introduced as a natural generalization of the relatively
familiar idea of an absolute vector norm on the space C, of ordered n-tuples of complex
numbers. Such norms on C, correspond to the “‘coordinatewise symmetric” gauge
functions as described by Ostrowski [3], and it is shown that our absolute norms
on composite spaces correspond in a one-to-one fashion with the absolute vector
norms on C,.

We are particularly interested in operator norms for which, in an appropriate
sense to be detailed later,

Il4& Bl = [14]] [IB]]

where A4, B are linear operators on linear spaces and () denotes the tensor product
of linear operators.

In Sections 2 and 3, we introduce absolute norms on direct sums of normed
linear spaces and obtain several characterizations of them. In Section 4, we discuss
norms on tensor products of linear spaces and exploit the “absolute” norm idea.
In essence, we are looking for a definition of a “natural” norm in a space L which
is the tensor product of normed linear spaces X and Y. One desirable property is
that the operator norms induced from those on X, Y and L should have the property
displayed above which defines a crossnorm (for a vector or operator norm). In Section
4, we make connections between absolute norms and crossnorms.

Norms of tensor products of operators are discussed in Section 5 and, in Section 6,
we illustrate our results with applications to complex matrices.

2. Absolute Norms. In this paper, all linear spaces are over the complex
numbers C. We frequently need to consider the supremum of sets of real numbers
formed from quotients. In such cases, it is tacitly assumed that the supremum is
restricted to a set for which the denominator is nonzero.

Let X, X,, --- , X, be normed linear spaces and let X denote the direct sum

X=XPX.® @®X. =2 ®DX.Ifx,yE Xand x = (x;, X, - , X,),
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402 P. LANCASTER AND H. K. FARAHAT

¥y = (Ui, Y2 "+, Va), We say that a norm on X is absolute if ||x;|| = ||y,
J= 1,2, s Iy 1mp11es ”xH = ”y“‘

A norm on X is monotonic if ||x;|| £ ||vill, j = 1,2, --- , n, implies ||x|| < ||y]|.

Our first results generalize theorems of Bauer, Stoer, and Witzgall [1], which
may be interpreted as the special cases of our results in which the given normed
linear spaces are one-dimensional.

THEOREM 1. A norm on X is absolute iff it is monotonic.

Proof. Suppose first that the norm is monotonic. Then ||x;||] = ||yl
Jj=12 -, n implies ||x|]| = |]y|| and [|y]| = [|x]|, whence ||x|| = ||y|| and the
norm is absolute.

Conversely, if the norm is absolute, we have

“(0’ x2’ Y xn)” = H%(xb Xo, * xn) + %(—x19 x2’ Tt xn)”
(1) é % ||(x1a M axn)“ + % ”(_xl’ KXo, * 9xn)”
= ”(xI, x2, et ’xn)“'

Now, suppose that X\ = ||x,||/||x{|| < 1. Then,

ey 22y sl = O X, - x|
= |1, X200 X)) + (1= MO, xa, -0, )]
S MG xe, - L x) A= N[O, x, -0, x|
S MG X2, oo x|+ A = M) I xe, -0, XD

using inequality (1). It follows that ||x,|| =< ||x]|| implies
Il(xl, X, 0, xn)ll é ”(xfs x2’ R xn)“‘

Since a similar argument applies to each position of x, it follows that the norm on X
is monotonic. [J

Suppose that, for j = 1, 2, --- , n, 4; is a linear operator on X;. Then, a linear
operator A = 4, @ - @ A, on X = >, @ X, is defined by
(Al @ A'Z @ c @ An)(xl’ Xoy, 0, xn) = (Alxl’ A2x2: T Anxn)
forallx; € X;,j = 1,2, ---, n. We consider now the so-called “bound” norm for

operators; that is, the norm induced by the norm of the space on which the operator
acts. Thus, ||4|| = sup ||4x]|/||x]|-

With the above notations, we say that a norm on X = ) _; @ X, has the maximum
property if, for any linear operator A = )., @ 4;, we have ||4|| = max; ||4,]|.
We are going to show that the norm on X is absolute iff the induced operator norm
has the maximum property.

LeMMA. Let X be a normed linear space and x, x' & X with ||x|| = ||x'||. Then,
there exists a linear operator A on X such that Ax = x' and ||A4|| = 1.

Proof. Let X* be the space of continuous linear functionals on X with the
usual norm. We shall call X* the dual of X. It is well-known (Dunford and Schwartz
[2] 11.3.14) that, given a nonzero x & X, there is an x* & X* for which x*x = ||x||
and ||x*|| = 1. We define the linear operator 4 on X by

Ay = (x*»)/|lx|)x’



NORMS ON DIRECT SUMS AND TENSOR PRODUCTS 403

for all y € X. Then, we obviously have 4x = x’ and, since ||x|| = [|x||,
[ 4x]] [Ix*)x"|| Ix*)|
A]| = su = su = su = ||x*|| = 1.
A= S = P ol — P e —
In the case ||x|| = ||x/|| = 0, we simply choose 4 = I. O

THEOREM 2. A norm on X is absolute iff it has the maximum property.

Proof. Suppose first that the norm on X has the maximum property and let
x,y € Xwith ||x;]| = |lyill, j = 1,2, -+, n. We are to prove ||x|| = ||y||. By the
lemma, there exist linear operators 4; on X; such that 4;x; = y; and ||4;]| = 1
for each j. Then, using the maximum property,

H(yl) Vo, = ,yn)H = H(Alxl’ A2x2’ Y An-xn)”
= H(Al @ o @ An)(x19 X2, * sxn)H

é H(xlyx2’ st 9xn)l| m.ax ”Alll = ||(x15x21 tee )xn)H'
1

Thus, ||y|| =< ||x||. However, reversing the roles of x and y we can also prove
[lx]| = |lyll and, hence, ||x|| = [|]].

Conversely, suppose it given that the norm on X is absolute and let 4 = Zi @ 4;
be a direct sum of linear operators on the spaces X;. If u = max; ||4,||, we are to
prove that ||4|| = p. Now, foreach j = 1,2, --- , n,

Hdx; || = 11411 xS w sl = el
and, since an absolute norm is monotonic,

HAXH = H(Alxl’ ) Anxn)” é H(”’xl’ Tt ’I-"xn)H = U ||x||

It follows immediately that ||4|| £ p.
To prove the reverse inequality, we have, for x; € X, x; # 0,

||AH 2 HA(X], 0) ) O)H — [l(Alxlr 0) ) 0)”‘
- H(xl)o)"' )O)H |[(x1,0,-~ ,O)ll
If w(x)) = ||Aixi||/]|x], then ||4:x]| = ||u(x)x.|| and, since the norm is absolute,
||A|| = |[([.L(x1)x1, 0, -, O)H/H(xu 0, .-+, O)H = u(x.).
Taking the supremum over all nonzero x, € X;, we have ||4|| = ||4,||. In a similar
way, we obtain ||4|| = [|4,]l, j = 1,2, -+, n, and we have ||4|| = p. O

3. Connection with Norms on C,. If C denotes the linear space of the complex
numbers with the absolute value norm, we write C, = CH C@ -+ @ C (n times).
Then, a norm on C, is absolute iff it is a function of the absolute values of the com-
ponents of the members of C,. Suppose once more that X,, --- , X, are normed
linear spaces and that we have an absolute norm on X = )_; @ X;. Define a function
hon C, by

(2) h(gla$2’ tee $En) = ||(-xl’x2’ 9xn)H9
where (&, -+ , £) € Co, x; € X, and ||x|| = |&, 7= 1,2, - ,n.lfuy;, € X;
and ||u;]| = 1, then ||¢,u,]| = |¢;| and we may write

(3) h(gla EZ’ R En) = ”(Elula £2u29 MY Enun)H'
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THEOREM 3. (a) Every absolute norm ||-|| on X defines, by (2), an absolute norm
h on C,. (b) Conversely, every absolute norm h on C, defines, by (2) again, an absolute
norm ||-|| on X.

Proof. (a) Using formula (3), we have

(i) h(fl,gz, ,En) = 0=> ”(Eluh Tt nun)” = 0=}£J’ui = 0=>El = 0
forj=1,2---,n
h(kgh )\E‘la T, )\En)

I

&y, -+ Neaun)||

NGy - Bl = N A &, -0 £,
A, - L 8)+ o m)) = A+ m, o L E 1)

H(E A+ ndur, - G+ m)un)|

= [|Guyy - Eu) + (i, -, man)l]
N, - &Gudl] + (s, ==+, mata)] ]
B e E) + R, o ).

This shows that 4 is a norm on C, and it is clearly absolute.
(b) Now, suppose it given that 4 is an absolute norm on C, and define a function
[|-]| on X by means of (2). Then, if ||u;]|| = 1, for j = 1, 2, --- , n, it follows that

”(xl» axn)” = ”(glul’ sfn”-n)”
where [¢,| = ||x;||, j = 1,2, -+, n. Then, we have
H(xl9 e yxn)H = 0= h(él’ e ’En) = 0 and Igll = ”xill
=>E,- = 0=¢X,' = 0.

Hx(xla T rxn)H = H()\xl’ ,Axn)H = h(|>‘($l, Tt I)‘l En)

(i1)

I

(iii)

IIA

()

(ii)
=\ A, -0 E) = N G, oo, X
HCers =+ %) + G, e syl = G + 30,0, % + wa)l]
(iii) = h(|lx: + wlls oo x4+ wall)

IIA

Al 4 Tl - s Hxall 4 [lyalD,
using the fact that an absolute norm is monotonic. Thus,

NGy oo sx) + O o Il = Al o [l D A Al - (sl D)
= Al - lxal) 4 AQall - HalD
= H(—xl» ’xn)“ + ll(yl’ s ’yn)“

This completes the proof. O

There is a close analogy between the result of this theorem and Theorem 5.2
of Schatten [4], in which he identifies unitarily invariant crossnorms on a Hilbert
space with symmetric gauge functions. In our next result, we show that the cor-
respondence obtained in Theorem 3 extends to the norms on the dual spaces of X
and C,. First, we recall that, for any normed linear spaces X, X,, - - * , X,,, the algebraic
isomorphism between
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X=X P Xx.® - @D Xx)* and XFD XFPD- - D X*

allows us to identify these two spaces. Thus, if z* & X*, we identify z*
with (x*, --- , x¥) and we have z*(x,, --- , x,) = Z,- x*x;. We first need a lemma
which parallels Theorem 1 of Bauer, Stoer and Witzgall [1].

LemMmA. If C, has an absolute norm h, then the induced norm h* on C% is also
absolute.

Proof. As above, we identify C* = (CP --- D O)* with C* P --- @ C* and
note that each element of C* is a multiplication by a complex number with the
absolute value of this number as norm.

Let (&%, --- , ) € C*@P --- P C* and let £ be multiplication by the complex
number o; exp(if;) where «; = 0. Then, taking a supremum over the set S of vectors
(&, -+, &) € C, with unit norm,

PEEX, -+ L E) = sup |E(E) + - + ERED)]

= sup |a,§ exp(if) + - -+ + .. exp(if,)].
Let n; = ¢; exp(i6;) so that A(ny, -+, 1.) = h(&, -+ , &) (since the norm on C, is
absolute) and take the supremum now over vectors (7, « -+ , 1.) & S (obviously the
whole of S):
h*(E*l:’ ) Et) = sup |C¥17]1 + ctt + annni = h*(dl, M) &n);
where &; is multiplication (of C) by «;. Thus,
PREX, - L 8D = RFAIELL - L gD O

THEOREM 4. Given an absolute norm ||-|| on X (= 2_; @ X)), let the associated
norm on C, (as in the lemma) be h. Then, the norm on X* is absolute and is associated

with the norm h* on C*. That is, if (x%, ---, x¥) € X*, ||(x%, -+, x¥)|| =
h*(ry, -+« , T,), where 7, & C* and ||7;|| = ||x¥]]-

Proof. Let u; € X; with ||u;]| = 1, j = 1,2, -+ , n. These vectors determine
a linear operator 0 : C, — X by means of 0(£, + - , &) = (&4, -+, £ul4,) Which
(by (3)) is norm-preserving. Hence, # has unit norm. Now, the composition
(x*%, --- , x*)0 is a linear operator from C, to C, so we have
4) (%, oo, x%)0) = (K, - XD 6l = GRS -, XD
and, taking the following supremum over elements (&, - - - , £) & C, of unit A-norm,

WG, oo xD0) = sup | 2 )| = sup | 3 £
= K)o, X)),

where x*(u;)” is the linear functional corresponding to multiplication of C by x*(u;).
Thus, from (4), we have

ek, - w2 ARet), - x4,
whenever ||y;|| = 1,7 =1, 2, --- , n, and, hence,
(4a) HGxE, - XD 2 s,
where s = sup ;-1 A¥(x%(@w)|, -+, |x*%(w)|") and we have used the fact that i*

is absolute. It follows from the definition of ||x*|| that, given ¢ > 0, there exists
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(for each j) a p; € X; such that ||o,|| = 1 and |x*(p;)| > ||x*|| — e Using the mono-
tonic property of A*, we therefore have
EE( ] s D) S R e) 4+ O, -, ) + @)
S B(xtE)] T oL D) + R, L ).
Thus,
WA - XA S s+ B4, -, €)

and since the continuity of #* implies that the last term can be made arbitrarily

small, we have s = A*(||x*||”, - - , ||x*||"), and we obtain from (4a)
©) et - DI 2 BRI, - D).
On the other hand, taking the following supremum over nonzero (x, - -+ , x,) © X
and noting that ||(x., <« , x|l = A(|xll, -+ 5 [xa]D,
. e D I EHEAL
6%, X = sup NG xdll = TP MG, - %]
) ,
> o |Ix%l ~ -
= < m(Ix%, -, LIxED).
T (e (=511 )

Combining this with (5), the theorem is proved. O
COROLLARY 1. (a) For any element (x%, - -+ , x*) € X*,

x%, +-+ ,xW)|] = su 1 |1
H( P ’ ﬂ)” a,'é)o h(alr t ’an) !

where h is the norm on C, associated with the norm on X.
(b) Forany (xl, MY xn) e X’

”(xla e ,x,.)][ = sup i) ”x!“

aiz0 h*(al’ Tty an) ’

where h* is the norm on C* associated with the norm on X*.

Proof. (a) In the last steps of the proof of the theorem, we have equality at
each stage and so the first result follows from (6).

(b) There is a norm-preserving isomorphism ¢ of X onto a subset X of
the second dual X** (cf. Dunford and Schwartz [2] 11.3.19) and, as above, we may
identify X** with > ; @ X**. Thus, to each z = (x;, --- , x,) € X corresponds
¢ = ¢(z) € X** and, for all x* &€ X*, 2(x*) = x*(2) or,

(-21’ e ’xn)(x"lt’ e ,xt)= (x*;’ e ’x’:)(xl s 0t 9xn)~

Applying () to evaluate ||2||, we have

lell = [j2]] = sup =2 L%l

ajz0 h*(al’ Y aﬂ)

However, if ¢; is the norm-preserving isomorphism of X; onto X; < X**, then ¢
may be defined by

¢(x1; e sxn) = (¢1x19 Tty nxn) = ('Ql’ e )'Qn)-
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Thus, if we identify z with 2, we may also identify x; with %; for j = 1,2, --- , n,
and we obtain

llz]] = sup Eai x| . O

aiz0 h*(al: R an)

In the next corollary, we present another characterization of absolute norms
in terms of a generalized Holder inequality.
COROLLARY 2. A norm on X is absolute iff

M 22 il 11 = Lzl 11z

forallz = (x,, -+, x,) E X, z* = (x*, --- , x¥) € X*,
Proof. For any norm on X, let z = (x,, - -+ , X,) € X and suppose that, under
the natural embeddings, z —» 2 & X**and x; > X, € X¥*forj= 1,2, -+, n. Then,

1260l o o SR _ o 3 [l sl

z[| = ||Z]| = sup =
[lzl] [12]] . ||| . l1z*1] - Hz* 11

However, the generalized Holder inequality (7) implies ||| = X (||x*I] Ilx:11/11z*]1)

for each nonzero z* & X* and so
e INIEA

Z|| = Ssu
Bl = s =y

and we see at once that the norm on X is absolute.
Conversely, if we are given an absolute norm on X, then part (b) of Corollary 1

and Theorem 3 give
e _—
el = sup i sl 3% 1] Il

a;z0 h*(al: Y an) z* HZ*H

and the inequality (7) follows.

4. Norms on Tensor Products. We now confine our attention to finite-dimen-
sional normed linear spaces X and Y and consider the construction of norms on the
tensor product X Q Y. If E = (e, e, -+ , €,} and F = {f, fa, -+ - , fa} are bases
for X, Y, respectively, then {e; @ fi: 1 £ j<m,1 < k < n} isa basis for X Y Y.
Furthermore, every element z of X (X) Y has a unique representation in the form
z=2;e;®y; where y,, - -+, y, € Yand, similarly, in the form z' = >_; x; ® fs.
An element of X ) Y is decomposable if it is expressible in the form x X) y where
x € X, y € Y. By means of the isomorphism X\ (X) x < Ax, we shall subsequently
identify C &) X with X, .

If a norm on X (X) Y has the property ||x & y|| = ||x|| ||y|| for all decomposable
elements of X (X) Y, it is called a crossnorm. Such norms (and operator norms, in
particular) are of special interest. The prime example is the absolute value norm
on the complex numbers.

Now let x* & X*, y* € Y*, then x* (X) y* € X* (X) Y* but may also be interpreted
as a linear functional on X X) Y which is characterized by

(® x* Q@ y)x Q) ») = x*xX)*).
Let E* = {e*, -+ ,ex} and F* = {f%, --- | f*} be dual bases for E and F, respectively,
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so that e*(e;) = 6,;, 1 < i, j < mand f4(f,)) =6x, 1 < k, I < n. Then, |e* Q f%:

1<j=<m1 £k < n} isa basis for X* (X) Y*. But this is also the dual of the basis
{e; X fi} for X Q) Y for, by (8),

(e¥ @ fE)e; @ fi)y = e"f(ei)f"l;(fz) = 80:;i0u = 0.1, G0

Thus, functionals of the form x* & y* span (X (X) Y)* which may therefore be
identified with X* ) Y* and, without ambiguity, x* (X y* may represent either
the tensor product of functionals x* & X* and y* & Y*, or a decomposable element
of X* X) Y*,

Ifzx =), e*@py* € X* Q@ Y*and z = ), ¢; ® y; is a typical member of
X KX Y, we may write

HZ*” — supl—zz = sup |Z€f ® y’iIg Eei ®ya| = sup I_Z y*;'yil.
. lzl] [z 211

If X, Y, U, V are linear spaces and A, B are linear operators 4: X > Uand B: Y — V, -
then the tensor product 4 ) B may be defined as a linear operator from X Q Y
into U ® V by

(AR B) 2 e; @y = 2 (4e)) D (By)).

Lemma. If U, V, X, Y are normed linear spaces, A: X — U and B: Y — V are
linear operators, and if the norms on X @ Y and U K V are crossnorms,
then ||4 Q B|| = ||4]] ||B]].

Proof. Let D be the set of nonzero decomposable elements of X X) Y and note
first that, if x @ y € D,

(4 ® B)Yx @ | = [I(4x) @ B = | Ax[| [|By]l,

since the norm on U X) V is also a crossnorm. Then, since the norm on X ) Y is
also a crossnorm,

[I(4 & Bywl] 5 o 1A Byol|

4@ BIl = suwp T = S0 ]
x| 1Bl
SR, pall pply < AINNEL D

In the case that U = ¥V = C, we deduce that, if the norm on X ) Y is a cross-
norm, then ||x* @ y*|| = ||x*|| ||y*||. Schatten [4] demonstrates a class of cross-

norms on X (X) Y for which the strict inequality generally obtains in the dual spaces.
We shall show how the concept of “‘absolute” norms can be used in this situation
to obtain equality for the functionals of the dual spaces and, also, for the case U = X,
V=Y.

We shall say that a norm on (a) X, or (b) X & Y is E-absolute if

(@ {E:' = |"75[sj =12 - ,m, implies “Z: E:’eiH = ”Z 7753:'”9 or

(b) ||y1” = Hai”’ J=12 -, m and y;, a; € Y lmply HZ é; ® y:”
= ||2_ e; ® a;]|, respectively.

Since the spaces X and X X) Y are isomorphic to direct sums

) Coo @D PCe,, and @R VNP Dln® V),
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respectively, we may deduce from Theorem 1 corresponding monotonicity properties
for E-absolute norms. We note also that, by Theorem 3, once the basis E is fixed,
E-absolute norms (in either sense) correspond to absolute norms on C,.

LeMMA. Let X be a normed linear space, let the norm on X be E-absolute and let
E* = {ex, --- , ex} C X* be the coordinate functions determined by E. Then, the
(induced) norm on X* is E*-absolute.

Proof. Using the first of the decompositions (9), the lemma is a consequence
of Theorem 4.

THEOREM 5. Let X, Y be normed linear spaces with a basis E = {e,, --- , e,}
Jor X and let a crossnorm be defined on X ) Y. If the norm on X X) Y is E-absolute,
then

(a) the norm on X is E-absolute,

®[Xe® yill = ”ZHY:‘H":’”; and

©) [lx* @ y*|| = ||x*|| ||y*||. That is, the norm on X* ) Y* is also a crossnorm.

Proof. (a) Choose v & Y such that ||v]] = 1. Then, if x € X, we have

lx @l = [lx| [loll = [Ix[].
Let x = ), fe;5 then ||x|| = ||x @ v|| = || e; @ 7| and, since the norm on
X ) Y is E-absolute,
¥l = 122 e @ iloll = |2 Il e @oll = 1|1 X Elesll. O

(b) We again choose v & Y with ||o|]] = 1 and, since the norm on X ® Y is
absolute, we have

2 e @yl = 1 e @ lilloll = 12X yille; @ull = 1 Iyl esll. O
() If x* = > £;e* © X* then, by the lemma, the norm on X* is E*-absolute
and, by part (b),

llx* @ y*II = 1122 eF Q@ &Il = |1 22 1lgv*]| €%l
Thus, using part (a),

le* @ w*[1 = ¥ 122 &l eXl] = [*Il 1122 &kl = [Ix*]] 1Iy*]. O

These results suggest that the formula of part (b) may provide a useful class
of norms of X (X) Y. We have .

THEOREM 6. Let X, Y be normed linear spaces, let E = {e,, --- , e,} be a basis
Jor X and let the norm on X be E-absolute. Then, the function ||- ||, defined on X Q) Y by

122 e @ yills = 1122 [1ysll el
is a norm on X Q) Y which is E-absolute and is a crossnorm.
Proof. Using the isomorphisms (9), we may identify X with C, and X ) Y with
Y, (=Y® - - P Y)as follows:

Zgiei(—)(él"” 9Em) and Zei®yiH(yls"' aym)-

j=1 i=1
By Theorem 3, the E-absolute norm on X determines an underlying absolute norm A
on C, for which ||[3]]| »; lle;ll = A(»ll, -+ , |ly.l]) and, in its turn, 4 determines
an absolute norm on X (X) Y for which
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12 er @il = Alyally ==+ o 1lymlD) = 1122 psl] 4]l

But this norm is just the function ||-||, and so we obtain the first part of the theorem.
To see that the resulting norm is a crossnorm, let y € Yand x = Y, {;e; € X. Then,

x@ylh = | X e @il = 122 [Ewllesll = 122 &lesl] vl = {ixl] 1yl
and the theorem is proved. O

We note that, by Theorem 5, the norm induced in X* &) Y* by ||-||, is also a
crossnorm.

CoRrOLLARY. Let X, Y be normed linear spaces. Let F = |f,, --- , f,} be a basis
Sfor Y and let the norm on Y be F-absolute. Then, the function ||-||, defined on X Q) Y by

{ kZ»"k@fk ) = sz [[xil] fa

defines a norm on X Q) Y which is F-absolute and is a crossnorm.
The proof is the obvious parallel of that for Theorem 6.

5. Norms of Tensor Products of Operators. We now consider the definition of
operator norms. If X is a linear space and L(X) is the linear space of bounded linear
operators from X into itself, then we require the usual vector norm axioms for a
norm on L(X) together with the submultiplicative property: ||AB|| < ||4|| ||B|| for
all A, B & L(X). Then, L(X) is a normed algebra.

If X, Y are finite-dimensional linear spaces, we now are interested in the tensor
product L(X) @ L(Y). This is not only a linear space; it is an algebra in which

10) (4, ® B;)(A, ® B,) = A, 4, ® B\ B,

holds for all 4,, 4, € L(X) and B,, B, € L(Y). As such, L(X) & L(Y) may be iden-
tified with the algebra L(X ) Y) in such a way that the element 4 &) B of L(X) Q L(Y)
is identified with the “tensor product” 4 Q) B of the operators A4, B.

If L(X), L(Y) are finite-dimensional normed algebras, we are to use the norms
on L(X), L(Y) to define a norm on L(X & Y) which is submultiplicative and will
be a crossnorm. That is, if M, N € L(X R Y), then ||MN|| < ||M||||N|| and if
4 € LX), BE LX), ||4® Bl = ||4]|||B]].

The first suggestion is to apply Theorem 6 directly after picking out a basis for
L(X). The results of Theorem 6 then guarantee all the required properties of the
norm on L(X ® Y) with the exception of the submultiplicative property. That is,
L(X ® Y) need not be a normed algebra. In the following case, we have the sub-
multiplicative property.

Let X be the space C,x,, of m X m complex matrices and let E;; & C,.x. be the
matrix with a one in the i, j position and zeros elsewhere. Then, E = {E,;;: 1 £ §,
j £ mj} is a basis for C,x,. Our result applies to m X m matrices whose elements
belong to a normed linear algebra, an algebra of bounded linear operators, for
example.

THEOREM 7. Let Y be a normed linear algebra and suppose a norm is given on C,x
which is submultiplicative. If BE Cpxm @ Ylet B =Y 15: i5m Es; @ B, and suppose
further that the norm on C,y, is E-absolute. Then, the function ||-||, defined

on Coxm X Y by
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t,17

is a submultiplicative norm and is a crossnorm.
Proof. As noted above, we have only to prove the submultiplicative property.
Let 4, B € Coxm X Y with

4 = ZE11® A5, B = ZE{;@B”.
Then, since E;,E,; = 8;,E.;, we obtain from (10) and the usual matrix multiplication

AB = (Z E; @ A.‘k)(z En‘ ® Bli) = Z (Eii ® Zk: AikBki),

1Bl = |

and

s = |53

Now, the norm on C,x, is monotonic (with respect to E) and the norm on Y is
submultiplicative, so

4Bl = || 2 (3 11 4all 1Bull) Exs
.7

= |2 (X 114all B) (3 1111 B5))|

= (5 et 2)(F 1 7))
But then the norm on C,x,, is submultiplicative so that
4Bl < || 2 1 4all Eal|-|| 2 11Bull B[ = 1141L 11BIL. O

We remark that, with the norm of this theorem, ||4||; is equated to the norm
(in C,.x.) of the nonnegative matrix [||4;;||]] which, by the classical Perron-Frobenius
theorem, has a maximum nonnegative eigenvalue A, If Y is an algebra of bounded
linear operators so that 4,; & L(S) for some linear space S, then 4 & L(S,) and
the proof of a theorem of Ostrowski (Theorem 4 of [3]) can be used to show that
the eigenvalues of A (if any) cannot exceed \ in absolute value.

We now turn our attention to the formulation of operator (bound) norms in the
usual -way from the norms on the underlying spaces. Thus, if 4: X — X, ||4]|| =
supex ||4x]|/]|x].

We note first that if A: X — X and B: Y — Y are linear operators and if the norm
on X ® Y is a crossnorm, then by the first lemma of §4, ||[4 @ B|| = ||4]||||B]|.
Once again, we are interested in those norms for which equality obtains.

Consider the norms ||-||; and [|-||, defined on X & Y in Theorem 6 and
its Corollary. We shall use the same subscripts for the norm defined on (X ) Y)
by these vector norms. We denote the identity mappings on X and Y by I, Iy re-
spectively.

LemMa. (i) Let the norm on X be E-absolute and B & L(Y), then

[l1x @ Bl = [|BI].
(ii) Let the norm on Y be F-absolute and A € L(X), then

E,.,-H.
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14 & Irll. = |l 4.

Proof. We shall only prove (i). Part (ii) is proved by a similar argument. Writing
z =2 e ® y, for a typical element of X %) ¥,

”[ ® B” = sup ﬂ;‘i—%ﬂ = sup U_Z__”_B!i_HLH
X 1= =
X e @yl wer 12 (ill el

and using the monotonic property of the norm on X, we obtain |[Ix & B||, < ||B||.
However, we have noted that, for a crossnorm on X Q Y, [|[Ix & B|| = ||Ix|| ||B]| =
[|B|]. Part (i) is obtained. O

THEOREM 8. Let X, Y be finite-dimensional normed linear spaces with bases E
and F, respectively. If the norms on X, Y are E-absolute and F-absolute, respectively,
and if the vector norms || ||, and || -||. of Theorem 6 coincide, then |4 K B|| = ||A|| ||B||
for the corresponding induced norms.

Proof. We observe that 4 Q B = (4 & Iv)Ix @ B) and, since an induced
norm is necessarily submultiplicative,

14 ® Bll = [|4® Irl|l [11x ® BI|.

The lemma then gives ||[4 @ B|| < ||4]| ||B|| and, since we have already proved
[|[4 ® B|| = ||4l| ||B||, the theorem is proved. O

We note that it is always the case that |[[x @ y||; = ||x & y||s, since both norms
are crossnorms. In the theorem, we suppose this true for all elements of X ) Y
and not just the decomposable elements.

6. Application to Vectors and Matrices. Let X, Y be linear spaces with E =
{e, +++ ,e,! abasisfor Xand F = {f,, --- , f,} a basis for Y. Then, linear operators
A: X — X and B: Y — Y have matrix representations 4,; € C,.xn, With respect to E,
and B, & C,., with respect to F. We may choose as a basis for X ) Y the vectors

el®f1)61®f2"” ael®fn5e2®fli s )ez®fn1 e 1em®fl,"' Qem®fn9

in this order, and it is easily seen that the matrix representation of 4 ) B with respect
to this basis is the familiar Kronecker, or direct product of the matrices Ay, By,
written 4, & By.

The unit vectors e, in the space C/ of column vectors have a one in the kth place
and zeros elsewhere. In the case X = C/, Y = C!, we may choose bases E and F
of unit vectors and then the above basis for C; @ C; = Cl, is also of unit vectors.
The norm of C/ is E-absolute if, for all pairs x, y & C/ with |x;| = |y;| for j = 1,
2, --- , m, we have ||x|| = [|y||. This now coincides with an absolute vector norm
in the usual matrix theoretic sense (Bauer, et al. [1]).

Let a € C! & C.. Then, there are complex numbers \;, for which

n

a = Z Z:; Nixle; ® fe)

k=1
and we may also write
7 n

a = Zei @)’(i) = Z x(k) ® fln

i=1 k=1
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where
] s

P = Tk = A2 L x® = 3 Ay = Aok |
p : 7 :
Ninl LA

In the norms of Theorem 6 and its Corollary, we see that [|a||, and ||a]|, are the
X-norm (norm in C/) and Y-norm (norm in C’), respectively, of

[yl N

i
@ |l

[y .

and

Llly""’ I 1]

In particular, if d = x & y is a decomposable member of C, & C., then ||d||, =
ld]]. = ||x|| [[¥l], since both norms on C/ &) C, are crossnorms (Theorem 6).

As an application of Theorem 7, we take for the space Y the n X n complex
matrices with an appropriate norm and the operator A is then an mn X mn partitioned
matrix. The norm on mn X mn matrices is then constructed from the norms of the
n X n blocks as indicated and, provided the norm on C,, depends only on the
absolute values of matrix elements, the resulting norm on C,,.x.. iS @ crossnorm.
A very special example is the case of a p-norm (1 = p < 2) used in both spaces C,,x.n,
C.x» Which yields the same p-norm in C,.xm.. That is, for a matrix 4 € C,x.., for
example,

m 1/p
41l = (Z jait)

i,7=1

It is a trivial matter to check the crossnorm property directly in this case.

To illustrate Theorem 8, suppose that C/, C, have the same p-norm imposed
on them. Since these are merely vector norms, we may have 1 < p < « in this case.
Then, ||||; and ||-||, coincide and yield the same p-norm on C’,, = C/ Q) C.. The
operator norms in Theorem 8 are then those induced by the vector p-norms and are
again crossnorms.

It is noteworthy that, for these norms and for 1 < p < 2, Theorem 7 is not in-
cluded in Theorem 6. To see this, we have only to show that a matrix norm induged
by an absolute vector norm is not necessarily absolute (with respect to the basis

{E;;} in C,«.,). Consider the case p = 2 (the euclidean vector norm) and the matrices

=!_11 _[1 —1]
g L1 1]’ ’ L J

It is well known that the matrix norm induced by this vector norm is the spectral
norm and, for any matrix A4, is given by the square root of the largest eigenvalue
of A*A (star denotes a conjugate transpose). The norms of matrices 4 and B with
respect to an {E,;}-absolute norm are obviously equal. However, their spectral
norms are 2 and /2, respectively.
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This case may be contrasted with the cases of p = 1 and p = = for the vector
norm. It is well known that the induced matrix norms are | E,;}-absolute in these
two cases.
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