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One-Step Piecewise Polynomial Galerkin 
Methods for Initial Value Problems* 

By Bernie L. Hulme 

Abstract. A new approach to the numerical solution of systems of first-order ordinary 
differential equations is given by finding local Galerkin approximations on each subinterval 
of a given mesh of size h. One step at a time, a piecewise polynomial, of degree n and class 
CIO, is constructed, which yields an approximation of order O(h2nf) at the mesh points and 
O(hn+') between mesh points. In addition, the jth derivatives of the approximation on 
each subinterval have errors of order O(h"-i+1), 1 < j _ n. The methods are related to 
collocation schemes and to implicit Runge-Kutta schemes based on Gauss-Legendre quad- 
rature, from which it follows that the Galerkin methods are A-stable. 

1. Introduction. In this paper, we show how Galerkin's method can be em- 
ployed to devise one-step methods for systems of nonlinear first-order ordinary 
differential equations. The basic idea is to find local nth degree polynomial Galerkin 
approximations on each subinterval of a given mesh and to match them together 
continuously, but not smoothly. 

For each n > 1, a method is defined (Section 2) which uses an n-point Gauss- 
Legendre quadrature formula to evaluate certain inner products in the Galerkin 
equations. For sufficiently small step size h, a unique numerical solution exists and 
may be found by successive substitution (Section 3). After showing that these Galerkin 
methods are also collocation methods (Section 4) and implicit Runge-Kutta methods 
(Section 5), we show that the mesh point errors are of the order O(h2I), and the 
global errors are of the order O(h"n') for the approximate solution and O(h'-i+ )5 
1 < j _ n, for its jth derivatives (Section 6). A proof of the A-stability of the methods 
is given in Section 7, and numerical results are presented in Section 8. 

Discrete one-step methods based on quadrature, other than the classical Runge- 
Kutta methods, have been studied by several authors, including the explicit schemes 
in [12, p. 101], [13], [14], [22] and the implicit schemes in [1], [2], [3], [6, Chapters 4, 
9], [10], [12, p. 159]. Also, discrete block implicit methods are given in [21], [24], [25]. 
The methods of this paper, however, yield continuous piecewise polynomial ap- 
proximations with the inherent benefit of derivative approximations. Earlier uses 
of piecewise polynomials may be found in [4], [5], [11], [15], [16], [17], [26]. 

Finally, we remark that recent "semidiscrete" Galerkin methods [7], [9], [181] 
[19], [23] reduce initial-boundary value problems to systems of ordinary differential 
equations. When combined with such methods, our techniques open the possibility 
of "fully discrete" Galerkin methods for these problems. 
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2. Piecewise Polynomial Galerkin Methods. We consider the numerical solu- 
tion of only a single nonlinear ordinary differential equation 

(1) u'(t)- = t, U(t)), to <_! t, 

(2) u(to) = uo 

on a finite interval [to, tN], although the results carry over to systems of such equations. 
We assume that f(t, x) C C2" in [to, tN] X (- m, o), so that the exact solution u(t) E 
C2n+' [to, tN], n > 1, and we also assume that f has a Lipschitz constant L in this 
same region. 

Let r: ti = to + ih, 0 < i < N, be a uniform mesh for the sake of simplicity. (It 
will be seen that our arguments do not depend crucially on this assumption since 
our method is a one-step method and step size changes are easy.) Then, we may ap- 
proximate u(t) on each subinterval by an nth degree polynomial 

n+1 

(3) y(t) = bi)jpj+Q(t), t < t < ti+1, 0 ? i < N - 1, 
j-1 

where se,j+(t) are basis functions which are nth degree polynomials on each [ti, t,+1]. 
For example, {I,k }I + might be the nth degree B-spline basis functions of Schoenberg 
[20] or some other piecewise polynomial basis. Since the b, may change from one 
subinterval to the next, y(t) need not be as smooth as the pok(t). 

We require that y(t) be continuous on [to, tN] and that it provide a local Galerkin 
approximation on each subinterval [ti, t1+j], 0 < i < N - 1. Accordingly, on each 
subinterval, we write the following n + 1 equations (one linear, n nonlinear) for 
the b', 1 < j? n+ 1, 

(4) = Y-, i > 1, 

Uo, i - 0, 

(5) (y' - f(t, y), (ci+A), = 0, 2 < k _ n + 1, 0 < i < N - 1, 

using the notation 

(v, W)i = v(t)w(t) dt. 

To obtain a computational form of (4)-(5), we assume that the (soi'j, pi+k)j in 
(5) are computed exactly, i.e., analytically or by an exact quadrature formula, while 
the inner products (f, 'p1+k)j are replaced by the n-point Gauss-Legendre quadratuire 
formula having the form 

(6) v(t) dt = h : WkV(O-i,k) + O(h 2nl), 

(7) 'i, k= ti + Okh, 1I k < n, 

where Wk > 0 and 0k are the weights and abscissae for [0, 1]. The result is that (4)-(5) 
are replaced by the following set of N systems of n + 1 nonlinear equations to be 
solved in succession 

(8) Ab =) = c">(b(')), 0 < i < N - 1, 



ONE-STEP PIECEWISE POLYNOMIAL GALERKIN METHODS 417 

where 

(9) bu) = {b8 , b) , , 

(10) Ak,i = Pi+i(ti), k = 1, 

(YPi+k, yN+A)i, 2 < k < n + 1, 1 < j < n + 1, 

kc')(b(')= Y k = 1, 

(ii) ~~~n / n+ 1 

(11)= h E Wmf (Ti.ms E b" Wi+i(ai,m))~9i++k(ci,m), 2 < k < n + 1. 

We consider only the cases where A is nonsingular. Certainly, A will be nonsingular 
when {ti+k}kn+ span (^n-l the class of (n 1)st degree polynomials. For then, 
Ab`' = 0 implies y(ti) = 0 and (y', Oi+k) = 0 2 < k < n + 1, which, in turn, 
imply y' 0_ , y 0_ and b "' = 0. However, this condition is not necessary, since 
A is nonsingular in the case of the cubic (n = 3) B-spline basis functions used for 
the computations given in Section 8, but { (Pik=2 do not span (P2. Since we may 
multiply (8) by A-1, our numerical method depends on the solution of 

(12) b ='i = A-lc(z)(b(t)), 0 < i < N - 1. 

3. Existence and Uniqueness of the Numerical Solution. Having let L denote 
the Lipschitz constant for f in [to, tN] X R, where R -= (-co, o), we use 
the loO-norm to show that the right side of (12) is a contraction mapping on R"+' when 
h is sufficiently small. Since 

IIAlc(i)(b) - Alc(i)(b*)jjK < IIA-ll1 11c(")(b)- - (b*) 

and 

H1c")(b) - c(z)(b*)1Hm ? hQjL Ilb - b*II., 

where 

n n- 1 

(13) Q, max E Wm jPi+kG(im)i I jP +i(O m)ii 
2? kI_n+1 m= 1 

it is clear that 

IA-1c(t)(b) - A-c(')(b*)IL, - hQ2 lb - b*I1O, 

where 

(14) Q2 = Q1L jIA 11K. 

Thus, we have a contraction mapping, and (12) has a unique solution which may be 
found by successive substitution when 

(15) h < Q21 

4. The Galerkin Method as a Collocation Method. We show here that the 
approximate solution y(t) satisfies (1) at the quadrature points in each subinterval. 

Using (11), we may write (12) as 
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n 

(16) b1') - A7l,yi + E 'yimf(o-im, Y(o,,m)), 1 S j< n + 1, 
m-i 

where 
ni+1 

rY/j,m = hwm E A,1kOi+k(Ti,rm)* 
k-2 

Then, from substituting (16) into (3), we have at the quadrature points 
n 

(17) y'(ai,k) =akYi + E #m;kf(Ai,mn Y((Ti,r)), I ? k _ n, 
m-I 

where 

n4 1 

ak A=P (ri,k 

and 

n+1 

Om,Y,k - Yi.mf1 +i(ai,k)- 

In the following, we make use of the fact that whenever f is independent 

of u and f E ( the exact solution u ? (P, and y u. This follows because thee 

quadrature (6) is exact for v E (P2n1, in this case ftsi+k C (Pln-, and the exact com- 
putation of (f, pi+k)i means (8) is equivalent to (4)-(5). Since u satisfies (4)-(5) and 

y satisfies (8), they satisfy equivalent equations in this case and, by uniqueness, 

u - Y. 

Let q(t) C Pn be defined by q(ti) = 1, q'(ao, k) = 0, 1 < k < n, and let f = q' so 
that u' = f, u(ti) = 1 leads to u = q y on [ti, ti+,]. Substituting y = q and f q' 

into (17) yields 

(18) ak,= ? k <k< n. 

Now for each r, 1 r < n, let q,(t) C (5Pn be defined by qr(tt) = 0, q'(a ,k) = ak, 

1 ? k ? n, and let f = ql and u(ti) = 0 so that u = qr = y. This time, substituting 

y = qr and f = q$ into (17) shows that 

(19) Or,k = ar,k, I < r, k < n. 

Consequently, (17) becomes the collocation equation 

(20) Y'(0i,k) = f(Ji,k, Y(ri,k)), 1 < k < n, 

showing that one-step collocation to (1) at the quadrature points by means of a 

continuous piecewise nth degree polynomial is equivalent to the Galerkin method. 

Notice that the proof of this collocation property depends on the use of exactly 

n points in a quadrature formula (6) which is exact for v C (P2n&- . The proof would 

break down if (6) had more than n points or different weights and abscissae. 

5. The Galerkin Method as an Implicit Runge-Kutta Method. Wright [26] has 

shown that any one-step collocation method is equivalent to some implicit Runge- 

Kutta method. Having already shown that the Galerkin method is equivalent to a 
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certain one-step collocation method, we now derive the particular implicit Runge- 
Kutta method to which they are both equivalent. Of course, the Galerkin and col- 
location methods yield continuous approximations, so "equivalent" here means 
"matches the discrete values" of the Runge-Kutta approximation. 

From (3) and (16), we have 
n 

(21) yi+1 " UlY, + E ^^('i'," Y(oi,.)), 

where 
n+1 

a= E~ A7, ,plf+ (t;+,) 
A-1 

and 
n+i 

im= SYi,mq)i+ ,(t,+i). 

If we let =-O, u(ti) 1 so that u=1 = y, then substituting y 1 and = into 
(21) produces 

(22) a- 1. 

Next, for each r, 1 r < n, let q,(t) E Pgn be defined as in Section 4. Now, sub- 
stitution of y = q, and f = ql into (21) leads to 

qr (ti + 1) -p 

Since the n-point Gauss-Legendre formula (6) is exact for elements of 6P._j, we also 
have 

rts+, n 
qr(ti+l) = qt) dt = h E Wkqrl(cj,k) = hw,, 

k-1 

from which it follows that 

(23) 7r = hwr, 1<r < n. 

Together, (21)-(23) imply 
n 

(24) yj+j = Yi + hi EWnf(oa,,., y(a;,J)), 
ml1 

and this is simply the implicit Runge-Kutta method based on the n-point Gauss- 
Legendre formula (6). Again, the proof of (24) depends on the fact that (6) is a 
Gauss-Legendre formula with exactly n points. 

Thus, each of Butcher's implicit Runge-Kutta methods based on n-point Gauss- 
Legendre quadrature [2] has a corresponding "equivalent" Galerkin method using 
nth degree piecewise polynomials. 

6. Error Bounds. In the following, a technique similar to that used by Shampine 
and Watts [21], [25] is employed to obtain asymptotic error bounds for the discrete 
values given by an implicit Runge-Kutta method. We view the Galerkin method as 
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a discrete one-step method and use Henrici's theory [12, Chapter 2] of such methods. 
Continuous error bounds are then obtained from the discrete ones. 

First, we need to define an increment function. Since, from (20), y'(t) interpolates 
f(t, (t)) at ai k, 1 < k < n, the Lagrangian representation for y'(t) is 

(25) Y () 1 k 4(t)f(Ui,k, Y(Oi,k)), ti < t < ti+l1 
k= 1 

where 
n 

(t -o-',)_ _ Ik(t) = H ( ) s I < k < n. 
ji-;ij-k (o'i,k - ',i 

Integrating (25) leads to 
n r 

(26) y(t) = Yi + E f(Oi, Y(Cri,k)) k(s) ds, ti t ti+. 
k=1 t 

Using (26), we now may write the Runge-Kutta form of the Galerkin method (24),. 
in terms of an increment function 4, 

(27) yj+j= yi + h4(ti, yi; h), 0 < i < N - 1, 

where cJ satisfies 
n 

(28) 4(ti, yi; h) = 3 wmgm(ti, yi; h) 
mr- 

and 

gm(tj, yi; h) = f(0i,m, Y(Ori,m)) 

(29) = ti + Oh, Yi 
+ 

j; h) (s) ds < m < n. ( gk(ti 

In order for Henrici's theory to apply, we must show that 4 isLipschitz continuous. 
with respect to y in Q _ [t(, tN] X R X [0, h lf, for any i, 0 < i < N- 1, and any 
y* = R, y*(t) is the Galerkin approximate solution to u' = f(t, u) u(ti) y ti < 

t < ti+1, then (26) holds for y* 
n r 

(26') y*(t) = yi + >3 
J(oj, y*Qf.k)) 

k~ 

Letting B0, be a constant such that 
n t 

(30) > max f k(s) ds < hBo, 0 < i < N - 1, 
k= 1 ti t< t cti+, i 

and subtracting (26) and (26') leads to 

(31) max Iy(t) - Y*(t) < 1 yi -Y, , ?- i _ 
ti tcti+, 1 - hoBoL 

where 0 < h < ho < (B0L)- . The Lipschitz condition then follows from (28), (29) 
and (31) since, for 0 < h < ho and 0 ? i < N - 1, 
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1I(ti, yi; h) - cJ(ti, y*; h)| < 
: Wn Igm(ti, yi; h) - gm(ti, y*; h)| 

m=1 

(32) ? L fj Wm y(ai -m) y*(ai m)| 
m=1 

< L 
1 - hoBoL Yi - YA ., 

where EZ_= V,m = 1. 
Now, we may prove 
THEOREM 1. Assume that f(t, x) E C- in [to tN] X R so that u(t) C C2+ 1[tU0 IN], 

and denote by L the Lipschitz constantfor f in this region. Let the Galerkin method be 
defined as in Section 2 for some piecewise polynomial basis functions of degree n _ 1 
and the n-point Gauss-Legendre quadrature formula (6). If Q2 and Bo are defined by 
(14) and (30), respectively, and 0 < h < ho where 0 < ho < min (Q92, (B0L)- 1), then 
there exists a constant M such that 

(33) |u, - YiJ ? Mh2n, 0 ? i ? N. 

Proof. The local truncation error ri is defined from (24) by 
n 

Ui+1 = ui + h fj wmf(ai,m, u(ai,m)) + Ti. 
mi1 

Thus, 
ti+l ~~~~~~n 

= - fJ J(t, u(t)) dt - h E Wmf(aji,m, U(ai,m)) 
m=1 

and, from (6) TriI < Kh2 +', where K is a constant depending on the maximum 
of u'2n+ '1(t) on [to, tN]. The bound (33) follows immediately from Henrici's Theorem 
2.2 [12]. Q.E.D. 

The discrete error bounds (33) agree with those for Butcher's methods [2]. 
We obtain continuous error bounds in 
THEOREM 2. Let the hypotheses of Theorem 1 hold. Then there exist constants 

E,, 0 < j < n, such that 

(34) max lu(t) - y(t) < Eohn+', 

and 

(35) max U y(t) - y (t)I ? Eihn i+, 1 j ? n, 0 < i < N - i. 
t, s I t I i+i 

Proof. We write u(t) in the same form as y(t) in (26) by using the n-point Lagran- 
gian quadrature found there 

rt 
u(t) = u, + f f(s, u(s)) ds 

(36) 
n { 

= Ui + E f(ai,k, U(ao,k)) i k(s) ds + Rn(t), t i < t t+ 
k=I 
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where R.(t) = O(hn"-'). Subtracting from (26), we find that 

max Iu(M(t-y01 < 1hBL lui -Yi + O(h 0 ) i < N- 1; 
t.Sigti+1- 1 

and (34) follows from (33). If we differentiate (26) and (36) j times using R'i'(t) = 

O(h -+l ) and subtract, we can show that 

max lu()(t)- y()(t)l < LBj max IU(O,.k) - y(a,k)I + O(h n1), 
ts~~~~~~~~~~~~~~I k;5i5+ lSfn 

for1 I < n, 0 < i ? N - 1, where 
n 

max Il()) < B,. 
k-I ti;5t9ti+t 

Then (35) follows from (34). Q.E.D. 

7. A-Stability of the Galerkin Methods. Dahlquist [8] defines A-stability as 
follows. 

Definition. A k-step method is called A-stable, if all its solutions tend to zero, 
as i -* co, when the method is applied with fixed positive h to any differential equation 
of the form u' = Xu, where X is a complex constant with negative real part. 

Butcher's implicit Runge-Kutta methods based on Gauss-Legendre quadrature 
[2] have been shown by Ehle [10] to be A-stable. Ehle observed that the n-stage method, 
applied to u' = Xu, yields y,+i = Pnn(Xh)yi, where Pn,(Xh) is the nth diagonal Pade6 

rational approximation to exp (Ah). A-stability follows from the fact that IP,,(Xh)l < 1 
for Re (Xh) < 0. Our Galerkin methods, which from (24) give discrete values y, 

identical to those of Butcher's methods [2], are therefore A-stable. 

We should remark that Axelsson [1] has used similar properties of subdiagonal 

and diagonal Pade rational approximations to prove A-stability for implicit Runge- 

Kutta methods based on Radau and Lobatto quadratures. It is natural then to ask 

whether a Galerkin method which uses these quadratures rather than Gauss-Legendre 

would yield corresponding "equivalent" methods. The answer is no. If (6) were an 

n-point Radau formula with a,,, = ti+1, it would be exact only for v E n-2. The 

quadratures for (f, (Pi+J would not be exact for f C G'n-l y would not be exact for 

U E (^ns (24) would not hold, and the order of the Galerkin method would be O(h'-'), 

whereas Axelsson [1] and Butcher [3] have shown that an n-stage implicit Runge- 

Kutta method based on Radau quadrature has the order O(h2"-1). Similar results 

are true of Lobatto quadrature. 

8. Numerical Examples. In this section, we give numerical results of an A- 

stable piecewise cubic (n = 3) Galerkin scheme of order 6. We have employed Schoen- 

berg's [20] cubic B-spline basis functions where so.+i has its support on [ti+i-4, ti+i]. 

The calculations were performed on a CDC 6600, which has about 14 decimal digits, 

using a successive substitution iteration at each step to solve (12). 

First, we consider problems for single equations. 

Problem 1. u' = -2tu2, u(0) = 1, u(t) = 1/(l + t2), 0 < t < 1. 
Problem 2. u' = l/(l + tan2 U), U(p) = 0, u(t) = arctan t, 0 < t < 1. 
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Problem 3. u' u -(2t/u), u(O) = 1, u(t) = (2t + 1)1/2, 0 < t < 1. 
Problem 4. u' = u, u(O) = 1, u(t) = e', 0 < t < 10. 
Several uniform meshes are used for each problem. Tables 1-4 are designed to 

TABLE 1 

Error Norms for Problem 1 

h llje(t; h)j1' Hle'(t; h)jIj IIe"(t; h)1' 1le"'(t; h)I1' 

1 3.55(10)-4 7.94(10)-2 8.20(10)-1 3.49(10)0 
2-1 8.54(10)-6 (5.38) 1.30(10)-2 (2.61) 3.36(10)-1 (1.29) 4.10(10)0 (-0.23) 
2-2 1.18(10)-7 (6.18) 2.65(1o)-3 (2.30) 1.29(10)-1 (1.38) 2.71(10)0 (0.60) 
2-3 1.79(10)-9 (6.04) 3.75(10)-4 (2.82) 3.61(10)-2 (1.84) 1.46(10)0 (0.89) 
2-4 2.81(10)-1' (6.00) 4.83(10)-5 (2.96) 9.29(10)-3 (1.96) 7.45(10)-1 (0.97) 
2-5 3.45(10)-13 (6.35) 6.09(10)-6 (2.99) 2.34(10)-3 (1.99) 3.74(10)-1 (0.99) 
2-6 1.85(10)-13 (0.90) 7.62(10)-7 (3.00) 5.86(10)-4 (2.00) 1.87(10)-' (1.00) 

TABLE 2 

Error Normsfor Problem 2 

h I je(t; h)l I' I Ie'(t; h)j I ' jle"(t; h)I1' jlee"'(t; h)1' 

1 2.48(10)-5 3.04(10)2 3.62(10)F 1.62(10)0 
2-1 1.28(l0)- 7 (7.60) 4.76(10)-3 (2.67) 1.11(10)-l (1.70) 6.61(10)-l (1.29) 
2-2 5.79(10)-) (4.46) 5.88(10)-4 (3.02) 2.84(10)-2 (1.97) 5.70(10)-1 (0.21) 
2-3 8.62(10)-y1 (6.07) 7.64(10)-5 (2.94) 7.30(10)-3 (1.96) 2.85(10)-1 (1.00) 
2-4 1.34(10)-12 (6.01) 9.48(10y6 (3.01) 1.82(10)-3 (2.01) 1.46(10)-1 (0.97) 
2-t 9.24(10)-14 (3.86) 1.19(10)-6 (2.99) 4.56(10)-4 (1.99) 7.29(10)-2 (1.00) 
2-6 1.49(10)-13 (-0.69) 1.49(10)-7 (3.00) 1.14(10)-4 (2.00) 3.64(10)-2 (1.00) 

TABLE 3 

Error Norms for Problem 3 

h 1je(t; h)11' I Ie'(t; h) I ' lle"(t; h)11' lie' 't; h)JI' 

1 7.08(10)4 2.57(10)- 3.24(10)-' 2.43(10)0 
2-1 2.22(10)-5 (4.99) 6.03(10)-3 (2.09) 1.50(10)-1 (1.11) 1.87(10)0 (0.37) 
2-2 4.67(10)-7 (5.57) 1.14(10)-3 (2.40) 5.58(10)-2 (1.42) 1.26(10)0 (0.57) 
2-3 8.05(10)-y (5.86) 1.83(10)-4 (2.64) 1.77(10)-2 (1.65) 7.55(10)-l (0.74) 
2-4 1.30(10)-l' (5.96) 2.63(10)-5 (2.80) 5.07(10)-3 (1.81) 4.19(10)-' (0.85) 
2-5 2.73(10)l12 (5.57) 3.53(10)-6 (2.89) 1.36(10)-3 (1.90) 2.21(10)-1 (0.92) 
2-6 1.48(10)-12 (0.88) 4.59(l0)-7 (2.95) 3.53(10)-4 (1.95) 1.14(10)-1 (0.96) 
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TABLE 4 

Error Norms for Problem 4 

h I Ie(t; h)l I' I Ie'(t; h) 1I' IIe"(t; h)l1' lIe"'(t; h)11' 

1 2.27(10)0 1.15(10)2 1.48(10)3 5.59(10)3 
2-' 3.45(10)-2 (6.04) 1.80(10)1 (2.67) 4.49(10)2 (1.72) 3.90(10)3 (0.52) 
2-2 5.35(10)-4 (6.01) 2.54(10)0 (2.83) 1.24(10)2 (1.86) 2.31(10)3 (0.75) 
2-3 8.31(10)-6 (6.01) 3.37(10)-1 (2.92) 3.27(10)1 (1.93) 1.26(10)3 (0.88) 
2-4 9.32(10)-8 (6.48) 4.34(10)-2 (2.96) 8.38(10)0 (1.96) 6.59(10)2 (0.94) 
2-; 6.23(10)-8 (0.58) 5.52(10)-3 (2.98) 2.12(10)0 (1.98) 3.37(10)2 (0.97) 
2`8 1.27(10)-7 (-1.03) 6.95(10)-4 (2.99) 5.34(10)-1 (1.99) 1.70(10)2 (0.98) 

illustrate the O(h') mesh point accuracy of Theorem 1 as well as the O(h3), O(h2) 

and O(h) accuracies of the first three derivatives predicted by Theorem 2. The tables 
give the discrete error norms for y(t; h) and its first three derivatives 

(37) Ile(i)(t; h)11' = max Ie('(ti,; h)j, 0 < j < 3, 
O< i;S N 

where e = u - y and also in parentheses the computed orders of accuracy, based on 
successive mesh sizes h1, h2, 

(38) = Cvje log(h1/h2) 

i.e., Jje('(t; h)11' O(h-i), 0 < j < 3. 
Next, we present in Table 5 absolute errors e(t; h) and relative errors e(t; h)/u(t) 

TABLE 5 

Absolute and Relative Errors for Problem 5 

t e(t; 1) e(t; 1)/u(t) e(t; 0.5) e(t; 0.5)/u(t) 

1 3.79(10)-6 1.03(10)- 5.76(10)-8 1.57(10-y7 
10 4.68(10)-9 1.03(10)-4 7.11(10)-OY 1.57(10)-6 
20 4.25(10)- 13 2.06(10)4 6.45(10)-15 3.13(10)-6 
40 1.75(10)-21 4.12(10)4 2.67(10)-23 6.26(10)-6 
60 5.42(10)-30 6.19(10)-4 8.22(10)-32 9.39(10)-6 
80 1.49(10)-38 8.25(10)-4 2.26(10)-40 1.25(10)- 

100 3.83(10)-47 1.03(10)-3 5.83(10)-49 1.57(10)-5 

at selected points ti for h- 1 and 0.5 in 
Problem 5. u' = -ii, U(O) = 1, u(t) = e-', 0 < t < 100 

in order to illustrate the stability of the method. 
Finally, we give in Tables 6 and 7 the results of the application of our method to 
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TABLE 6 

Error Norms for eM(t; h) of Problem 6 

h 11e,(t; h)11' 11el(t; h)11' lielf(t; h)1)l' llel"l(t; h)11' 

1 1.97(10)3 1.82(10)-2 1.77(10)' 7.44(10)' 
2' 2.91(10)-5 (6.08) 2.53(10)-3 (2.85) 5.43(10)-2 (1.71) 4.95(10)-' (0.59) 
2-2 4.50(10)-7 (6.02) 3.33(10)-4 (2.92) 1.52(10)-2 (1.84) 2.89(10)-k (0.77) 
2-3 7.01(10)-9 (6.00) 4.29(10)-5 (2.96) 4.01(10)-3 (1.92) 1.57(10)-' (0.88) 
2-4 1.08(10)-l? (6.02) 5.45(10)-6 (2.98) 1.03(10)-3 (1.96) 8.16(10)-2 (0.94) 
2- 5 2.19(10)-12 (5.62) 6.86(10)-7 (2.99) 2.62(10)-4 (1.98) 4.16(10)-2 (0.97) 
2-6 2.69(10)- 12 ( -1.61) 8.6 l(10)-8 (2.99) 6.59(10)-5 (1.99) 2. 10(l0)-2 (0.99) 

TABLE 7 

Error Norms for e2(t; h) of Problem 6 

h 1le2(t, h)jj' jlef(t; h)lI' Ile"(t; h)Jl' llel"(t; h)1l' 

1 2.58(10)-4 7.26(10)3 7.69(10)-' 3.96(10)-' 
2' 3.82(10)6 (6.08) 9.40(10)4 (2.95) 2.17(10)y (1.82) 2.21(10)l (0.84) 
2-2 5.91(10)8 (6.02) 1.23(10)-4 (2.93) 5.82(10)-3 (1.90) 1.18(10)-l (0.91) 
2-3 9.20(10)-lo (6.00) 1.58(10)-5 (2.96) 1.51l(10)-3 (1.95) 6.06( 10)-2 (0.96) 
2-4 1.42(10)-1' (6.02) 2.00(10)-6 (2.98) 3.84(10)-4 (1.97) 3.08(10)-2 (0.98) 
2- 5 2.13(10)- 13 (6.06) 2.52( 10)-7 (2.99) 9.68(10)- 5 (1 .99) 1 .55( 10)-2 (0 .99) 

2-6 7.27(10)-}3 (-1.77) 3.17(10)-8 (2.99) 2.43(10)-5 (1.99) 7.78(10)-3 (0.99) 

the system of equations in 
Problem 6. ul = U'U2, U= - 1/1il, U1(0) = 1, 1U2(0) = 1, U1 = e t U2 = e' 0 < 

t 1. 
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