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On the Solution of Systems of Equations by the 
Epsilon Algorithm of Wynn 

By E. Gekeler 

Abstract. The e-algorithm has been proposed by Wynn on a number of occasions as a 
convergence acceleration device for vector sequences; however, little is known concerning 
its effect upon systems of equations. In this paper, we prove that the algorithm applied to 
the Picard sequence xi+, = F(x,) of an analytic function F: Rn D D -* R" provides a 
quadratically convergent iterative method; furthermore, no differentiation of F is needed. 
Some examples illustrate the numerical performance of this method and show that con- 
vergence can be obtained even when F is not contractive near the fixed point. A modification 
of the method is discussed and illustrated. 

1. Introduction. The e-algorithm is a nonlinear method for accelerating the 
convergence of sequences; in its simplest form, it is identical with the 62 transformation 
of Aitken [1]. The determinantal formulae upon which it is based were given by 
Jacobi [6], Schmidt [11], and Shanks [12]; Wynn [13] developed it and examined it 
thoroughly in connection with various sequences and series [14]-[17]. The e-algorithm 
provides higher (integer) order methods for the computation of a fixed point of an 
analytic function f: C D D -* C [4]. Using the generalized matrix inverse of Moore 
[8] and Penrose [9], the method has recently been applied to sequences of matrices and 
vectors as they arise, for example, in the solution of linear systems of equations [5], 
[7], [10], [18], [21], [22], [23]. Wynn points out that the algorithm also provides good 
results in the numerical solution of nonlinear systems [18], [19], [21], [22]. But, until 
now, nothing is known concerning convergence. In this paper, we examine the behav- 
iour of the e-algorithm when applied to the Picard sequence of an analytic function F: 
R" D D -- R' with fixed point z. With the help of a theorem of McLeod [7], we show 
that the algoritlhm, used in a manner similar to Steffensen's method, is a quadratically 
convergent iterative method for the computation of z (compare also Brezinski [2]*). 
Because of the complicated recursive relationships, the convergence considered is of 
local nature, and Landau symbols are used in the proof. A short discussion of numer- 
ical properties of the method follows at the end of the paper. 

We use certain standard notations: i E N means that i is a nonnegative integer; 
lower (upper) case bold face letters denote vectors (matrices); I xII is the Euclidean 
norm (X*x)1/2 of the n-dimensional column vector x E C'; 0(1 [x I i) denotes a vector- 
valued function of the vector x whose norm remains bounded as lIx Il -?1 after 
division by I ixi it; 0 1 ix i } denotes a real valued function with the same properties. 

We also make use of the concept of an analytic function of a vector and of a vector- 
valued Taylor series. Let D be an open subset of Rn, then F: Rn D D -* Rn is called 
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analytic if, for every point a E D, there is an open polycylinder P = kxE RT( , Ix- 
ai1 < r ,O < r., 1 < i < n{ CD,suchthatinP, F(x)isequalto the sum of an abso- 
lutely summable power series in the n variables xi - a (1 < i < n). An analytic 
function is indefinitely differentiable, and, if the segment joining x and x + y is in D, 
we have, for r C N, 

r-l 

F(x + y) - F(x) + E - F(k)(x).y(k) 
k-I k 

+ (P (I-1) F(r)(x + ty) dt). y(r) 

where y(') stands for (y, y. .... , y) (k times). For further details, we refer to the 
famous book of Dieudonn6 [3]. 

2. Picard Sequences. We consider some iterative schemes for determining a 
fixed point z of the equation x = F(x). If s, (p E N, 0 ? p) is near z, we have, using 
a Taylor expansion for F(z), 

(1) z = F(s,) + F'(sp)(z - sp) + O(IIz - sI I2). 

Thus, when using the simple iteration scheme 

(2) sDJ1 = F(s) (O < p), 

we have 

z - S+1 = F'(sp)(z - sp) + O(ffz_ S-||2). 

Hence, the simple scheme (2) is, in general, at best linearly convergent; whether it 
converges or not depends upon the magnitudes of the eigenvalues of the Jacobian 
matrices F'(sp) (O < p) in the neighbourhood of z. We can, however, devise a quadrat- 
ically convergent scheme based upon the solution of the linear system 

sp+ = F(Mp) + F'(?p)(sp+1 - SP) (O ? p) 

or 

(3) (I- F'(SAo))gpl - F(p) - F'(;p)9p (O ? p) 

for sP+l. For, replacinig s, in formula (1) by 's, we now have 

z 
Sp+, - F'(sp)(z - sp+) + O(z - sI2 (O < p), 

i.e., 

(I - F'(? ))(z- 9= O(IIz- SP,I) ( ?< P) 

or, again subject to certain assumptions concerning the eigenvalues of F'(x) in the 
neighbourhood of z, 

z - SP+1 = O((1Z - pi12) (0 < P) 

The second scheme, although yielding quadratic convergence, involves evaluation of 
a Jacobian matrix and the solution of a linear system at each stage. However, by use 
of the E-algorithm one can, as we shall show, obtain quadratic convergence without 



THE EPSILON ALGORITHM OF WYNN 429 

the computation of the derivatives occurring in the Jacobian matrix, and without the 
solution of a linear system. 

3. The Algorithm. The E-algorithm [13], [22] is a computational procedure in 
which successive columns of an array ( with row index p are obtained by 
use of the formula 

(4) IE+1 = E-'1 + (E() eP)) ( p, 0 <q) 

starting from the initial conditions 

(5) ('E1 =0, E( =sP (O p). 

If the inverse of a nonzero vector x E C' is defined, by [8], [9], 

(6) x-1 = (c*x)-lx 

then we can apply the algorithm to seqtuences {sp',2,? of vectors and have the funda- 
mental theorem [7], [23] which we need later: 

THEOREM 1. Let {s,}',, be a sequence of vectors with complex coefficients which 
satisfy the irreducible linear recursion 

m / ,, 

(7) E Cr Sp+ r Cr)S (0 p 
rcO r O 0 

where s is fixed and 

(8) Z cr Z 0, Cr C R. 
r-0 

If then the elements of the array (?(P)) are determined by using (4), (5), and (6), and if all 
eP' with p + q < 2m exist, then 

(0) 
c2m = S 

Following a conjecture of Wynn [24] and Greville [5], Theorem 1 remains true if 
relations (7), (8) hold for complex scalars only, but this has not yet been proved. In 
conclusion, we get 

COROLLARY. Let z be the unique solution of the linear system x = Ax + c with real 
coefficients and let m be the degree of the minimnal polynomial of the matrix A for 
y = x,, - z. If the E-algorithm is applied to the Picard sequence {x0; x,+1 = Axp + c %0 p 
and if all E(P) with p + q < 2m exist, then 

(0) 

t2m =Z 

Proof. Let p(x) = a,xT be the minimal polynomial of A for y, then 

arXpI = (iE ar)Z + ( arA+)y (i ar)Z, 
r-O r-O r=O r=0 

because x= z + Ay holds. By assumption, we have 57..O ar j 0, since 1 is not 
eigenvalue of A (the equation x = Ax + c has a unique solution), and the Corollary 
results from Theorem 1. 
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4. The Application of the Epsilon Algorithm to Picard Sequences. The general 
strategy adopted in deriving our main result is this: we first consider the behaviour 
of the vectors EP) (p + q ? 2n) derived by means of the e-algorithm from the se- 
quence s, = z + AMy (O < p), where y, z C R' and A is a real n X n matrix, for small 
values of I lYI I (we know from the above Corollary that, subject to certain conditions, 
?-= z). We then consider the behaviour of corresponding vectors derived from the 

sequence sp = , + &,, where 6, 0 ?(IyI I2) (0 < p). Finally, we use these results 
with A = F'(z) and 

Sp+= - F(s,) = z + F'(z)(s, - z) + O((IIs, - z112) (O < p) 
to examine the behaviour of the vectors r(p) produced from this iterative scheme when 
s, is near a fixed point z and, in particular, to show that repeated use of the vector 
F(0) in place of so results in a quadratically convergent process for determining the 
fixed point in question. In the sequel, let Qm(A) C Rn be the set o vectors xfor which m 
is the degree of the minimal polynomial of A. 

LEMMA 1. For a given z, let ?(P) be the vectors obtained by means of the e-algorithm 
from the sequence ),,; s, = z + APy}0? ,. If there is a neighbourhood U of O such that all 
E(') with p + q ? 2m exist for all y r U n Q,,(A), then 

?(P = z + (IIYI I), qeven, 

?(P) 0 ?( I-1), q odd, 

for y E Q(A) and p + q < 2m. 
Proof. Let m > O, p < 2m - q, and A(P) - () For q 1, we get 

A?P) '= AP(A - I)y = B,y, and BPy # 0 for y E Qm(A), by assumption. Hence, 

?I(P)I l- II(y*B*pBy)-'Bpyl| 

_ 1 y y 1ttB1 1 ||Bp|| 
IlYlI Y*B*BDY IIYII PY IYII Xmin 

where 0 < Xmin is the smallest eigenvalue of B*B . Let now k E N, k < m, y E Q,(A), 
and let the statement be true for all q ? 2k. By assumption, we have A, (v) = O(Iy II) 
# 0, thus 

(P))= 0?{11Y1}, 

E2k+ = E ?2k1 + [(Ap2k )*(A,p2k ))] Ap2k 

= o(I fyI -1) + { I lyl 1-2'}(lIIyI I) = O(IIYIIK). 

A,E(1P$) 0, since, by assumption, all ?(P) which contribute to E(O) exist. Therefore, 
V 2k+ 2m erefore, 

and 

E2k+2 = E2k + LkpE2k+1)*(ApE2k+1)J AP 2k+1 

= Z + 0(IIyII) +O{IIyII2}0(IIyI V') = z + 0(IIyII). 

and the assertion of the lemma follows by induction. 
LEMMA 2. Let o be a sequence of analytic functions 6,(y) = 0(l II 12). For 

a given z, let ?(P) be the vectors obtained by means of the E-algorithm from the sequence 
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Sp; sp = z + A y + a6(y) o-0v. If there is a neighbourhood U of 0 sucih that all E', 
i<P) with p + q < 2m exist for all y e U r) Qrn(A), then 

?Q = QE + 0(IIyII2), qeven, 
(p -p 

od a= + 0(1), q odd, 

for y E Qm(A) and p + q < 2m. 
Proof. Let m > O andp < 2m - q. For q = 1, we haveApEoP' = A,-O) + 0(f IYI12) 

$ 0 and Ap4P 
W 0 for y E Qm(A), by assumption. Then 

(A P () )*(A ) = (AAv ))*(AP? () + 2(AP?0))*0(I| yI 12) + 01 IyII 1} 

-(A_t())*(A-(v)) [+ 2 )+(AXP))(y12) O{11Y114}]. (A D?0 ) ( O ) I (A\PE?P)* (A\PE() (PDO)) (APE( )) 

= (p) - (IlyIY) and hence, 

(APE) )*(APEO ) - (A (P))*(AP ()(I + 0 fIYIf}) 

Since ApE(P) is an analytic function, we get 

[(AV4v))*(ApE(P))Fl [(A i (P))*(A ?(P))][ -1?1 + O y IIYI] 

and 

El= E + APEO )*(APO )]?{ I IYII } APO 

+ [(AP)O )*(APE)) [1 + 0{I YI }](I YI I) 

-1 + 0(1). 

Let now k C- N, k < m, y E QJ(A), and let the statement be true for all q < 2k. 
By assumption, we have Ap?(v) = A E(p) + 0(f ly 12) $ 0 and APE(P) $ 0. According 
to the proof for q = 1, we get, by use of Lemma 1, 

[(Ap2k )*(Ap2k )) 1 = [(2A2k 2)*(tk )])' 2k + 0(1) 

and hence, 
(p) -(p) 

E2k+ I 2k+1 + 0(1). 

= Ap?) 1 + 0(1) and APE(V)I are equally supposed to be different from zero 
and, therefore, we get, by use of Lemma 1, 

-(Ap 2b + 1)*( (2k + 1) 

= (APE(P) )*(APE (+) [1 + 2 (pA2kP)*0(1) + 01I } 1 2k+ 2k+ 
(A E ~~~~~(pt2 ) E( pt2 ) (A (p?2 ) ( p2+) . 

= 
(Ap2k+1)*(ApE2k+1)(l + {f IIYII}). 

(p) = (P+1) + ?(l1YI12) 
E2k+2 = E2k 1112 

+ [(AP 2k+1)*(AP 01)] [1 + 0 If IYI I } ][AP?2k+1 + 0(1)] 

= k+2 + 0(lI fy112) + [(APEp 1)*(AE(p21)]) I IyII} APE(P 

+ [(Ap2k+ 1)*(p2k+1)][ I + o{ I I y I I }]0(1) 

= j (P' + o(lIYI 12) 
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In conclusiotn, we have the following result: 
THEOREM 2. Let F: R" D D -4 Rn be an analytic fuinction with fixed point z ?E'i 

and let Q,, (F'(z)) C R' be the set of vectors x for which m is the degree of the minimal 
polynomial of F'(z). Further, let *(P) and ?(P) be the vectors obtained by means of the 
E-algorithm from the sequences 

{sp; s, 1 = F(s,)}0?-, and {z; s, = Z + (F'(z))Y (So- z)-o<P, 

respectively. Assume that 
(i) 1 is not an eigenvalue of F(z), 
(ii) the vectors E(p) i(p) p + q _ 2mn, exist for all s( sufficiently close to z with 

So - z (=- QJF(z)). 
Set 

(0) 

(9) C2m = G(so, *.., S2m) = HF(SSO), 

then the computational procedulre 

xi+, - HF(xi) (O ? i) 

is, for xo st{fficiently close to z and xO - z ( Qm(F(z)), a quadratically convergent 
iterative method for the computation of z. 

Proof. By the corollary and Lemma 2, we have 

HtF(xo) = ?2m= Z + O(| xo -Z112) 

for xo - z E Q,(F(z)). 

5. A Modification of the Method. When a system of equations x = F(x) of 
order n is to be solved by the E-algorithm, the way of doing this is normally to put 
m = n. Then, we need, for each step of iteration, 4n3 + 2n2 multiplications, 2n2 + n 
divisions, 6n3 - n2 additions/subtractions and the computation of s, = F(s, ,) for 
1 < p < 2n. The computation of the vectors s, rather quickly produces a characteris- 
tic overflow if the eigenvalues of the Jacobian matrix F'(x) are greater in absolute value 
than unity near the fixed point z. This disadvantage can possibly be eliminated by 
replacing the Picard sequence s,+, = F(s,) by 

sp._ = F.(sp) = (1 - a)s1_ + aF(s,) (O < p) 

with a suitable a, 0 < a < 1; in this way, the rate of growth of the components of the 
vectors sp is reduced. If we have, for example, p(F'(z)) = 2 for the spectral radius p of 
F'(z), we get p(F'(z)) = 3/2 for a = 1/2. Those eigenvalues X of F'(z) for which 

IXI < I are thereby increased, but they remain smaller than one in absolute value. 
Apart from this, convergence is slow if the eigenvalues of F'(x) approach one near z. 

The rounding errors affect the com-putation severely. Perhaps, it is possible that 
the numerical properties can be improved if a modification proposed by Wynn [20] is 
applied. If the eigenvalues X of F'(x) with NXI < 1 predominate, we can indicate a 
modification of the method, by giving up the (theoretic) quadratic convergence, 
which considerably reduces the amount of work. To achieve this, we replace 2m by 
2[(m + 1)/2] in (9) and obtain for the basic formtula of the algorithm 

(9*) ~~~~~~~~~(0)= 
(9*) ?nE = G(so, * * s.) = H*(SO) 

in the case in = n even. We need now, per step of iteration, only 
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(n13 + 8n2 - 40)/8 

multiplications/divisions, 

(6n3 - 2n2)/8 

additions/subtractions and the computation of s,, = F(sp_-) for 1 ? p < n. 

6. Numerical Examples. Let F: R4 - - R4. In order to illustrate the method of 
Theorem 2 and its modifications, we consider some systems of quadratic equations 
x = F(x) with fixed point z = (1, 1, 1, l)T: 

(10) F(x) = z + F'(z)(x - z) + jF"(z)(x - Z)(2). 

For the Taylor series (10), we write briefly 

(11) F(x) = z + A(x- z) + Q(x- z) 

and choose for A (linear) and Q various mappings. The fixed point z of the systems 
given in that manner is computed by means of single-precision arithmetic with ten 
decimal digits. In detail, let P'i'(x) = (p'i'(x), , p I'(x))T and 

(1) (X) = -_(X2 P(2)(X) = _X2 Pi I~~ +X,X4)/2, Pi -1/4, 
P2 (X) = -2/2, P2 (X) = -2/4, 

p3 (X) = -3/2, P"(x) = -3/4, 

p4 (X) = -(X4X1 + 4)/2, p42)(x) = -4/4. 

Furthermore, let 

DI = (0.9, 0.8, 0.7, 0.6), 

D2 = (1.5, 0.8, 0.7, 0.6), 

D3 = (2.0, 0.8, 0.7, 0.6) 

be diagonal matrices and 

'1 1 1 1) 1 1 1 1 

U12 , U2= 1. 

1 -1 1 -1 1 3 6 10 

1 -1 -1 1, 1 4 10 20. 

We remark that U1 is orthogonal, whereas U2 is the ill-conditioned Pascal matrix of 
order four having an integer-valued inverse. It should be pointed out that 

(apl(x z) ) = 0 (Matrix) (j = 1 2); 

hence, choosing Q = P` in eq. (11), we get, indeed, F'(z) = A. Now, if A = UmDiU-' 

(1 = 1, 2, 3; m = 1, 2), then D, is the matrix of eigenvalues and UIJ is the matrix of 
eigenvectors of F'(z). 

In Examples I-VI, z is computed by the method proposed in Theorem 2. 
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Example 1: F'(z) = U1D,U-1, Q= P", initial vector x0 = 2z; 
Example II: F'(z) = UjD2U 1, Q = pC1), XO = 0; 
Example III: as Example II but using xo = 2z; 
Example IV: F'(z) = U2D2U21, Q = 0= .5z; 
Example V: as Example IV but using xo = 1.5z; 
Example VI: F'(z) = UjD3Uj1, Q = P"', XO = 2z, using the modified Picard 

sequence sp+ 1 = Fa(sp) with a = 1/2. 
The Examples VII-XII are the same as Examples I-VI, respectively, but z is 

computed using formula (9*) instead of (9). 
The above table contains in column i (1 ? i ? 8) the values llxi - x,-111 

(compare Theorem 2) with rounded mantissae; values for which l Iz -xi I < 5.0 10-" 
(the process has then terminated) are omitted. Generally speaking, we have found that 
the algorithm produces better results if the Jacobian matrix of the given system x = 
F(x) is symmetric. Finally, it should be mentioned that it seems to be impossible at 
the moment to say more about the error than that it is of quadratic order. 
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