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An Integral Analogue of Taylor’s Series and Its Use
in Computing Fourier Transforms

By Thomas J. Osler

Abstract. In this paper, an integral analogue of Taylor’s series
f(2) = 24 Def(zo)(z — z0)*/T(w + 1) dw

is discussed. D«f(z) is a fractional derivative of order w. Extensions of this integral are also
given, one of which is an integral analogue of Lagrange’s expansion. These integrals are
shown to be generalizations of the Fourier integral theorem. Several special cases of these
integrals are computed, and a table of Fourier transforms emerges.

1. Introduction. The fractional derivative of order a of the function f(z) with
respect to g(z), Dy ,,f(2), is a generalization of the familiar derivative d*f(z)/(dg(z))"
to nonintegral values of «. In the author’s previous papers on the fractional calculus,
three distinct features evolved: :

(1) Certain formulas familiar from the elementary calculus were shown to be
special cases of more general expressions involving fractional derivatives. These
included Taylor’s series [5], Leibniz rule [3], [6], [7], the chain rule [4], and Lagrange’s
expansion [5].

(2) Through the fractional calculus, we were able to relate formulas familiar
from the study of Fourier analysis to the above-mentioned calculus relations. Thus,
it was shown that the generalized Taylor’s series could be viewed as an extension
of the Fourier series [5], and that the generalized Leibniz rule was an extension of
Parseval’s relation [7].

(3) Most of the important special functions can be represented by fractional
derivatives of elementary functions, such as

J,(2) = #*Q22)"" D777 (cos 2)/z.

We found that our extensions of calculus formulas, when combined with fractional
derivative representations for the higher functions, produced interesting series re-
lations involving the special functions. ’

This paper continues our study of the fractional calculus by exposing the three
features outlined above for certain integrals which are related to Taylor’s series and
Lagrange’s expansion. We find it useful to distinguish three special cases:

Case 1. The expression

N o
(L. ) = ./:a,m———l’(w—l-v—{— S =2 do

Received May 16, 1971,

AMS 1970 subject classifications. Primary 26A33, 42A68; Secondary 44A45, 33A30, 30A10.

Key words and phrases. Fractional derivative, Fourier integral theorem, Fourier transforms,
Taylor series, Lagrange expansion, special functions.

Copyright © 1972, American Mathematical Society
449



450 THOMAS J. OSLER

is an integral analogue of Taylor’s series. Here, v is an arbitrary complex number,
and z is restricted to the circle |z — z| = |z, — b|. (1.1) is easily suggested by the
generalized Taylor’s series

= aD? f(2)]. -
&= 2 Tan Tyt 1)

by setting an = w, and Aw = a. As a — 0", we see at once that this series is the
approximating sum in the definition of the Riemann integral for (1.1). The integral
(1.1) was mentioned in passing by G. H. Hardy [2, p. 56], but no rigorous derivation
appears in the literature, to the best of the author’s knowledge.

Case 2. Since the natural relation D*D’f(z) = D***f(z) is valid (with certain
restrictions on a, b, and f(2)), a simple generalization of (1.1) becomes

” D::bw+1f(z)':-:o
o Tw+7v+ 1)

an+y

(z — z0)

(Z - Zo)”+7gw.

(1.2) D.uf(z) =

Case 3. Our final relation

T D@0 @)aE) T ey e
1.3 = f = 4
(1.3) @@ » Te +v + 1D ()" dw
is an integral analogue of Lagrange’s expansion. Here, 6(z) = (z — z,)g(z) and the
integral is. valid for z on the closed curve |8(z)| = |6(b)|. (1.1) is the special case of

(1.3) in which g(z) = 1 (and thus 6(z) = z — z,). The truth of (1.3) is suggested at
once by letting @ — 0" in the generalized Lagrange’s expansion [5]

= aD U@ @Da@) T e s ane
1@ = Z_:o Tan + v + 1) 0™

(1.2) and (1.3) have not, to the best of the author’s knowledge, appeared before in
the literature.

We demonstrate in Sections 3 and 4 that (1.1) and (1.3) are generalizations of
the familiar Fourier integral theorem.

The paper concludes by examining special cases of (1.1), (1.2), and (1.3) in which
specific functions are chosen for f(z) and 6(z). We find that Fourier transforms of
the special functions emerge. These are listed in Table 5.1. Most of the entries in
this table appear to be new.

2. Fractional Differentiation. In this section, we briefly state our definition
of fractional differentiation so as to make the paper self-contained. The reader
unfamiliar with this subject can refer to [3] for a discussion and motivation of the
following definition.

Definition 2.1. Let f(z) be analytic in the simply connected region R. Let z = b
be an interior or boundary point of R. Assume that & . |f(z)| |dz| exists for any
simple closed contour C in R \U {b} through b. Then, if « is not a negative integer
and z is in R, we define the fractional derivative of order a of f(z) with respect to
z — btobe

T'ae 4+ 1)

(zt)
Q.1 D@ = Tet 1) [

f(2) dt )
@ — 2!
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For nonintegral o, the integrand has a branch line which begins at ¢t = z and passes
through ¢ = b. We define ( — z)*** to be exp [(@ + 1) In (¢ — 2)], where In ( — 2)
is real when ¢t — z is positive. The notation on this integral implies that the contour
of integration starts at ¢t = b, encloses ¢+ = z once in the positive sense, and returns
to t = b without crossing the branch line or leaving R \U {b}. When Re (a) < 0,
we can replace this closed contour by a line from b to z, [3],

N N Y
DLIG = T f -

This integral is called the Riemann-Liouville integral when b = 0, and permits us
to extend the definition of D to the case where « is a negative integer.

If we wish to determine the fractional derivative of a specific function, it is con-
venient to refer to Chapter 13 of [1, Vol. 2] which contains a table of “Riemann-
Liouville fractional integrals”. We note that in our notation the Riemann-Liouville
fractional integral of order « of the function f(z) is denoted by D] *f(z).

3. Intuitive Motivation and Relation to Fourier Analysis. In the intro-
duction, we discussed a simple manner in which the integral analogues of Taylor’s
series and Lagrange’s expansion are suggested by the author’s generalized Taylor’s
and Lagrange’s series for fractional derivatives by letting the parameter a — 0°.
In this section, we discuss motivation for the integral analogue of Taylor’s series
(1.1) by showing how it evolves formally from the Fourier integral theorem. Simul-
taneously, we discover that our integral analogue of Taylor’s series is, in a certain
sense, an extension of Fourier’s integral theorem.

In our definition of fractional differentiation (2.1),

. _ T+ (7 _f@dr
Dgf(z)’l-lo - 21[_’ [J (f _ Zo)w—rl >

choose the contour of integration to be the circle centered at z, passing through the
origin. We introduce the parameter £ on this circle through the relation

t =1z +ze't, JE| <.
Thus, we have

2o D5 f(2)]s =0
Mo+ 1

Since the Lh.s. of (3.1) is the Fourier transform of the function
f*@) = fzo + ze), [ <,
= 0, [l >,

(3.1) = 5’; f f(zo + zoe')e*t dt.

we have at once from the Fourier integral theorem

T D) ]emsy 26T

e w4+ 1)

*(@) = dw.

If we call

3.2) z =z + ze',
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this last expression becomes

? D5f(@)|;=ss

(3.3) f) = S Te+ D (z — 20)° dw,

the special case of (1.1) in which v = 0. In the next section, we will derive rigorously
our most general integral (1.3) through a procedure similar to that outlined above
for the special integral (3.3). We have selected this special case in order to show
clearly that our integrals are generalizations of the Fourier integral theorem because
of the introduction of the complex parameter “z,”. Note that each value of z, deter-
mines a circle (3.2) in the z-plane on which our integral (3.3) converges to f(z). Since,
in general, we are free to vary z, over some open set in the complex plane, (3.3)
can represent f(z) for z on an open set (determined by (3.2)). We say that we have
“extended the Fourier integral theorem into the complex plane”.”
Previously the author demonstrated that the familiar Fourier series

@) = 2 f.e

n=—c

is, in a similar sense, a special case of the formula

- Da'i‘*")‘, =z an+
3.4 0 = 3 gl Ol gy

and the Parseval’s relation

w/a

bl T/a z/a
“*(g‘)"*(f) d‘( = n-z—:w Et:—l' »/‘_r/a u*(g-)eia,.{ dg-i ./:1/a U*(g’)e"‘“"f dg-

2‘” —-%/a

is a special case of the generalized Leibniz rule

(3.5) Du@u(z) = Y. (an‘fi_ 7) DI "u(z) D "o(z).

n=—c

Both (3.4) and (3.5) are extensions into the complex plane of familiar formulas from
Fourier analysis. Thus, we have shown how another formula, the Fourier integral
theorem, can be extended into the complex plane.

4. Rigorous Derivations. In this section, we present rigorous derivations
of (1.1), (1.2), and (1.3), whose validity has already been suggested. The hypothesis
of the following theorem is nearly identical to that of Theorem 4.1 in [5], which
discusses the generalized Taylor’s series. The proof of this Theorem is nothing more
than a careful generalization of the formal discussion of the previous section centered
on the Fourier integral theorem.

THEOREM. Let 6(2) be a given function such that (i) the curves C(r) = {z| |6(z)| = r}
are simple and closed for each r such that 0 < r < p, (ii) 6(z) is analytic inside and on
C(p), and (iii) 6(z) = (z — 20)q(2), 2, is inside C(p), and q(z) has no zeros inside C(p).
Let b # z, be a fixed point inside C(p). Let 6(z)° = exp (c In 6(2)) denote that branch
of the function which is continuous and single valued on the region inside C(p) cut by
the branch line z = z, + (b — zo)r, 0 < r, such that In 6(z) is real where 6(z) > 0.
Let {(2) satisfy the conditions of Definition 2.1 for the existence of D7, f(z) for {z | z
inside C(p), but z = b + r exp (i arg (b — z,)), 0 = r}. Then, for arbitrary v and z
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on the curve C(|6(b))),
_ [T DY@ @az) T s,
CEN T+ + D

Proof. Since 6(z) is analytic and univalent inside and on a simply connected
region containing the curve C(|6(b)|), we can describe 6(z) on this curve by #z) =
—6(b)e*, for —w < ¢ < w. Define

4.1) ()" dw.

*@) = 167 (=6 *Ne 7, for —w < ¢ <,
=0, otherwise.

The Fourier integral theorem is valid for f(¢), since

f_ ot as = f 1167 (— 8(b)e**)e 7| dy.

This integral is finite, since we require the possible singularity of f(z) at z = b to be
such that & |f(z)| |dz] exists when the contour passes through z = b in the Definition
2.1. Applying the Fourier integral theorem to f*(§), we get

1 e * Lo
ro =5 [ e [ e dp o,
© ifw w+y
covr _ [T €20 (=8(0)
@ = ] T+ + D
,{I‘<w + 9 4 1) [T 87 (= 6b)e)i(—6(b)e"” do dw}
2mri . (_o(b))w+'y+lei¢(w+1+l) 4
[T 8@ T4y 1) =7 (8’ (r) dt
f(z) - . I'(w + Y _|_ 1) 27l'1 _/; (t _ Zo)w+‘y+lq(t)w+7+l

Comparing this last expression with the definition of fractional differentiation (2.1),
we have (4.1) at once.

COROLLARY. Let f(z) = (z — b)’ g(z), where g(z2) is analytic in the circular region
R = {z]| |z — b] < r}. Let z, € R be such that the circle C defined by C = {z | |z — z|
= |b — z|} is contained in R. Letp > —1 andp — a > —1. Then

a . ® D::bw+7f(z)|z-zo(z _ 20)w+7
prje = [ Pl —a

for z on C.
Proof. The conclusion follows at once if we set 6(z) = z — 2, in the Theorem
(thus obtaining (1.1)), and replace f(z) by D;_, f(z), provided

(4.2) DIY(D,f() = DX 77f(@).

To see that (4.2) is true, we expand f(z) in powers, for z € R,

©

fz) = 2 asz — by

n=0

Since p > —1, we can compute
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« T+ n+ Daz— b "
Dmm»-g o —adnt )

The validity of this termwise differentiation is well known [3]. We note in particular
that since p and « are restricted in the hypothesis by p > —1,and p — a« > —1,
(i) both gamma functions appearing in the last expression are defined, and (ii) D", f(2)
can be differentiated fractionally.

3 ' + n+ Daz — b)"“‘w—'ym
“ Tp—a—w—v+n+1)

DI @),

Thus, (4.2) is valid and the Corollary is proved.
Having derived our general integrals, we proceed next to an examination of
~several special examples.

D (D;4f(2))

5. Computation of Fourier Transforms. We conclude our discussion of
the integral analogue of Taylor’s series by selecting specific functions for f(z), q(2),
6(z), and taking b = O in the three expressions (1.1), (1.2), and (1.3). The fractional
derivatives encountered are computed by referring to the Table of Fractional Integrals
(Riemann-Liouville integrals) in Chapter 13.1 of [1, Vol. 2, pp. 185-200]. As an
example, we set f(z) = z” in (1.1) and obtain

—_— w+7 plzﬁzo l‘)'iT .
4 ~/P@+7+D( 2)" " de.

Using formula 7 in the above mentioned table, we see that

Pp + Dz 77
F'p—w—7v+1

for Re (p) > —1. A little simplification reveals that

D7, =

(mm=[:(p)wmrﬁr”m,

w + v
where
(a) _ T'(a + 1) _
b/ T@—b+ DI+ 1)

Since this integral is valid only for z on the circle |z — z,| = |zo|, wesetz = z, + zoe~ b

for |¢| < w. We then have

” p —i¢(w+y) - —ig\p
f.w<w+7)e dow = (1 + &%), ¢ < m,

= 0, lp| > .

(We recall from the proof of the Theorem that our integral is zero for |¢| > =.)
Since « is an arbitrary complex number, we can write an equivalent expression for
this last integral by setting v = 0, and replacing the path of integration by a horizontal
line through in (n any real number). We obtain



455

AN INTEGRAL ANALOGUE OF TAYLOR’S SERIES

y
« 0z ¢
0 < (924 A*N.Iulﬁl«._.slc

-'-u & ¢ V\ ¢ &
1+m—» m—p | —y+0»

™
[ + D2NA%e (2 + 1) IREERE wvcﬁ ° uv‘ 1 s
¢ ‘ A
0 < (0pu A“?.Tvlalu
. v\ ¢ vN ‘ v\
T+o—0 o—p T —y+0
LGy + 1) + 11,6, 2 + 1) o wsnvf:ﬁ ° uv 1 y
(2 + DDA | 2+ 1) 0 <@pu czio— o, ") 1 ¢
JG, 24+ D2+ 11, G, 2+ 1) 0 <(®pPy ‘(z2—:m—-p'p .QLGNA_ m qv 6 4
(&)
o+ 1) 1— < (@)py ‘ Aav L I
"3SIMIDY}O 0JOZ SI WIOJSUBRI) Y (m)f WLIOJSUBI) 9y} | IsqUINN
u > |¢| 10y mp,,, A™) MTS amndwoos 03 pasn [1]jo | saueg

1'¢1 "deyd ‘z '10A
wolj enuLiog

$3143S S 410]dD ] fo sanSoppuy [p3aruf ayi wiodf pauv1qO SUWIOSUDL] 121410.]

16 218V L



THOMAS J. OSLER

456

AAG.—IQ + ~voN - ~v3.u.v.n.NuA.v..IN l_l ~v

) ™
I— < (©)PY  (°z — :Aa:.aéﬁAz + cv £F 4
0 < (@)Y
G2+ D2 — DI oo, 2+ 1) ‘(T/ffzio —d ydp 4 u “zlvum”? m av 8¢ 11
(L)
(2 + D’z — D4 (°z — :3.?.&3 LE 01
(2 + DD o, 2+ 1) 0 < (@A ‘(z— to — d % éﬁ_ﬁ ? av s 6
{— < (@0
2+ D), 57T ®
a—1\¢: /1 ¢(0z— 2 —dc<T¢<2 Z g1
GG, 2 + DDus G=t+ o £ O A - QV 6 ;
(-2 + Do), 52
AMMAM.M F o S R VIOV COT i : 82 L
(2 + DDYQuis | 0z, v a + »a/(,CaH0°*'r LT 9
*3SIMISNI0 OI9Z SI WIojsueI) 3y ] (™) WLIOJSueI) Y} | JoqUINN]
> ¢l 10y op ., AN ST 9ndwoo 03 pasn [1] Jo | saureg

1'¢1 "deyd T "[10A
WOJJ BINULIO

§2142S S AOIAD ] Jo sanSojpul (p4821uf oYl WoLf pauIDIqO) SULLOfSUDLT 421iN0.]

'S a1V



457

AN INTEGRAL ANALOGUE OF TAYLOR’S SERIES

AAG..IN l_l ﬂch muQ L aa@ unc L .a“VuﬁNﬂ.

1+0=dy 1>]%
‘0 < (@9 (°zPqc ... 'gm—02

_..oA?..m +0n ap ... ‘Ip .ov_+un~_+aA~ N Uv S6 81
(olGor? + DODOT 2 + D) I— < @29 ‘(1 + O/, D" ,, 5 £9 [
0 < (@)Y
(o2 + DT, 2 + Doz—)dx0 - (2= to = dfy + P A U A DY
u

o2+ D Az . av¢ i Qv Is 91

0 < (DU ‘(20— d | 4 v U—)ys.
(2 + DT o2+ D ? N cx_ ° av 0s 3
(u? + DD 2+ D) 1— < ()9 .Aoa?n? N Qv 6b pi

(o)

A = (2 + DD gd o2 + D I— < (@29 ‘(G — sf.a:ﬁ? . L oy €1




THOMAS J. OSLER

458

0 < (P —dpy ‘0 < (@Y
0z ¢ i
T Ty feo-n-d
3 Y
oz__. < ___ o € e
A%?nw.f;.n ._lv\.,raln |+ —0—d
« L. v\ < v\ 3 V\ 3 v\ ¢ V\
[+0o—d o—_d | —xy+d m—o—d ] —yFd
¢ .. ¢ VN .VN.'#_Av* ¢ L. v\ »V\. + ®
T¥4d Nb Vn\ N W ) T¥4d N.v.lv*k_«—|dl.ﬁv I 1T
0 < (@ —dpy ‘0 <(90¥
®
(G224 Dzi0 —did)yyy' | (, 24+ 1) ‘(z¢0 — o — d MQV_R_A— o Qv 14! 0T
AAQ.—!N + ﬁvoNl ‘o — d‘d .b'vﬂ&u. O A Ad - NNVOMM .O A A«Nvom
m
-iuinAe,.lw |_l —v .AcN| m— o —did .Q'v_.&mﬁm _ 0 — Qv 6 6l
"9SIMIAYIO 0ISZ SI WIOJSURL) YT (®)f unojsuen oY) | JaqunN
L > 9] 10y op 4, AN T amdwos 03 pasn [[]jo | soueg

1'¢1 "deyd ‘z "10A
WOl B[nuIo

521498 5§ 40]AD ] fO san3oppuy [pi3o1uf 2yl WOLf PoUIDIGQD SWLIOfSUDLT LD14N0]

16 a18av.L



459

AN INTEGRAL ANALOGUE OF TAYLOR’S SERIES

(5:-2°2 = (2)9 £q ¢ suya(q)

-l °%/(4,-2°2), 0]

(€1 ur ,_,z = (2)f pue 3A0qe se (2)g L)

(m— o — d n&vm«ﬂ? Mv Qv 14! Y4
(D ury = (2)f pue
(°z — 2)(°z/2) dxa = (2)p Mel)
L (m— ‘o — 7 YT i 14 v
0 < (®— %oy
G2 4+ DD, ey + 1) ‘G + o)/, (90", 02 LT €T
0 < (0 —dpyg 0 < (@y
Acnu A
¥ ] —Y4+®—»0—d
- 3 Q L3 ‘ x
A,_c“:fr:%._lhlwﬂﬂllln [ Ffo—»o—4d
. e 3 & . V\ ‘ « . & '] «
+o—d o —d | —xy+d m—_—o—d ] —-—y+4d
. € VN « VN '] < v\ ‘ VN ™
s ﬁlﬂﬂ Mva,&x.lala:..:m + D ..—l+|§ NVa.&aA— —_ 0 — Qv sl w




460 THOMAS J. OSLER

5.0 I.. () do = a+ ey, ol <

= 0, |¢l > .

Thus we see that our integral analogue of Taylor’s series is of value in computing
Fourier transforms.

Table 5.1 lists the results of repeating the computation just performed with other
functions. The second column lists the formula from Chapter 13.1 of {1, Vol. 2]
used to compute the fractional derivatives encountered. Entries 1 through 18 in
Table 5.1 are special cases of (1.1), entries 19 through 23 are special cases of (1.2),
while entries 24 and 25 are derived from (1.3). The notation for the special functions
is that of Erdélyi et al. [1].

Each of the Fourier transformations in Table 5.1 can also be expressed as an
infinite sum. We know from [5] that in the r.h.s. of (1.1), (1.2), and (1.3) we can
replace

[ byE wbyan, and dwbya, for0<a=s1.

- nm=—co

This means that the entries in the last column of Table 5.1 can be viewed not only
as the Fourier transforms of the corresponding values of f(w), but also as

> flan + y)e ™ Vg,

n=—c

where 0 < a =< 1, and v is an arbitrary complex number.
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