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Minimum Norm Differentiation Formulas with 
Improved Roundoff Error Bounds 

By David K. Kahaner* 

Abstract. Numerical differentiation formulas of the form f wif(xi) = f (m)(a), a _ xi , 

ca < a < ,s, are considered. The roundoff error of such formulas is bounded by a value 
proportional to Ef3 1 wijl. We consider formulas that have minimum norm t lW and 
converge to f(m)(a) as 8 - a -O 0. The resulting roundoff error bounds can be several orders 
of magnitude less than corresponding bounds for high order differences. 

Introduction. Many computations require the evaluation of derivatives. 
Often, a function f(x) is known at only a discrete set of points as a result of another 
computation, and some derivative of f is needed. The usual situation is to approximate 
the derivative with a linear combination of function values, 

(l) f m)(0) ~ D. fi_ wif(x ), h = max(xi+l - xi). 
i=l 

The summation is over a subset of the points at which f(x) is computed. 
Even if f(x) were known exactly (et, sinx), its representation in a finite word 

length computer involves some error. More often, the approximations to f(xi) contain 
substantial amounts of error. These errors tend to be magnified by the process (1), 
especially if the points xi are close together. In estimating derivatives by such a 
procedure, one finds that answers become more accurate at first as h is decreased, 
and, subsequently, exhibit decreased accuracy [1]. It is therefore important to have 
a rigorous bound on the total error of the computation in order to select the most 
appropriate value of h. 

The most often used approximations for (1) are obtained by taking the mth 
derivative of an interpolating polynomial. If this polynomial is of degree m = N - 1 
and the xi are uniformly spaced, xi+ -xi = h, its mth derivative is an "mth dif- 

ference." For an mth difference, the truncation error, which can be obtained by 
expanding each f(xi) in a Taylor series about x = 0, is proportional to h, unless 
the points xi are symmetrically placed with respect to 0, whence the truncation error 
is proportional to h2. 

To bound the computational, or roundoff error, we note that if a number a is 
represented on a computer, with d decimal digit word length, it can be written a = 

a, + aC, with a, the computer version of a and Ija,I < 10d jIja. The quantity lo-d/2 
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is known as the machine accuracy parameter, denoted IM. If we now consider com- 
puting (1), we may write 

D1f = [Dmf1]c + [Dmf1f. 

Doing inner products double precision and rounding afterward, we get 
N 

(2) 3EM max Ifil lwil > [DfII. 

If (1) represents an mth difference [1], 

(3) Dmf = f) = (_I)D 

and E iw,l = (2/h)". Thus, the roundoff error bound is 

(4) 3EM max Ifil (2/h)t. 

For these formulas, it is quite apparent that the roundoff error increases rapidly 
with h for large m whereas the truncation error remains proportional to h or h2. 
A potential improvement may be obtained by increasing the order of the approxima- 
tion, i.e., increasing N relative to m. This may be done in one of two ways: 

(a) Keeping h fixed and adding points outside of [xl, xN]. From this, one usually 
obtains greater total accuracy, because the truncation term is higher order. Never- 
theless, this scheme requires the evaluation of f(x) at points increasingly far from the 
center, which may not be convenient computationally and may in fact not always 
be possible because of singularities, etc. 

(b) Keeping the total interval length fixed and adding points inside [xl, XN] also 
yields a higher order truncation error and has the advantage of easily allowing 
extrapolation for different h's as well. In general, neither (a) not (b) will converge 
for N -a c, [2], although they seem to work satisfactorily for small N, m. 

Minimum Norm Methods. In contrast to the above, which attempt to 
reduce the truncation error, we wish to consider the selection of the w, and N to 
reduce the roundoff error bound. Our results will indicate possible usefulness for 
large m and no particular improvement for small m.** 

Large roundoff error bounds occur because the weights w; increase with l/h 
and are not all positive. Set 

N 

R= E | wiJ. 
'l- 

Then 
N ? 1/2 

R4 < N EWt) RB- 

For each fixed N, we consider the selection of w, so that Ei-> w2 is minimized. 
Fix N > m and x,, i = 1, *.. , N. In analogy with the case of an mth difference, 

* * In [6], selection of the xi's to minimize the L2 norm of f'(x), minus a particular approximation 
thereto, is considered. 
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we require that our selection of w's be such that (1) is exact for f(x) = 1, x, * , xm. 
This leads to the system of equations 

N 

(5) wi(X)" = m!ak,m, k = 0, , m. 
i 1 

The solution to this system is nonunique for N > m + 1. 
The solution of minimum L2 norm is given in the following theorem which in- 

volves the functions Um(x). 
Let Cm7ff(x) be a polynomial of degree m which is orthogonal on the set { xl, , XN, 

to all other polynomials of degree less than m. Since N > m, this polynomial is 
known to exist and satisfy a three term recursion, much like orthogonal polynomials 
on an interval [3]. Further, if we define the polynomial Um(x) proportional to A"(x), 
but orthonormal on {xi, ,XN}, 

N 

E [Um(Xi)] = 1, 
i-1 

then Um(x) can be shown to be unique. 
THEOREM. Let Um(x) be the unique mth degree polynomial, orthonormal on the 

set x, X2, * XN. Then 

wi = (m!/a)Um(xi), i = 1, , N, 

is the uniqule minimum L2 norm solution of (5), where a is defined below, and E W2 = 

(m!/a)2. 

Proof. We have immediately 
.N 

Z Um(Xi)Xk = 0, k < in, 
i 

k 

=a # O, k=m, 

where xm = aUm(x) + lower order terms. Hence, wi is a solution to (5). If Wi, i = 

1, *. , N, is any other solution, set j, = wi- v. Then 
IV N 

E = E [W - 2f3 wi + f32]. 
i- i=l 

But 

Ai~~~~~~~~~~~~~W 
! ,n 

E f3iWi = - E i Um(Xi) = - j ('Wi - W C,i 
i-i a i-i a iiO 

= Z IZ [Ew1Xj - WjXji = - E [n7!6i,,n - m!bi,,]Ci 0. a j-O i-W a j?O 

Hence, 

SN = AS 

E Wi2 W E 2 + o2 

Case of Equally Spaced Points. Let the points xi be on the interval [a, b]: 

Xi = a + (i- l)h, h = (b- a)/(N- 1). 
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We can obtain more explicit information: 
THEOREM. If wi are the minimum norm solution to (5) and f E C2[a, b], 

[Dmf] = wif(xi) 
(6) 

(2rm)! (2rn + 1)/2 L(x)f(x) dx as N 
mn! (b - a)m + /2a 

where L4,(x) is the orthonormal Legendre polynomial of degree m, on the interval 

[a, b]. 
Proof. Again, U,(x) is the polynomial of degree k, orthonormal on {xi, * , XN }. 

With some involved algebra, it can be shown [4] that 

h___2m_ _ 
(2m)x 

+' UMkXJ (2m) N+m )/9I2 (M.3 X+ 

(M )2m+1) r. 

h Fm(2m)! 
((2m )(N+r))/2(m! )3 

Hence, 

m ! (2 m)! Wi -! 2r)! UM(Xi), 

and 

T V= m(2m)! (2m + 1)! (N + m - 2m 1)!. 
i (N ? n!(n+ 

With h (b - a)/(N - 1), 

v (N - l)2m [ (2rm)!12 

i1 (N?rm) .. (N -rn) (b -a)mrnJ m Ll 

From (7), we note that 

N w2 
= o(l), N-> o. 

Also, by the midpoint rule [5], 

fh2 (x) dx = a E U2(Xi) +OU) N- I + (1 

Hence, ((N - l)/(b - a))112 Um(x) has -C2[a - h/2, b + h/2] norm equal 

to 1 + o(I/N). Let L,,(x) be the unique orthonormal Legendre polynomial of degree 
m on [a, b]: 

fb 

2I rX dX_ 
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Then, [3, p. 290], 

L.(x)- (b ) Um(X) + o(l? ) 

So 

m! (2im)! AT 
wf(xi) =M((b -a)/(N- ))m(M!)3((2)(++m ))1/2 U.m(Xi) (Xi) 

mn! (2mi)! 

((b - a)/(N - 1))m(m!)2(( 2 m)2+1)) 

m! (2im)! 

j))m( !)3((n, .V+m 1/2 

((b - a)/(N- 1 ))m(i!)3((2ml)( 2m+ J)) 

[(b - a)/2 (N _ Lm(X)fb(Xi) + I/V2N)J 

m! (2 m)! 
(b- ))(m!)3((2m)( N+ m)) /2 

[(b a-X m 2m+ 1 
[(SN 1)1/2 + - / Lma)(X dv 

= (N- 1)" -(2rn)m! ((N 2+ n 1) 1/2-m 

1 )("2 f Lm(x)f(X) dx + o(&N)l 

Letting N - , 

m!(2rm)! (r )/ 

EI w,f(xi) mn! (b- a) 

Since for each N, E w1f i differentiates mth degree polynomials ex7actly at x - 0, 
so does (6). Formula (6) is in some sense a canonical minimum norm formula. We 
now investigate the truncation error in this expression. 

THEOREM. Let the points a, b, be sym1metric with respect to zero (this is for con- 
venience only) with a = -H, b = H. If f (m+ l)(x) is bounded on [-H, H], then 

in(?) - m! (2H)m+l/2 J L (Lm(x)f(x) dx 

< (2m)! (2m + 11/2 H max12 

= i! (- +a)' \2(N + 31 [-H, H]m + 

Proof. The Legendre polynomials Lm(X) on [- H, H] are related to those L*(x) 
on [-1, 1 ] by Lm(x) = ( 1 /VfH)Lm(x/H). So 
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(2ni)! (2 m +1)/ I~ (2 m)! ((2 m + 1 
))1/12 

(8) rn! (2H)m J rn(X)j(X) dx - m! (2H) 

m ~~~m+1 fm+1 Q * L,,,(x) f(O) + xf'(O) + + x f(m)(0) + x dx. 
H M~~~~~i! (m + 1)! 

Since the operator (8) differentiates polynomials of degree m exactly, we get 

f(rn) + (2m)! ((2rn7 + 1))1/2 H L (x) x m+ f(m +)()x)) dx 
ni! (2H) m+1/2 _(M + 1)! 

(2 n)! ((2 
mn 

+ 
)1/2 

1 
L*()Xm+lfm+l)(t(X)) f (?) + M! (2H)y?n+l/2 VHJ (m + 1)! dx 

= 4(m)(O\ + (2m11)! (2m + 1)1I2 1 ll L*(t)tm+lf(m+ ((tH)) dt 
f (0 nin! (2 H) m + /2 VH J (nin ? 1)! 

d 

C(m)(0) +(2ni)! (2rn + 1)1/2 fl L*(t)tm+`f(m+l)(tWH)) 
= f(O) + M 2?n +1/2 HJ (n+ 1)! 

Thus, if fm '' is bounded on the interval [-H, HI, this latter term goes to zero 
with H. This corresponds to the truncation error for mth differences. There, the 
error goes to zero with h, the mesh spacing, here, with the total interval length. 
A bound on the truncation error is 

2MY (2r ? 1)1/2 
m! (2m +)! 2fl?+1/2 H max If (m+1) IL*(t)tm+l dt 

m! (m ? 1)! Hn+ 

< (2 m)! (2r m+112H axi M+(f L* t 2+ 
1/2 

dt 
m! (m + 1)! 2 )1/2 rm'r L2ci 2+ / 

(2 m)! (2n + 1 1/2 H 
in! (ni ~ - 

-- max Ifcm+1). mn! (mi + 1)! 2rn + 3 2m 

COROLLARY. If f m+-2) is bounded on [-H, H], the truncation error is O(H2). 
Now, we require that the interval is symmetric about zero. 

Proof. This is immediate if we use one more term in the Taylor series expansion 
of f(x) and note that Lm(x)xm+l is an odd function on [-H, H], hence integrates 
to zero. This corollary is analogous to the result for central differences. 

To summarize this section, the operators (1), with wi selected as the minimum 
norm solution to (5) and (6), provide approximations to f (m)(O) which are exact 
for mth degree polynomials. The roundoff error in (1) is bounded by 

3EM max Ifil RA < 3Em max ifil RB 

which for sufficiently large N is, by (7), 

3emf max Ifil RA < 3E,m max If(x)I - (2H)mm! 

If x = 0 is the center of the interval, the truncation error in (6) is bounded by 

(2 m)! I2nz 1 12H2 

m! (m + 2)! 2m-5/ y max I (m?2)I. 

The roundoff error bound for mth central differences is 3Em max Ifil (2m1.'2H)m. 
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We have 

{2 n2X /(2m)! (2mn- +- 1)1/2 (2m) m! 
2H/ (2H)mr! (2m)! (2m + 1)1/2 

mmm+1/2 -m m+1/2 in (2m)mrnm e mn e 

(2rM)2m+l/2e-2m(2m + 1)1/= 2m+l/2mm+l/2(2m + 1)1/2 

e \m I 

= } V/2(2m? +1)1/2 as m - a>. 

While both roundoff error bounds are O(1/Hm), the difference bound is substantially 
greater for large m. As far as the truncation error is concerned, the situation is re- 
versed. Both (6) and the mth difference have O(H2) bounds, with the coefficients 
of the latter being smaller for large m than (6). 

If we use a higher order interpolating polynomial rather than an mth difference, 
the roundoff bound will increase and that comparison will be more favorable to 
(6), whereas the truncation error bound will decrease. 

A calculation shows that for equally spaced points the minimum norm weights 
are given by 

i! (N - m 

m! (N 
m 
+1) 2 

min 

(mr- v)! (N-v- 1) (N- m + 1)(N- m) 
m - v)! (v!)2 (-1) U J-v 

with RA = Ej=0 Jwil. We have computed RN for various values of m and N. Graphs 
of some of these calculations are included in Fig. I. Each curve has been scaled so 
that its value at N = m + 1 is 1, i.e., we have divided the ordinate values of each 
curve by the roundoff error bound for the corresponding mth difference. When m 
is small, m < 3, R, assumes its minimum near N = m + 1. For larger m, m > 10, 
R, makes a substantial decrease, about one order of magnitude, with about m/10 
additional function evaluations. Further increasing N reduces R, more slowly to a 
broad minimum, although not monotonely, -and the limiting value of R, tends to 
be slightly above its minimum but substantially less than the mth difference value. 
Thus, for m = 35, R, is reduced about four orders of magnitude over the corre- 
sponding bound for a 35th difference. 

Conclusion. We have defined minimum norm differentiation formulas and 
shown they exist by exhibiting them. Whether these will become useful remains to 
be seen. If they turn out to have application, it will clearly be for higher derivatives. 
In any case, the results indicate an interesting alternative way of looking at rounding 
problems. 
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