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A Method for Computing Bessel Function Integrals 

By Peter Linz 

Abstract. Infinite integrals involving Bessel functions are recast, by means of an Abel 
transform, in terms of Fourier integrals. As there are many efficient numerical methods for 
computing Fourier integrals, this leads to a convenient way of approximating Bessel func- 
tion integrals. 

1. Introduction. Integrals involving Bessel functions of the form 

(1) I(p) f f(x) Jo(px) dx 

occur in many physical applications, especially in the solution of certain mixed 
boundary value problems (cf. Sneddon [8], [9]). An extensive collection of known 
integrals of this type may be found in [4]. However, for many functions f(x), no 

closed form solution is known and it becomes necessary to use numerical tech- 
niques. The numerical approach is complicated by the fact that, if f(x) goes to zero 

slowly as x -* c, the integration has to be performed over many oscillations of 

J,,(x), and the standard numerical techniques become inefficient. Furthermore, posi- 
tive and negative contributions to the integral tend to cancel and, hence, lead to a 
high loss of significance. The situation is similar to the one encountered in the numer- 
ical evaluation of Fourier integrals 

(2) C(Q) f f(x) cos wx dx. 

A great many efficient methods have been developed to treat (2). (E.g. [1], [2], [5]; 
for a summary, see [3, p. 59]. More recent work is described by Lyness in [7].) On 
the other hand, the integral (1) seems to have received very little attention (for one 
special method, see [6]). One could, of course, attempt to generalize the methods 
developed for Fourier integrals to the Bessel function case, but there exists a simpler 
way. As we will show below, integrals of the form (1) can be expressed in terms of 
Fourier integrals, so that one can use all the techniques developed for Fourier integrals 
to evaluate Bessel function integrals. In the subsequent analysis, we will assume that 
lim_0, f(x) = 0, and that f(x) is such that all formal manipulations are justified. 

2. An Application of Abel Transforms. We introduce the Abel transform of 

I(p), defined by 
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(3) J(S) = p(S2 _ 
p2)-/2 I(p) dp. 

Substituting for I(p) from (1), and assuming that the order of integration can be 
interchanged, we have 

J(s) _ p(S2 p2)-1/2 f(x)Jo(px) dx dp 

nco 
f (X) p(S2 p2)-1/2 Jo(px) dp dx 

oo 

= L x1'f(x) sin xs dx. 

Differentiating with respect to s, one obtains 

(4) J'(s) = f f(x) cos xs dx C(s). 

To obtain I(p), we use the inversion formula for Abel's integral equation [9, p. 40] 

p(p) 2 d J S(p2 - S2)-1"2J(S) ds 

= 
2 

{J(O) + p f (p2 _ S2)-1/2J'(s) ds} 

Since J(O) = 0, we have, for p 5 0, 

(S) I(p) _ ~~~~2 X (p 2)-]/2 J(S) ds. (5) A)= 
- 

(2-s2"J()ds 

Also, 

co 1(0) = ff(x) dx = .J'(O). 

3. The Numerical Method. Since we can compute approximate values for 
J(s) by means of the Fourier integral (4), we can use (5) to compute I(p). This requires 
that the integral in (5) be replaced by a numerical quadrature. Because of the singu- 
larity of the integrand, we use the technique of product integration [11]. A special 
case of this technique is explained below, the generalization is obvious. 

Suppose we know J'(s) for si = ih, i = 0, 1, * * *, 2N. In each interval [S2i, S2i+2], 

we approximate J'(s) by quadratic interpolation on the points S2is S2i+l, and S2i+2- 

Then, for 52i < S < 52i+2s 

J'(s) 
- J2J 

i + S h {2J2i+1 - 1.5J2 - 

(6) 

(+ -h { Ji - 2J2j+j + 
Jfi+2}, 

where JY denotes J'(s,). Using the notation 
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Qj(X t, i) == - 
1 (x2 s- S-i) ds, 

hy 

we have, for S2k ? P ? S2ki2, 

2k-1 

I() - { JQo(p, 2, 2i) + (2J2I+l - 1.5 .Ji - .5J iJ +2)Q,(p, 2, 2i) 

(7) + 2(J'2 - 2J.N+1 + Jli+2)Q2(p, 2, 2i)l 

+ { 2JkQO(p, t, 2k) + (2 Jk+1 1.5 J2k - .5J2k+2)Ql(P, t, 2k) 

+ 2(J2k 2J'k,l + J'k-12)Q2(p, t, 2k)}, 

where t= (p - S2)/h. 

The explicit expressions for the Q3 are 

Q0(p, t, i) = I(p, t, i), 

QlI(P,I t, i) = 2 (P, t, i- I(p, t ) 

Q2(P, t, i) =I(p, t, i) - 2iI2(p, t, i) + i211(p, t, i), 

I,(p, t, i) = arcsin ((i + t)/p) - arcsin (i/p), 

I2(P, t, i) = (P2- _ i2)1/2 - (P2 - (i + t)2)"1, 

I3(p, t, i) = .Sfi(p2 - i2)1/2 - (i + t)(p2 _ (i + t)2)/2 + p21,(p, t, i) 

where p = p/h. 

In practice, most of the computational effort will have to be expended in com- 
puting the Fourier integrals J(si), for i = 0, 1, *.. , 2N. The computation of I(p) 
by Eq. (7) requires much less work. The process is therefore most efficient if the 
values of I(p) are required for a range of p. 

The integral (5) can be transformed into a simpler expression. For example, 
putting s = p sin 0, we get 

2 r7/2 J(p) - f J'(p s in 0) d 0, 
7r0 

which can be handled by standard techniques. Similarly, by a suitable change of 
variables, the integrand can be written in the form s- 1/2g(p, s) which has been treated 
in the literature. However, such an approach appears inefficient, since one needs to 
compute a new set of J'(si) for each p, while, with the method outlined in this section, 
I(p) may be computed for a range of p with only one set of J'(sj). However, if I(p) 
is needed for only one value of p, then some simplification can be achieved with the 
suggested transformation. 

The technique outlined in this section is a particular instance of the well-known 
product integration technique. A more thorough discussion, including the computa- 
tion of error estimates, may be found in the literature (e.g. Young [11]). 

4. A Numerical Example. In Table 1, we summarize the results for 

J(p) f X(X2 + 1)-3/2JO(px) dx = eP'. 
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The Fourier integrals were computed by means of an adaptive quadrature method 
(12] with an estimated accuracy of 10'- for si = 0(.125)1.0. 

TABLE 1. Results for Numerical Example 

p computed I(p) exact I(p) 

.2 .81868 .81873 

.4 .67034 .67032 

.6 .54884 .54881 

.8 .44934 .44933 
1.0 .36787 .36788 

5. A Generalization. The above process can be generalized to the evaluation of 

Iv(p) = f f(x) J,(px) dx, v = 1, 2, . 

Using Sonine's first integral [10, p. 373] 

t+1 rT/2 

=2aVt 1) = J (z sin 0) sin'1 0 cost+1 0 dO, 

and setting z = xt, r x sin 0, = 

L (X2 - r )"2r+ 1 J,(Qr) dr = X J12 +1/2(Qx) 

= x j,QX), 

where j, denotes the half-order Bessel function. Since the j, can be expressed in 
terms of sine and cosine, the process leading to Eqs. (4) and (5) can be repeated with 
obvious modifications if v is an integer. 
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