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Complex Zeros of Two Incomplete Riemann 
Zeta Functions 

By K. S. Kolbig 

Abstract. The computation of the complex zeros of an incomplete Riemann zeta function 
defined in an earlier paper is extended and new zero trajectories are given. A second in- 
complete Riemann zeta function is defined and its zero trajectories are investigated numer- 
ically as functions of the upper limit X of the definition integral. It becomes apparent that 
there exist three different classes of zero trajectories for this function, distinguished by 
their behaviour for X -- c. 

1. Introduction. Let s = -a + it be a complex variable. In a previous paper [1], 
some results concerning the complex zeros of an incomplete Riemann zeta function 

(I) A(s, X) = T(s)fo Cx _-l dx 

and of the incomplete gamma function 

(2) P(s, X) I() f x leX dx 

were presented, X > 0 being a real parameter. These results were obtained by a 
systematic numerical investigation. It became apparent that not all, but only some, 
of the zero trajectories 3(X), defined in the s-plane by A(N(X), X) = 0, reach a zero 
of the Riemann zeta function ?(s) on the line a- = I as X -+ co. The remaining curves 
3(X) approach the zero trajectories 9(X) of the incomplete gamma function P(s, X), 
which are defined by P(s(X), X) = 0. 

It is the aim of this paper to present further solutions s(X) which again have 
been obtained by numerical calculation. Because of the fact that there exists the 
relation 

(3) d(s) = F(s) f c .X ( I - Jo V ? 1 dx, 

we introduce, in addition, a second incomplete Riemann zeta function 

( ) ( ) ~~~~~r(s) (nex + I 

where 

(5) lim B(s, X) = (1 - = 2t*(s)s 

-~~~~Xc 
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552 K. S. KOLBIG 

Some of its zero trajectories s(X), defined by B(s(X), X) = 0, are also computed. 

2. Relations to Other Functions. The incomplete Riemann zeta functions 
A(s, X) and B(s, X), as functions of a complex variable s, do not seem to have arisen 
so far in applications. However, these functions, the corresponding complete functions 
i(s) and t*(s), as well as certain of their possible generalizations, play, for other 
types of variables, under different names, and different notations, an important 
role in several fields of physics and chemistry, e.g., in thermodynamics and in con- 
ductivity theory. They are often called Debye functions, Bose-Einstein functions, 
Fermi-Dirac functions, etc. In his handbook of special functions, Luke [2] defines the 
Debye functions by 

rx 
(6) A*(z, m) = mz z- dx 

for complex z with Re z > 0 and positive integral m. He also gives rational Pade 
approximations to these functions. By comparison with (1), we find 

x8-1 
(7) A(s, X) = 5- - A*(X, s- 1). 

(S - l)P(s) 

Recently, Ng et al. [3] have defined an incomplete Bose-Einstein function 

(8) B, ) l)fo ex* _ lI dx, 

corresponding to a complete function B,(-q) when u -* o. They do not investigate 
B,(q1, u) further. In another paper, Ng and Devine [4] present a method for the com- 
putation of the Debye functions 

(9) Dp(x) = XPA*(x, p) 
p! p 

for integral p and real x. From (1), (8) and (9), we have 

(10) A(s, X) = Bs_1(0, X) = bs_1(X) 

One can also define an incomplete Fermi-Dirac function 

(11) ~~~~~F,(-q, u) - )o~? dx, (ll) r~~~~~~~~~(; + 1) Joex-l + I dx 

though this is not done by Ng et al., who discuss only the complete function F&(q). 
If we compare it with B(s, X), we find that 

(12) B(s, X) = FS_1(0, X). 

The complete Bose-Einstein functions and the complete Fermi-Dirac functions have 
been investigated by several authors, e.g., by Dingle [5], [6]. Cody and Thacher [7] 
have developed rational Chebyshev approximations for F,(-q) in the particularly 
important casesp =-y, -! q and real -. Ng et al. have given Chebyshev polynomial 

* The asterisk in A* is not in the original notation. We introduce it here in order to avoid con- 
fusion. 
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expansions of Bp(-) for p = 0(1)10 and real -q. Finally, we mention the fact that 
Nielsen's generalized polylogarithms 

(13) Sn, , (x) dU-)~'f o"1i o~l-xi 3ii (n -1)p! Jo u 

which are of importance in the theory of Feynman integrals in quantum electro- 
dynamics, and which have recently been discussed by Kblbig et al. [8], for positive 
integers n and p, are connected to the Debye functions and, therefore, to A(s, X). 
From Eq. (13), with the substitution u' = -log [1 - (1 -e-x)u], we find the relation 

(14) A(s, X) = SI,a.1(l - C). 

It should, however, be noted that, in all these cases, s is considered by the authors 
to be a real number or even a positive integer.** 

3. Other Formulae for A(s, X) and B(s, X). Formulae for P(s, X) and A(s, X) 
which allow analytic continuation of these functions into regions of the s-plane other 
than those covered by the definition integrals (1) and (2) are given in [1]. From the 
power series expansion [9] 

(15) 1 2 n n! n= (n + I)! 

which converges for lxi < ir, where En(t) is the nth Euler polynomial and Bn are the 
Bernoulli numbers, we find for B(s, X), in the same way as for A(s, X) [1], the expression 

I " I -2 2n 
B2n _____1 

(16) B(s,X)j ){ + E (2)! s+2n- 1+ J ez+ dx 

By analytic continuation, this formula defines B(s, X) in the half plane a < 0, except 
at the integer points 0, -1, -2, *-- . By an appropriate limiting procedure, we 
obtain 

(17) B(-k, X) = (1 - 2k+')t(-k) = (-1)k(l - 2k+')Bk+l/(k + 1) 

for all X and k = 0, 1, 2, . In particular, we have 

B(0, X) =2 

(18) B(-2k, X) = 0 (k > 0), 

B(-2k + 1, X) = (22k - l)B2k/2k (k > 0). 

For s = 1, one finds 

(19) B(1, X) fxex+ 1 = log 2 + X - log(eX + 1) 

and 

(20) lim B(l, X) = lim (1 - 2'8')?(s) = log 2. 

** Of course, it is also possible to introduce the corresponding complementary functions, where 
the integral is taken from a finite value X to o instead of from 0 to X. This is done by several authors. 
We do not present further details here. 
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From the expansion 

1 - -~c ()n-nx x> ) 
(21) X + 

1 
- i (x > ) 

we obtain from (4), by using (2) and the substitution x' = nx, the following expression 
valid for a > 0: 

(22) B(s, X) = - (-1 ) n P(s, nX). 
n-1 

For s = 2 we can use a known relation between the incomplete gamma function 
and the error function [9] to obtain 

ax n+l 

(23) B(1, X) (-1 f(nX)2 
n-i f 

The formulae for A(s, X) and P(s, X) which correspond to (16), together with 
the well-known [9] partial fraction expansion of P(s, X), have been used in [1] for 
the numerical calculation of these functions. However, for increasing t and X, the 
numerical evaluation of the integrals becomes more and more time-consuming. We 
present, therefore, another formula for A(s, X), which is essentially due to Putschbach 
[10], who developed this formula in a manuscript mentioned in [1]. Further, we shall 
give the corresponding formula for B(s, X). 

27Tt 

9A~~ 

-2- 

FIGURE 1 

We consider a z-plane which is cut along the real axis from 0 to + o (Fig. 1). In 
this plane, we construct a contour CA which starts at X > 0 on the upper boundary 
of the cut, encircles the origin on the left and ends in X > 0 on the lower boundary, 
in such a way that the points z = 2iri and z = -27ri remain above and below CA, 
respectively. We then integrate the function 

(24) f(z) = (z)J-/(e2 - 1) 

where (-z)8-l - log e( and where the logarithm is taken as real on the negative 
real axis, along the contour CA. By shrinking CA into the boundary of the cut along 
the real axis, inserting appropriate boundary values along the cut, and using a well- 
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known property of the gamma function and the definition (1), we finally obtain 

(25) = 17~~~~~(1 - s) f (-z)8-1 (25) A(s. X) = 2w1 - 1 

This formula corresponds to the so-called Hankel integral for c(s) and now defines 
A(s, X) for all s $ 1. 

In order to evaluate the contour integral in (25), we deform CA into a circle K,, of 
radius X as shown in Fig. 2, excluding the values X-2n7r (n 1, 2,!3, *. ). 

6i71 

FIGURE 2 

In the cut plane, the function f(z) has poles of order 1 at the points z = d2nwri 
(n 1, 2, 3, ** ). If we choose N such that 

2Nir< X< 2(N +l1)r (N =0,1, 2*.. 

which is equivalent to N = [X/(2ir)],*** we see that the poles for n = ?1, 2, - 
:EN if N ?! 1 (or no pole if N = 0) lie inside the contour of Fig. 2, and that the 
remaining poles, for n = (N ? 1), :h (N + 2), . lie outside. Applying the residue 
theorem, and using 

(26) Res f(Z)lg.-2.,r i + Res I(Z)l--2.-27i 2(2nirf'1- sin irs 
2 

we obtain the relation 
Ar 

(27) A(s, X) = 1 - s) 2 7r' sinis Z1 dz - 1 } 

* * * (x] denotes the largest integer _ x. 
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where the sum over n is zero for N = 0. For the calculation of the remaining integral 
over Kx, we introduce the well-known partial fraction expansion 

(28) ----+2zZ 2 ex-I z 2 F-1'z2+(n 

which converges uniformly in the annulus 2nr < IzI < 2(n + 1)7r for n 0, 1, 2, * *. 
With z = Xe', (-z) = Xei(0 r), 0 < 0 < 27r, this leads to 

r(_Zys-1 . I dz 
(29) 2r JiX e - d 

=' {sin 71rs 2 sinrs + 2X f2 ei(rc)(o+l) X I dO}. 
27r s Xs - I n-1 X e ' + (2nir)2 

Exchanging the sum with the integral and using the substitution 0' = 0 - 7r, we 
find in the case 2nir/X < 1 (i.e., n = 1, 2, 3, * , N if N ? 1) that the integral of 
the nth term in the series is given by 

Jr+ )ei(9+1) dO 1 T et(-l) dO 
2 O 2i I2 X 

- X e + (2n7r)2 = 2 _ + (2n7r/X)2 e2iO 

(30) = 2 f 
i 

(- )j(2nr) i(,-1-2 dO 

2 . (-1); 22n7r 
- -;sins 7rs,I E s-2- l \ 

and, similarly, for X/(2nir) < 1 (i.e., n = N + 1, N + 2, * *), 

u ei(a+l)0 d0 1 () (x\2i 
(31) N_ O2_2i + (2n)2 

- - 2 sinrs +2j+ 1 \2f7) __ 2nr 2n 7r ji{O S +2 n 

Introducing these results into (29) and (27), we have 

1 ( N 

A(s, X) = - r(i - s) (2r) sin - s j n 
7r 2 n- 

(32) - S - Xs _L) - - - I ( 

10 (JV /x2iT 

- 2 ~n-N+ (2n7r)2 ?o s + 21 + I 2nr 

where again the sums from 1 to N are zero for N = 0. This is Putschbach's formula. 
The double sums in this formula can be conveniently rearranged, and one finally has 

A(s, X) r(l - s){(2r)r sin 7r N ne- 
T t ~~~2 

8 . 1 1 ~ ~~~2 (N) (_ 7) Nr 
- ' sin 7rs[ -Xs ) XX~a-N ~7) -X s11rs 2s V(S 1) x io s - 2j - I x 

_ 
2 E(N) 

1 ( + l)A)1 
2(N + 1)272 j-O s + 2j + 1 2(N + 1)r 
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The constants aN) and $(N) are defined by 

(N) N-'n~ 
2 

_ 0 
( 3 4a) . 

- 
( (N ? 1), a() = 0; 

,3(N) E 
~ (N + 1)23+2 '?') = Q(2j + 2). 

n-N+ 1 n 

This normalized form has the considerable advantage that 

(N) 1, p(N) 1 

for j -X (with N > 0 for atN)) This implies that, for the numerical calculation, 
one has to store only a limited number of these constants, without necessarily re- 
stricting the upper limit of the summation index j to the number of coefficients stored. 

A similar procedure can be applied to the function B(s, X), which can be written as 

(35) BPs, X)s) - ~zs 
dz. (3 ) ( ') 27ri CB e + I 

Here, the poles of the integrand lie at the points z = dh(2n - 1)7ri (n = 1, 2, 3, ** ). 
For (2N - 1)w < X < (2N + 1)7r or, equivalently, N = [(X + 7r)/(27r)], we obtain, 
following the same procedure as for A(s, X), and using the partial fraction expansion 

(36) 1 1 2 2z Z2 + (2 r)2 e2 ? n.1z + ((2 n )) 

the formula 
( ~~N 

B(s, X) = -- _s)2(- sin -s _, (2n- 1)' 
7r 2 n-1 

- X s i n 7 r s 0 2 5 - X E ) " 5 - 2 y - I ( X )r 2 

2 2_ E N (-A) Y (2 N< ) } 

(37) ,X> sin - ) j (2N >' 

2X _ _ _ _ _ ' X \ i 

( N + 1)21r2 V) _ _ _ _ _ _ _ _ _ _ 62 N E (2N s + 21+ 1 \(2N + 2 )r 

Here, the constants y~N) and 63(N) are defined by 
N /n I i 0 

n 2N+l n - 1 

For ] o (with N > 0 in the case y"V)), we again have 

(N) I a(N) 
lyi '*' i 

The constants a -N) . .. 6(N) can be expressed by Bernoulli numbers, but this does 
not lead to a significant simplification. 

We finally note that A(s, X) and B(s, X) are related by the equation 

(39) B(s, X) = A(s, X) - 21-' A(s, 2X) 

which may be obtained from (1) and (4) by using the fact that 
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(40) (ex + 1)1 = (e0 - - 2(e2 _ - 

4. Nontrivial Zeros of A(s, X) and B(s, X). In [1], the first six zero trajectories 
9m(X) (m = 1, 2, ... , 6) were calculated. It was found that only S(X) and S,(X) 
reached zeros of i(s) as X -> c, terminating respectively at the first two zeros, S1 = 

2 + 14.13473i and Sa2 + 21.02204i. A numerical investigation of the trajectories 
3m(X) for m = 7, 8, * , 14 has given the result shown in Fig. 3. Since the behaviour 
of the trajectories is fairly regular for ao -5, only the region around a- = 0 has 
been investigated and only the results for this region are plotted in Fig. 3. One sees 
that, in addition to 34(X) and &6(X), the trajectories 8(X), 310(X), 512(X), and 314(X) 

reach the zeros s3 = 2 + 25.01086i, s4 = 2 + 30.42488i, s5 = 2 + 32.93506i, and 
S=2 + 37.58618i, respectively. The trajectories 37(X), S 3(X), and 313(X) 

approach the zero trajectories 55(X), So(X), 97(X), and 98(X) of the incomplete gamma 
function P(s, X), respectively. The fact that for 4 _ m ? 14 all the even-numbered 
trajectories reach a zero SM of c(s), whereas all the odd-numbered trajectories approach 
a zero trajectory of P(s, X), is somewhat surprising for its regularity. It is, however, 
by no means certain that this will be a general law. Consequently, a new question 
arises-namely how far this behaviour will continue.t At present, the investigation 
of this problem has not been carried further, since the numerical difficulties become 
too great, as will be explained later. 

For the function B(s, X), we note from (3) and (4) that 

(41) (1 -2)(s) = lim X dx. r (s) ex + 1 

Since the factor +(s) = 1 - 21 8 on the left-hand side of this equation vanishes in 
the upper half-plane t > 0 for 

(42) 0 = 1 + 2,k i = 1 + 9.06472ki (k = 1, 2, ) 

and since we have 1 (s')J < x and 0 < I r(sl)J < c, it follows that 
or x8j?-1 cox (2rk/log 2) i 

(43) dx + JO X 1 dx 0 (k = 1, 2,**). 

Therefore, one has to expect that some of the trajectories Sm( X) defined by B(s'( X), X) 

=0 may end at the points sk. As will be seen, this is indeed the case. 
The problem of calculating the trajectories Sm(X) is treated in a similar way to 

that of 3m(X) [1]. From preliminary calculations, which were carried out very con- 
veniently on the CERN interactive GAMMA system, using the formula 

(44) B(s, X) X t 1 + E ( _ B 2ns2 1 

(44) ~ ~ ~ r s 2 
-I (2n)! s+ 2n - 

If 

for real negative s, it was found that, just as A(s, X) oscillates about O(s), so B(s, X) 
oscillates about ?*(s) defined in (5). Both functions have the same values at s = -k 

t For instance, it would be interesting to know whether there is any special behaviour of the 
trajectories near a zero-free Gram interval of c(s) (see, e.g., Lehmer [11] or Barkley Rosser et al. [12]). 
The first of these intervals is around t 282 and therefore far beyond the range of the present calcula- 
tions. 
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(k = 0, 1, 2, *--). One finds also that the starting point s* of S(X) lies around 
s -2.35, for S ~ 0.986. A further investigation with the GAMMA system gave 
approximations for the starting values of the higher order trajectories. A detailed 
numerical calculation then provided accurate starting points s for the trajectories 
s^(X) for m = 1, 3, * , 5 as given in Table 1. 

TABLE 1 

m 5im Sm = S (Xm) 

1 0.98656 - 2.34145 
2 1.66221 - 6.20124 
3 1.98928 - 10.14943 
4 2.18907 -14.12026 
5 2.32552 -18.10126 

It seems that S = 2 - 4m - E(m) for m - a), where e(m) = 0(1). No attempt 
was made to prove this relation. 

A systematic numerical investigation of the first 17 zero trajectories sm(X) gives 
the result shown in Fig. 3. There are, in fact, three classes of curves, namely those 
which end in a zero SM of c(s) on the line a = 2, those which approach a zero tra- 
jectory of P(s, X), and those which end in a zero so of +(s) = 1-21-8 on the line 

= 1. The following table marks with an asterisk the behaviour of gm(X) as X . 

TABLE 2 

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

5t(s) * * * * * 

P(s,X) * * * * * * * * 

+(s) * * * * 

It is, of course, impossible, to deduce a general behaviour for higher m from the 
calculated results. It might be that such a behaviour does not exist in the case of 
B(s, X), since we have here the additional zeros so, which are equally spaced and 
which interfere with the unequally spaced zeros of c(s). 

5. The Numerical Calculation of the Zeros of A(s, X) and B(s, X). As was al- 
ready stated, the numerical evaluation of the integrals in formulae (10) of reference 
[1] and (16) becomes very time-consuming for increasing values of X and t. The 
results for A(s, X) and B(s, X) can be obtained in a much faster way by using the 
expressions (33) and (37), provided that X is not too near to an even or odd multiple 
of ir, respectively. These representations, however, have the disadvantage that they 
are very sensitive to the cancellation of terms. In particular, the quantities in the 
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TABLE 3 

32 N- 18 32 N + 46 32 N-34 32 N + 30 
(N > 2) (N 2 O) (N _ 2) (N > O) 

square brackets are likely to cancel to a large extent, especially for increasing t. Since 
these brackets are multiplied by large quantities and the results are added to others, 
the cancellation becomes quite dangerous. All the computations were therefore 
performed in double-precision arithmetic on a CDC 6600 computer, corresponding to 
about 28 decimal digits. The constants a4N), *- 6(N) were computed beforehand 
and stored in a data file. Since they approach unity for j co, only restricted numbers 

J<, * * *, J, of them have to be stored. As an indication, the numbers Jaf, ... * JA 
required for 28-digit precision, are given as functions of N (N ? 10) in Table 3. 

TABLE 4 

Zero Trajectories for the Incomplete Zeta Function B(s, X) 

S1(X) S2(X) 

X a t X t 

1 - 2.34631 0.16772 
2 - 2.36578 2.12190 2 -6.29432 1.33751 
3 - 1.72637 3.45312 3 -5.87078 3.65737 
4 - 0.86760 4.35556 4 -4.87320 5.24436 
5 - 0.01500 4.97944 5 -3.77683 6.27204 
6 0.77159 5.45541 6 -2.75156 6.94395 
7 1.49273 5.86507 7 -1.84050 7.39900 
8 2.16699 6.25539 8 -1.04691 7.72099 
9. 2.81776 6.65159 9 -0.36702 7.96112 

10 3.46874 7.06278 10 0.19963 8.15598 
11 4.13880 7.48443 11 0.65044 8.33890 
12 4.83593 7.90432 12 0.98185 8.54174 
13 5.55766 8.31209 13 1.17830 8.78700 
14 6.29755 8.70355 14 1.17655 9.04118 
15 7.05021 9.07888 15 1.04917 9.10687 
16 7.81230 9.43983 16 1.00583 9.08637 
17 8.58191 9.78824 17 0.99793 9.07256 
18 9.35796 10.12569 18 0.99797 9.06691 
19 10.13977 10.45343 19 0.99896 9.06511 
20 10.92690 10.77242 20 0.99959 9.06469 
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TABLE 4 (continued) 

S3(X) S4(X) 

X CT t X CT t 

2 - 10.15367 0.22596 
3 - 9.93496 3.74940 3 -13.97332 3.79136 
4 - 8.79853 6.04542 4 - 12.71326 6.79974 
5 - 7.43585 7.53915 5 -11.09646 8.76752 
6 - 6.12305 8.50652 6 - 9.50870 10.04044 
7 - 4.93709 9.14708 7 - 8.06649 10.87712 
8 - 3.88350 9.58480 8 - 6.78683 11.44142 
9 - 2.94561 9.89391 9 - 5.65500 11.83336 

10 - 2.10115 10.11850 10 - 4.64905 12.11424 
11 - 1.32595 10.28424 11 - 3.74811 12.32250 
12 - 0.59121 10.40494 12 - 2.93489 12.48324 
13 0.14854 10.48893 13 - 2.19629 12.61402 
14 0.98641 10.58553 14 - 1.52369 12.72861 
15 1.87653 10.89696 15 - 0.91313 12.83986 
16 2.63291 11.31852 16 - 0.36519 12.96199 
17 3.32475 11.75021 17 0.11621 13.11227 
18 3.99550 12.18137 18 0.52571 13.31233 
19 4.66219 12.60831 19 0.85593 13.59359 
20 5.33115 13.02867 20 1.09183 14.04000 
21 6.00460 13.44152 21 1.59381 14.81908 
22 6.68342 13.84677 22 2.27519 15.31490 
23 7.36803 14.24460 23 2.89424 15.75818 
24 8.05865 14.63517 24 3.49212 16.20113 
25 8.75523 15.01862 25 4.09019 16.65080 

It is essential that these constants are calculated as accurately as possible. The 
a(X) and 7(N) are finite sums, and no particular problem arises. For $(N) and 6N), 

however, either infinite sums have to be evaluated or the relations 

(45) (N) = (N + 1 j)2i+2[t(2 + 2) - E 2j+2]j s 

(46) (2N + l)2+2[(l - 2 23)r(2j + 2) - (2n - 1i) ] 

have to be used. For j _ 3, approximations to the infinite sums were calculated 
directly, since it is clear that the square brackets in the above formulas are a source 
of cancellation errors. For j = 0, 1, 2, however, the convergence of the series (34) 
and (38) is too slow. For these cases, the help of Mr. Wim Klein (CERN) is acknowl- 
edged. He calculated the constants :(N) and 6'N) for j = 0, 1, 2 and N = 1(1)10 
rapidly and accurately with paper and pencil from the Eqs. (45) and (46), carrying 
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TABLE 4 (continued) 

S5(x) 

X cr t 

3 -17.99851 3.80230 
4 -16.62308 7.52454 
5 -14.75815 9.96953 
6 -12.89947 11.55151 
7 - 11.20337 12.58729 
8 - 9.69808 13.27988 
9 - 8.36947 13.75403 

10 - 7.19261 14.08642 
11 - 6.14263 14.32491 
12 - 5.19793 14.49989 
13 - 4.34067 14.63099 
14 - 3.55632 14.73087 
15 - 2.83307 14.80738 
16 - 2.16095 14.86457 
17 - 1.53093 14.90257 
18 - 0.93321 14.91559 
19 - 0.35389 14.88426 
20 0.23114 14.73109 
21 0.47252 14.28953 
22 0.47046 14.17194 
23 0.48427 14.14051 
24 0.49402 14.13347 
25 0.49838 14.13319 

35 decimals and taking as basic numbers for t(2j + 2) the 35-decimal values of 
t2 and 7r as given in the tables of Fletcher et al. [13]. 

The details of the calculation procedure for the zero trajectories are already 
described in [1]. In order to make programming of the expressions for A(s, X) and 
B(s, X) easier and to avoid splitting into real and imaginary parts, a package of 
"double-precision complex" subroutines has been written and used in the programs. 

For the trajectories which lie in the region t > 35, the cancellation problem 
becomes more and more serious for the expressions (33) and (37), in particular for 
B(s, X). In this region, the formulae (10) of reference [1] and (16) have been used for 
the calculation or for checking purposes. The numerical integrations were carried 
out by a program based on the modified Clenshaw-Curtis algorithm developed by 
Havie [14], [15]. It was found in this connection, that the substitution t = log x in 
the integrals reduces the calculation time considerably. It was, however, not possible 
to use these expressions for further calculation in the region above t > 38, since 
practically all the significant digits cancel between the sum and the integral. 

Table 4 gives five-digit values of the zeros of B(s, X) for the first five trajectories 
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6. A Plot of the Zeros of A(Xz, X). It has been seen that some of the zero 
trajectories of A(s, X) and B(s, X) approach a zero trajectory of P(s, X). In a little- 
known paper, Mahler [16] investigated theoretically the behaviour of the zero trajec- 
tories Zm( X) = Sm(X)/ of P(Xz, X) in the z-plane. In particular, he found that the 
moduli of the starting points z* = 9*/5* (see Table 2 in [1]) on the real negative 
axis decrease with increasing m, approaching a limiting value; and that the curves 
2m(X) cluster towards a limiting curve for m -* a). In addition, he showed that the 

2m(X) end in the point z = I for X co and all m.tt 
In Fig. 4, the first five zero trajectories 2m(X) = 3m(X)/X of A(Xz, X) are given. 

The behaviour of these curves is different from those of P(Xz, X) (apart from the 
irregularities due to the zeros of c(s)) insofar as the moduli of the starting points 
Z$ = 3*/X* (see Table 1 in [1]) on the real negative axis increase with m. The zero 
trajectories of B(Xz, X) would give a similar picture. 
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