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Semidiscrete-Least Squares Methods for a Parabolic
Boundary Value Problem*

By James H. Bramble and Vidar Thomée

Abstract. In this paper some approximate methods for solving the initial-boundary
value problem for the heat equation in a cylinder under homogeneous boundary condi-
tions are analyzed. The methods consist in discretizing with respect to time and solving
approximately the resulting elliptic problem for fixed time by least squares methods. The
approximate solutions will belong to a finite-dimensional subspace of functions in space
which will not be required to satisfy the homogeneous boundary conditions.

1. Introduction. The purpose of this paper is to analyze some approximate
methods for solving the initial-boundary value problem for the heat equation in a
cylinder under homogeneous boundary conditions. The methods consist in discretizing
with respect to time and solving approximately the resulting elliptic problem for fixed
time by least squares methods. The approximate solutions will belong to a finite-
dimensional subspace of functions in space which will not be required to satisfy
the homogeneous boundary conditions.

Let @ be a bounded domain in Euclidean N-space R" with smooth boundary 9.
We shall consider the approximate solution of the following mixed initial-boundary
value problem for ¥ = u(x, t), namely,

ou X .
;,’T=Au= F) in @ X (0, ),
(1.1) i1 0%
u=20 on 92 X [0, »),
u(x, 0) = v(x) in Q.
By replacing the time derivative in (1.1) by a backward-difference quotient, we
define an approximate solution w,(x, #) for t = nk,n = 0,1,2, --- , by
w D= D o g i+ k), x€ 0,
(1.2)
u, = 0, x & 99,
u(x, 0) = v(x), x € Q.

With u,(x, ) = v, u(x, t + k) = w, we then have the following equation to solve
for w, when v is known:

(1.3) w—kAw =v in Q,
(1.4 w=0 ondQ.
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634 : JAMES H. BRAMBLE AND VIDAR THOMEE

We shall prove that this Dirichlet problem admits a unique solution and that, for
sufficiently smooth initial-values v,

sup ||w(-, £) — u(-, 1)|| = Ok) ask —0,

0st=sT

where ||-|| denotes the norm in Ly(),

il = ([ weor ax)”

For the approximate solution of the problem (1.3), (1.4), we shall use a finite-
dimensional subspace S; depending on a small positive parameter 4 such that for
any v in H**?, 4 = 0 (or in a certain subspace of H**?), there is a ¢ € S such that

llo = ollai £ CH[jo|luss, 0= j = 2.
Here, H = Wi(Q),j=0,1,2, ---, denotes the Sobolev space defined by
ol = .Z|;~ [|D%|].

The functions in S¥ are not assumed to satisfy the homogeneous boundary conditions
on 9Q.

Given v, we shall then take for the approximate solution of (1.3), (1.4) the unique
function in S% which minimizes the functional
(1.5) Ap;v) = [lp — kA — o[[* + vlel’,

where |-| denotes the norm on L,(6%),

1/2
jo| = </;n [o(x)[? dS) .

The selection of the weight v,, in (1.5) is crucial and depends upon an a priori in-
equality for the elliptic operator in (1.3). It will turn out that it is appropriate to
choose v, such that, for certain positive v and C,

(1.6) Yk'? £ v S CK°RC.
If we thus define u,,(x, 1), = nk,n =0, 1,2, --- , by setting

A@n(-, t + k); ua(-, 1)) = min Alp; un(-, 1)),

PESHH
ukh(x’ O) = U(x)9 X E Q,
we shall be able to prove that

sup [luw(-, 1) — u(-, 0)|| = Ok + #*) ask, h— 0.
0stsT
Notice here that (1.6) implies that kA~ * is bounded away from zero. This requirement
goes in the opposite direction compared to the well-known stability requirement for
explicit difference schemes. Notice also that as a consequence of this requirement the
error estimate has the form O(k) for all u = 2.
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In order to obtain greater accuracy, it is natural to consider, instead of (1.2), the
Crank-Nicolson symmetric formula

ak(x, t + k) - uk(x, t) _ 1
k - 2

In this case, the problem (1.3), (1.4) changes into

Adi(x, t + k) + 3Ad(x, 1).

a.mn w— 1kAw = v 4+ 3kAv in Q,
(1.8) w=20 on 912.

This problem again admits a unique solution and we shall now prove a convergence
result which this time takes the form
sup |[[&(-, 1) — u(-, D|| = OGK®) ask — 0.
0=st=T
In order to solve the problem (1.7), (1.8) approximately, we shall introduce the
functional

Kesv) = llp — 3kdp — v — 3k80|[° + Fulol’,
where now the weight ¥,, will be chosen to satisfy
(1.9) Yo £ Yn £ CK°H°,
with positive v, and C. With the appropriate definition of ,,, we shall then prove
sup ||d@w(-, ) — u(-, t)|| = OK® + 1*) ask, h— 0.

0=t=T
By (1.9), k* = ch® and, hence, the error estimate here has the form O(k?) for all u = 3.

All the above convergence estimates require v to be sufficiently smooth. The exact
degree of regularity assumed in each case will be clear from the statement of our
theorems below. For v less regular, we shall prove correspondingly weaker conver-
gence estimates. In the case of the approximate Crank-Nicolson method, a specific
difficulty appears in that the functional X contains Av and, thus, requires more
regularity from the initial-values than in the purely implicit method. As we shall see,
this difficulty can be overcome, for instance, by taking the first step by the purely
implicit method.

In the extensive recent literature dealing with the solution of elliptic and parabolic
problems by variational methods, many papers concerned with homogeneous bound-
ary conditions employ finite-dimensional subspaces of the relevant Hilbert spaces,
the elements of which satisfy the boundary conditions. In the parabolic case, such
techniques have been analysed by Price and Varga [14] and Douglas and Dupont [9].
In order to avoid the difficulty of constructing subspaces with a prescribed behavior
at the boundary, different variational principles have been considered where, for the
approximate solution, the boundary values are assumed only approximately; cf.
Aubin [2], Babuska [3], Bramble and Schatz [6]. The method of solution of the elliptic »
problems above at fixed time is that of Bramble and Schatz. The analysis of the effect
of the discretization in time is similar to that in Peetre and Thomée [13]. A somewhat
different way of applying the ideas in [6] in parabolic problems has been described in
King [11].
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2. The Continuous Problem. In this section, we shall prove an a priori estimate
for the continuous problem which we shall need for our error estimates. For this
purpose we recall some properties of the eigenvalue problem

2.1 Av+ A =0 in Q,
(2.2) v=0 onadQ.

We collect what we need in the following lemma.

LemMA 2.1. The eigenvalue problem (2.1), (2.2) admits a sequence {\,,}7 of positive
eigenvalues and a corresponding sequence {¢,, | of eigenfunctions which constitute an
orthonormal basis in L,(Q); every v € L,(Q) may be represented as

(2.3) v(x) = ; Brnpwm(x), Br = (0, ¢n)) = fﬂ v(x)pn(x) dx

and Parseval’s relation
ol = (2 18a17)*

holds.
Let H®, with s = 0, be the subspace of L,(Q) for which

loll, = (X NlBal)* < @, Bn = (@ o),

andlet H® = ﬂ»o H'. ltis easy to see that, if 92 € @”, we have
H® = {fv;v € (@), At = 00ndQ,j=0,1, -},
and for s an integer,

cllllae = |lolls = (—A)v,v) £ C,ll||ge, v E H”.

The spaces H* have the following interpolation property (cf., e.g., [12]):
LeMMA 2.2. Let sy < s < s,. Then, there is a constant C such that, if G is a bounded
linear mapping from H'' into a normed linear space 3 with norm ||- || such that

laolln = 4illolle;,  j=0,1,

then @ is also a bounded linear mapping from H* into 3 and

ll@vllx < C4™  Al[loll,, 6= (s — s0)/(s1 — s0).

Consider now the initial-value problem

(2.4 du/dt = Au  in @ X (0, »),
2.5) u=20 on 92 X (0, »),
(2.6) u(x, 0) = v(x) in Q.

THEOREM 2.1. This problem admits for v € H” a unique solution u(x, 1) = E(t)v.
The linear operator thus defined satisfies

2.7 E@w]| = (o]l

and hence may be considered defined on all of L,(Q). Furthermore, E(t)v is smooth for
t> 0. For any l and s with0 < s < I, there is a constant C such that v & H’ implies
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E(fyy € H' and
(2.8 [[E@pll: = ¢ 27pll,, 1> 0.
Proof. For v € H” defined by (2.3), set
EMw = 3 B ™™ o).

Then u(x, £) = E(f)v is the unique solution of the problem (2.4), (2.5), (2.6) and the
inequality (2.7) follows at once by Parseval’s relation. Since, for ¢ > 0,
xl—ae—Z)\mt — t-—(l—a)(x t)l—ae—Z)\mt < Ct-—(l-—a)

we obtain

[E@®w|l:

(2 Anlgaf ey

~ m m

Ct—(z—sw(z )\,',,Iﬁm|2)l/2 = ct™ "7 pll,,
m

lIA

which proves (2.8).

3. The Semidiscrete Problems. We shall discuss here the two problems
obtained by backward and symmetric discretization with respect to time.
() The Purely Implicit Method. We shall first consider the problem (1.3), (1.4),
described in the introduction. More precisely, we introduce the elliptic operator
=1 — kA andlet E: v > w = E,v be defined by the solution of the following
Dirichlet problem:
3.1 Liw=v inQ,
3.2) w= 0 ondfQ.

For ¢ = nk, we then define E,(f)v = E;v. These definitions are justified by the following
theorem.

THEOREM 3.1. The semidiscrete problem (3.1), (3.2) admits a unique solution w,
and w = E,v defines a bounded linear operator E, in Ly(Q). If0 < s < land T > 0,
then, for 3k(I — s) = t = nk < T, E(t) = E; is a bounded linear operator from H*
into H' and there is a constant C such that, for v € H°,

IE@pll: < €% |lo]]..
Proof. For v of the form (2.3), we have

Ekv(x) = Z 1 + k)\ ﬁmqom(x)

By Parseval’s relation, we have at once ||E,v|| < ||v||. Applying the inequality
/A /S, 120, nzZ 30—,
valid for /, s fixed, we obtain
An/(L+ kA" S Cnk)™ 170N,

and, hence,
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xl 1/2 172
= Cm e,

which proves the theorem.
Our main interest is to analyze the convergence properties, as k — 0, of the operator

Ek(tlz.EMMA 3.1. There is a constant C such that, for + = 0,
(3.3) /A+n—e’=1 =1+ ne'| £C,
(3.4) A+ —e™|2Cr, n=1,2 ..
Proof. 1t is clearly sufficient to prove these inequalities for 0 < 7 < 1. The in-
equality (3.3) is then obvious. To prove (3.4), we notice that, for0 < r < 1,
/A + 7 =e™,
and, hence, using (3.3),
1 —nr| { 1 - | S
A+ T+ [ ma+y

< Cnie " £ Cr.

THEOREM 3.2. There is a constant C such that, for0 < s £ 2,0 € H,and0 <t =
nk < T,

[|Ext)o — E(tywl| < CK*|[v]l,.
Proof. For v of the form (2.3), we have, for ¢t = nk,

1 e-—nk)\m

A+ i)
Using (3.4) of Lemma 3.1, we have the validity for s = 2 of
1/ + kN — e ™| £ CkM,)"2.

2 1/2
2
.r)”

||y — EGeyol| = (E

Since the inequality obviously also holds for s = 0, it holds for all s with0 < s < 2.
Consequently, we have, for such s,

|| Ex(do — E@|| < Ck*”(z A W)“ = ck"’||o|l,,

which proves the theorem.
For later use, we notice:
LeMMA 3.2. There is a constant C such that, for 0 < s < 4 andv € H?,

[|Ew — E(|| < ||L(Ex — EG®W|| = CK?[Jv]]..
Proof. Using the fact that by (3.3) of Lemma 3.1, for 0 < s < 4,

1

- k| <« _ —kAm | < 5/2
T+, ¢ S 1 — (A4 kN £ CkNL)E,

we obtain
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A

[|L(Ew — E®))0]|
- (2 11— ™1 + k>\,,,)|2|ﬁm|2)”2

Cka/z(z )\:nlﬁmlz)l/z < Ck8/2||v||8‘

[|Ew — E()w]|

IA

(b) The Crank-Nicolson Method. In order to obtain higher accuracy, we shall
consider here the operator E,: v — w = E,v corresponding to the symmetric dis-
cretization

w —v)/k = AGw + 3v).

Setting L = I + kA, w = E,v is defined this time as the solution of the Dirichlet
problem

(3.5 L;w= Ljv in Q,
(3.6) w=20 on 9Q.

We shall then for 1 = nk consider the semidiscrete solution E(f)v = E%v and its
convergence, as k tends to zero, to the solution E(#)v of the continuous problem.
Although, formally, (3.5) requires that one can apply the Laplacian to the initial-
values, we shall see that £, is bounded in L,. We have more precisely the following.

THEOREM 3.3. The semidiscrete problem (3.5), (3.6) has a unique solution w and
w = E,v defines a bounded linear operator in L(Q). If s = 0 and T = 0, we have, for
vEH and0 < t=nk < T,

[ E@pll, = [loll..
Proof. For v of the form (2.3), we have

Bot) = T 1 g,

and, by repeated application,
VA VA A
| Bu(e)o], = (E A <T_—|-—;K> B )
é (E )‘fnlﬂ’”lz)l/2 = ”v”a-

Notice that £,(f) does not have the smoothing property that E,(¢) had.
LemMA 3.3. There is a constant C such that, for + > 0,

1
— 3T _ -

1+ 47

‘1—%7’

1+

1
27
— 1,
2 -—n‘r
5 -

Proof. In both cases, it is sufficient to consider 0 < 7 < 1. The first inequalities are
then again obvious. We have, for 0 < » = 1,

1 —=3n/A+ 3=

=1+ 27')
(3.7

2
cr°, n=1,2,---.
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and, hence,

I\

‘1—%1’_ _r
(1
3

< Cnrle M £ AP,

i=0

which proves (3.7).

In the same way as in the proof of Theorem 3.2, application of this lemma gives
the following two results.

THEOREM 3.4. There is a constant C such that, for0 £ s £ 4, v EH*,and 0 < t =
nk £ T,

[| By — E(tywl| = CK?|Jv]l,.
LemMa 3.4. There is a constant C such that, for 0 < s < 6 andv € H°,
1L (B — EGol| < CK*|o]],-

4. Some A Priori Estimates. In this section, we collect some a priori estimates
which will be crucial for the analysis of the discrete problem. In addition to the norms
in L,(Q) and L,(9L), we shall use the corresponding inner products, which we shall
denote by ((-, -)) and (-, -), respectively. Further, we shall use the Dirichlet integral
defined by

9v 8w
D, w) = ./s; = 8x, 8x,

LeMMA 4.1. There is a positive constant C such that, for any ¢ > 0 and v & H',
ol = ellolla: + Ce™lo]]-

Proof. Let f = (fi, -+- , fv) € €'(Q) be such that f = » on 9L, where » is the
exterior normal of Q. Using Gauss’ formula, we obtain

fvds— Z—(f,v)dx
a0

2 j=1 0X;

= Ldiv fo'dx + ]; Zf,Zv—-dx,

i=1
and, hence, the result follows by trivial estimates.
LeMMA 4.2. There is a constant C such that for any v & H® vanishing on 9Q and
any ¢ > 0,
dv|®

5 = €||Av||> + Ce D@, v).

Proof. By Lemma 4.1, we have, for any j,

2

" < el + CE D, v).

6x,~

The result, therefore, follows by the well-known estimate,

[lollgs = Cl|Av|][, ©v =0 onaQ.
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The following two lemmas are a priori estimates for the elliptic operators involved
in the semidiscrete problems treated in Section 3.
LeMMA 4.3. There is a constant v such that, for v & H’,

llol* = [ILwl|[ + vkl

Proof. It suffices to prove the inequality for smooth v. Write v = H + w where

AH = 0in @, w = 0 on 9Q. We have
[lol|* = [|Lw||* = 2k(@, Av)) — K*||Av|[®

2k(@, Aw)) — K°||Aw||®.

Now,

(w, Aw)) = (v, a—w) — D@, w) = (v, al) — D(w, w),
v v

since D(H, w) = 0, and hence using Lemma 4.2 with ¢ = yk'/?,

2

ow — 2k D(w, w)

Ay
vk o|? 4+ KX||Aw|]® + (Cry™2 — 2)kD(w, w).

2k(, Aw)) = ’Yk1/2|v|2 4 K

I\

The result now follows if we choose v = (AC))">.
LEMMA 4.4. For any a > O, there is a positive constant v, such that, forv & H?,

Liv||* £ A + ak)(||Liv]|* + valol?).
Proof. We have as above, withv = H + w,

[|Liv||® — ||Lev||® = 2k(@, Av)) = 2k(@, Aw)) = 2k<v, 27w> — 2k D(w, w).

Now, by the Cauchy inequality and Lemma 4.2 with ¢ = 1C,k87",

2

aw
v

2k<v, ‘-91) < Bl + &6
61’ I
< Blo® + 3£°C87%||Aw||* + 2kD(w, w),

or since by Lemma 4.3,

Gkllaw)?

Gkllav]y* = 2|l + 2[|Lev|[*
< 4||Lv||* + 29k p)?,
we obtain

[ILiol]* — [ILiv]|* = 8kCi8™||Lev||” + B + 4yCk™ BTl

172

The result now follows if we choose 8 = (8C,a™ ")
For later reference, we conclude this section with the following trivial estimate.
LeMMA 4.5. Let 0, T, and q be positive. Then there is a constant C such that, for

nk < T,
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3 b
k Z ((.l + 0)k)_a é C(log %) kmln(O.l—q),
i=0

where b, , is the Kronecker delta.

5. The Discrete Problems. We shall employ for the approximate solution of
the semidiscrete problems finite-dimensional subspaces S of H® which approximate
H? with accuracy u in the sense that, for 0 < s < p, there exists a positive constant C
such that, for any v € H>"*, there is a v, € S" such that

o —vallar = CH 7ol 1S 2.

This implies the existence of a positive constant C such that, for v € H**°,

2
inf > h'7lo — ellw S CH'|[o]|2v.
eESEH 1=0
Hence, when we refer to the subspace S}, we shall mean any fixed subspace satisfying
the above property. Such spaces have been constructed recently by many authors.
Typical examples include piecewise polynomial functions such as piecewise Hermite
polynomials [5], spline functions or “hill functions” [4], [10], [16], or “triangular
elements” [7], [17]. See also [1], [8], [15].
We shall now formulate and analyze the discrete problems.
(@) The Purely Implicit Method. We shall not be able to solve the Dirichlet
problem

B.1 Liw=v in Q,
(5.2) w=0 ondQ,

exactly. Instead, we shall define an approximate solution W = E,,v in S* and take
u(x, 1) = Ep,u(x) for our solution at ¢+ = nk of the discrete problem. For the con-
struction of the operator E,,, we introduce the quadratic functional

Ap;v) = ||Lip — v|I* + vuilel’,
where 1, is a real number satisfying
(5.3) YK S v £ CERTY,

where v is the constant in Lemma 4.3. Notice that, by (5.3), we assume that kA~ ? is
bounded away from zero. Further, we introduce, for o, ¢y & H?,

(o> ¥x = (Lrp, Li¥)) + vunlo, ¥),

llells = (ILel* + vulelH”.

By the fact that (5.1), (5.2) with v = 0 only admits the trivial solution w = 0, this
defines an inner product and a norm on H”.

According to the following lemma, we can now define W = E,,v as the function
which minimizes A(y; v) as ¢ varies through S%.

LemMA 5.1. There is a unique W & S, minimizing A(e; v). This is the unique
solution in S} of

(W, Mr = (, Lif)) forall f € S,.
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Proof. Recalling that w = E,v denotes the exact solution of (5.1), (5.2), we can
write

Ap;v) = |l — Ewlli
and, hence, A is minimized by the unique W & S; which satisfies
(W —w, s =0 forall f E S;.

Since, by (5.1), (5.2), (W, N = (v, Lif)), the lemma is proved.
The operator E,, defined above is bounded in L,.

LemMa 5.2. We have, for v € L,,
Ewo|| = [|Ewvlls = [l0]].
Proof. By Lemma 5.1, we have, with W = E,,v,
AW = Hloll- LWl = o]l W4

Since on the other hand by Lemma 4.3, ||W|| < ||W]|4, the result follows. ]
LeMMA 5.3. Let 0 < s < u. Then there is a constant C such that, for w & H***,

inf |l — wllx S Ckh’[|W]]54,.
@ESHH

Proof. We have, under the assumption (5.3) on v;,,
llells = Clell + kllellas + vai’lel)
= Ck(lells + K %llell + A% |e])

and, hence, using Lemma 4.1 with ¢ = #'%,

2
lells < CkA™ 32 el -
Consequently, by the definition of S},

2
inf |lo — w|[s £ Ckh™* inf Y h'lle — Wl £ CkA'[|W||2res
PESHH

eESHH 1=0

which proves the lemma.
LEMMA 5.4. We have, for v © H™ %,

(5.4) [|Eww — EK)w|| £ CEH|[v]]ur2 + £[[0]]0),
and if s = 0, forv € H‘,
(5.5) [|Ewv — ER)|| £ ||Ewv — E(w||y £ CEC? 4+ 22D |v]],.

Proof. By Lemma 4.3, we have, using the definition of E;,,

”Ehhv - Ekvll é ”Ekhv - EkaA = inf |I¢ - E]J)”A,
PESHH

and by Lemma 5.3 and Theorem 3.1,
(5.6) | |Ekhv il Ekv| IA < Ckh” | IE’FUI |“+2 é Ckh" | Ivl |,,,+2.

Together with Theorem 3.2, this proves (5.4). In addition to (5.6), we have, by Lemma
5.2,
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|Eww — Ewl|ls = 2|[v]],
and, hence, by interpolation (Lemma 2.2) for 0 < s £ u + 2,
(B — Eolls S CERY 2 |pll, < CG* + K)]Io]l,-

Using once again Lemma 3.2, this implies (5.5) for 0 < s < u + 2 and, hence, if
w=2,foralls = 0. For p = 1 and s = 3, we have obviously

[|Ewo — Ewl| £ Ckh|lp|l, £ CH™™"|[v]],,

so that (5.5) holds also in this case.
THEOREM 5.1. Let E,, satisfy the {zbove assumptions. Then, for s = 0, T > 0,
there is a constant C such that, forv € H* and0 < t = nk < T,

180 — 50ell = (10 T)" w4 (1og T) o .
Proof. We shall use the identity
Euw(v — E(v = Epv — Ek)v = Z_: E (B — E(K)EGK),
and notice that, hence, by Lemma 5.2,
57 B0 = E@oll £ 3 [I(Eu — EGDEGRRII

For j > 0, we have, by (5.4) and Theorem 2.1 for s < min(u + 2, 4),
H(Ekh - E(k))E(.Ik)U” = Ckh““E(jk)U”Hz + Ck2||E(jk)U”4

é C{khn(jk)—(u+2—s)/2 + k2(jk)—(4—s)/2} “D”,,
and, hence, by Lemma 4.5,

_2_? [|(Ewn — EK)EGK)W]|
(5.8) i=1

i T Soun min(0, (8—u)/2) T e min(0, (s-2)/2)
< g 1)k + Klog ) K™ [[o]]..

Taking into account the fact that k = ch?, the result now follows from (5.5), (5.7),
and (5.8). The case s > min(u + 2, 4) is treated similarly. This completes the proof of
the theorem.

(b) The Crank-Nicolson Method. In order to define the approximate solution
W = E,wvin S; of the Dirichlet problem

Liw= Ljv inQ,
w=20 on 9%,
we shall this time set
K(p;v) = ||Lie — Liv||” + Fulol’,

where ,, satisfies v, < #.» < Ck’h~ 3, where v, is the constant in Lemma 4.4. We
also introduce the inner product and norm defined by
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(@ V)i = (Lig, Li ) + Tunlos ¥),
llellx = (lLrell” + Fulel)*.

In analogy with Lemma 5.1, we then have
LEMMA 5.5. There is a unique W & St minimizing K(p; v). This is the unique
solution in S}, of

(W, Mz = (Liv, Lcf)) forall f € Si.
Proof. As above, we may write
Kp;v) = lle — Ewll3,
so that the functional is minimized by W satisfying, for all f & S},
(W, Mz = (Bw, NMi = (Liv, Li).

If we set E.,v = W where W is defined in Lemma 5.5, our discrete solution at
t = nk of the discrete problem is @.(x, 1) = Ej,0.
LEMMA 5.6. The operator E,, thus defined satisfies, for small k,

(5.9) [[Bovl| = [|Ewllz = (A + ak) [v]lz
and, for nk < T,
(5.10) [lEmol] < e*T|lv]|z-

Proof. Noticing that L; = L,,, and that 4,, = vk'* for small k, the first half of
(5.9) follows by Lemma 4.3. By Lemma 5.5, we have, with f =
Wk £ [ILeol| [|W]]z.

On the other hand, by Lemma 4.4,

[1Liv|| = (1 + ak) |[o]lz.

Together, these last two inequalities prove the second half of (5.9). This immediately
implies (5.10).
LeMMA 5.7. Let 0 £ s, £ p, 0 £ 5, < 6. Then, for v € H™x*er00

[|1Baw — EEWllz £ CKA™ |Iollo+a, + £ [IV]]..).
In particular, for any s = 2, and v € H°,
(5.11) [|Eww — E®l|z £ CEHECP + P02 ) o],
Proof. As in Lemma 5.3, we have

inf |[lo — w|lzx = CkA"[|W|[2+s.,
eESHH

and hence, using also Theorem 3.3,
(5.12) [|Bwv — Ew||z £ Ckh"||Ew||2r.. S CKkA"|[V]]240,-

The first inequality then follows by Lemma 3.4. We now notice that, from (5.12), it
follows by the inequality between the geometric and arithmetic means that, for
2=s=2 + u,
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”Ekhv - EkUHX =crw + ka/z)”U”u

which proves (5.11) for 2 < s < p + 2. For s > u + 2, we have
1B — Ewllz £ CKkR'|[v]l2r, < CH™* 7| |]|,.

This completes the proof of the lemma. .
THEOREM 5.2. For s = 2, T > O, there is a constant C such that, for v € H’® and
0=<t=nk =T,

T beot min(s T Boue min(s
[ Ew(tlo — E@t)|| < C{(log Z) A (log ;) k ”“’} [lo]],.

Proof. We have as in the proof of Theorem 5.1, using Lemma 5.6,

Bl — E@wl| £ 3 1B (B — EG)EGKY||

i=0

I\

¢ X 1B — EGNEGORIls.

By Lemma 5.7 and Theorem 2.1, we have, for s < min(u 4+ 2, 6),
[1(Ben — BGR)EGKY||x S CRRGRY™ 2777 + K2Gk)™ ™} o],

so that by Lemma 4.5,
.13 2 1B — EGDEGKYIz

i=
LI LEPR
é C{(log %) hmm(c.u) + (log %) kmm(c/2.2)} ”D”,.

The case s > min(u + 2, 6) is treated similarly. Together, (5.11) and (5.13) complete
the proof.

(c) Some Modifications of the Crank-Nicolson Method. We shall consider briefly
the situation 0 < s < 2. In this case, the method above demands more regularity than
the initial-values possess. It is then natural to approximate the initial-values by
smoother functions. More precisely, we shall consider an approximating operator P,
with the following property: For given s with 0 < s < 2 there is a constant C such
that if v € H°*, then P,v € H? and

[1Pwlle £ CH™*™"|loll.,  [I1Pw — o]l < CK|o]l..

Such operators exist, as can easily be seen using the expansion (2.3) and the definition
of ||-||,. We then set E},(/) = E,,(f)P,. For simplicity, we restrict ourselves to the case
u = 3, that is, to the case when the accuracy in S% matches that of the discretization in
time. We have

THEOREM 5.3. Let u = 3. For0 < s < 2, T > O there is a constant C such that, for
vEH and0 < t=nk < T,

[|EG(w — E@tp|| < Ckh™ %% |]v][,.
Proof. We have, using Theorem 5.2 and the definition of P,,
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1B — E@w|| £ ||(Bu() — EM®)Pw|| + ||E@)(P, — Dyl
< C( + B)||Pwll. + C||Pw — vl|
< Ch® + B2 + 8 |vll. £ CkR0||]],.

The above method has an error estimate which for small s is unsatisfactory, since
kh™? = ch™'?. We shall, therefore, describe a method which does not have this
deficiency. The modification consists in making the first step somewhat differently.
Thus, with the above notation let ¢t = (n + 1)k and set E})(f) = E}E./.... This
amounts to taking the first half-step by the purely implicit method and using the
result as initial-values for calculations with the Crank-Nicolson method. Notice that
the assumption on 4, is more restrictive than that on v,,.

We have the following:

THEOREM 5.4. For s = 0, T > O, there is a constant C such that, for v € H* and
O0<t=@m+PDk=T,

5‘,‘. . 6';‘ .
18200 — Eoll 5 {108 D) a1 (10g )" emmmt

Proof. We have
|| Ei(v — E@l| = [[(B& — E(mk)EGK]|
+ [ ES(EGK) — Ers2n)vl|
=S + S..

For the first term, we have, as in the proof of Theorem 5.2,

s, < E BT (B — EG)EW + 3wl

A

n—1
C 2 1B — EGDEG + Hwllz.
By Lemma 5.7 and Theorem 2.1, we have, for s < min(x + 2, 6),
[[(Ew — EGR)EG + $K)vllz
= Clkr'G + D™+ G + DT L,
so that again, by Lemma 4.5,

T L T LT
Sl é C{(log _]:) hmln(svlt) + (log Z) kmln(O/Z,Z)} ”U”a ,

and, similarly, for s > min(ux + 2, 6). By Lemmas 5.6 and 3.2, we have

Sy £ C||(Erjen — EGRW||z S CEPC22 |||,

This completes the proof.
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