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Semidiscrete-Least Squares Methods for a Parabolic 
Boundary Value Problem* 

By James H. Bramble and Vidar Thomee 

Abstract. In this paper some approximate methods for solving the initial-boundary 
value problem for the heat equation in a cylinder under homogeneous boundary condi- 
tions are analyzed. The methods consist in discretizing with respect to time and solving 
approximately the resulting elliptic problem for fixed time by least squares methods. The 
approximate solutions will belong to a finite-dimensional subspace of functions in space 
which will not be required to satisfy the homogeneous boundary conditions. 

1. Introduction. The purpose of this paper is to analyze some approximate 
methods for solving the initial-boundary value problem for the heat equation in a 
cylinder under homogeneous boundary conditions. The methods consist in discretizing 
with respect to time and solving approximately the resulting elliptic problem for fixed 
time by least squares methods. The approximate solutions will belong to a finite- 
dimensional subspace of functions in space which will not be required to satisfy 
the homogeneous boundary conditions. 

Let Ql be a bounded domain in Euclidean N-space RN with smooth boundary au. 
We shall consider the approximate solution of the following mixed initial-boundary 
value problem for u = u(x, t), namely, 

au Au _Ed in Q X (0, c 
(1.1) at axj 

u =O on a X [0, o), 

u(x, 0) = v(x) in U. 

By replacing the time derivative in (1.1) by a backward-difference quotient, we 
define an approximate solution uk(x, t) for t = nk, n = 0, 1, 2, *.-, by 

Uk(x, t + k) -Uk(X, t) =AUk(x, t + k), x E Q 
(1.2) k 

Uk =O, x E d, 

Uk(X, 0) = v(x), x E Q. 

With Uk(X, t) = v, uk(x, t + k) = w, we then have the following equation to solve 
for w, when v is known: 

(1.3) w-kAw =v in Q, 

(1.4) w=0 onOcI. 
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We shall prove that this Dirichlet problem admits a unique solution and that, for 
sufficiently smooth initial-values v, 

sup IUk(*, t) - u(*, t)|| = O(k) as k - O, 

where 11 11 denotes the norm in L2(Q), 

Ir ) 1~~/2 
ljvjl = 

I 
jv(x)1 dx 

For the approximate solution of the problem (1.3), (1.4), we shall use a finite- 
dimensional subspace SI' depending on a small positive parameter h such that for 
any v in H+ 2, , > 0 (or in a certain subspace of HM+ 2), there is a ,o E SA such that 

I IV - o IjHi < Ch |2+ jIV| IIH+2, 0 < j < 2. 

Here, H' = W i2), j = 0, 1, 2, * , denotes the Sobolev space defined by 

(IVIIHi= Z ((Davll. 

The functions in Sap are not assumed to satisfy the homogeneous boundary conditions 
on a2. 

Given v, we shall then take for the approximate solution of (1.3), (1.4) the unique 
function in ShZ which minimizes the functional 

(1.5) A(?p; v) = - kAp D|| + 'Ykhko(1, 

where I denotes the norm on L2(09), 

If. \~~~1/2 

ivi = I(v(x)12 dS 

The selection of the weight Ykh in (1.5) is crucial and depends upon an a priori in- 
equality for the elliptic operator in (1.3). It will turn out that it is appropriate to 
choose Ykh such that, for certain positive y and C, 

(1.6) yk 12 < Ykh _ Ck2h3 

If we thus define Ukh(X, t), t = nk, n = 0, 1, 2, * * , by setting 

A(ukh(*, t + k); Ukh(, t)) = min A(p; Ukh(*, t), 
ipE Sh # 

Ukh(X, 0) = v(x), x E Q, 

we shall be able to prove that 

sup l(Ukh(, t) - u(, t)I O - (k + hI) as k, h - 0. 
O6 t S T 

Notice here that (1.6) implies that kh-2 is bounded away from zero. This requirement 
goes in the opposite direction compared to the well-known stability requirement for 
explicit difference schemes. Notice also that as a consequence of this requirement the 
error estimate has the form O(k) for all ,u > 2. 
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In order to obtain greater accuracy, it is natural to consider, instead of (1.2), the 
Crank-Nicolson symmetric formula 

Uk(X, t + k) - Uk(X, t) - 2Uk(X, t + k) + 2 ak(X, t). 

In this case, the problem (1.3), (1.4) changes into 

(1.7) w - 'kAw = v + 'kAv in Q2, 

(1.8) w = 0 on a2. 

This problem again admits a unique solution and we shall now prove a convergence 
result which this time takes the form 

Sup I ak(, t)- u(.,t)I = 0(k2) ask- 0. 
Of t _ T 

In order to solve the problem (1.7), (1.8) approximately, we shall introduce the 
functional 

AX(p v) Ipo - kA( - v - 'kAvI2 + ykhk l1, 

where now the weight Ykh will be chosen to satisfy 

(1.9) 'Y. < kh -< Ck 2hI, 

with positive -ye, and C. With the appropriate definition of iikh, we shall then prove 

Sup IUkh( , t)- u(, t)II = h(k2+ ) as k, h - 0. 
O K6 t K T 

By (1.9), k2 > ch3 and, hence, the error estimate here has the form 0(k2) for all ,u ? 3. 
All the above convergence estimates require v to be sufficiently smooth. The exact 

degree of regularity assumed in each case will be clear from the statement of our 
theorems below. For v less regular, we shall prove correspondingly weaker conver- 
gence estimates. In the case of the approximate Crank-Nicolson method, a specific 
difficulty appears in that the functional X contains Av and, thus, requires more 
regularity from the initial-values than in the purely implicit method. As we shall see, 
this difficulty can be overcome, for instance, by taking the first step by the purely 
implicit method. 

In the extensive recent literature dealing with the solution of elliptic and parabolic 
problems by variational methods, many papers concerned with homogeneous bound- 
ary conditions employ finite-dimensional subspaces of the relevant Hilbert spaces, 
the elements of which satisfy the boundary conditions. In the parabolic case, such 
techniques have been analysed by Price and Varga [14] and Douglas and Dupont [9]. 
In order to avoid the difficulty of constructing subspaces with a prescribed behavior 
at the boundary, different variational principles have been considered where, for the 
approximate solution, the boundary values are assumed only approximately; cf. 
Aubin [2], Babuska [3], Bramble and Schatz [6]. The method of solution of the elliptic 
problems above at fixed time is that of Bramble and Schatz. The analysis of the effect 
of the discretization in time is similar to that in Peetre and Thomee [13]. A somewhat 
different way of applying the ideas in [6] in parabolic problems has been described in 
King [11]. 
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2. The Continuous Problem. In this section, we shall prove an a priori estimate 
for the continuous problem which we shall need for our error estimates. For this 
purpose we recall some properties of the eigenvalue problem 

(2.1) Av + Xv = 0 in Q2, 

(2.2) v = 0 on OdQ2. 

We collect what we need in the following lemma. 
LEMMA 2.1. The eigenvalue problem (2.1), (2.2) admits a sequence { Xm } I of positive 

eigenvalues and a corresponding sequence I{m } 1 of eigenfunctions which constitute an 
orthonormal basis in L2(Q); every v ? L2(Q) may be represented as 

(2.3) v(x) = Em=1 (x) Am = (P.)) f (x)?pM(x) dx m=1Q 
and Parseval's relation 

IVii = (I 1 rn12)1/2 

holds. 
Let fts, with s > 0, be the subspace of L2(Q) for which 

Iv Is = (Z XnI3m 2)1/2 < , i m = ((v, Om)), m 
and let HO = fl>0 iP. It is easy to see that, if adQ ? eO, we have 

H- = {v; v E CO), Av = 0 on dQ2, 0, 1, * *}, 

and for s an integer, 

CS I IV I |H- -< IIVIIS = ((-IA)V V) < CS I IV I |H, v E Ha. 

The spaces H' have the following interpolation property (cf., e.g., [12]): 
LEMMA 2.2. Let sO < s < si. Then, there is a constant C such that, if (i is a bounded 

linear mapping from H8 into a normed linear space 91 with norm j j such that 

ll(avll1 < Ajllvll81, j = 0, 1, 

then et is also a bounded linear mapping from fts into 9l and 

Ilavllx1 < CAo0 A'llvll,, 0 = (s - SO)/(Si -So). 

Consider now the initial-value problem 

(2.4) au/at = Au in Q2 X (0, co), 

(2.5) u= 0 on OdQ2 X (0, co), 

(2.6) u(x, 0) = v(x) in Q2. 

THEOREM 2.1. This problem admits for v E HO a unique solution u(x, t) = E(t)v. 
The linear operator thus defined satisfies 

(2.7) IIE(t)vll < llvll, 

and hence may be considered defined on all of L2(12). Furthermore, E(t)v is smooth for 
t > 0. For any 1 and s with 0 < s < 1, there is a constant C such that v E ft8 implies 
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E(t)v E Hf and 

(2.8) IIE(t)vIIi ? Ct(ls)/211v118, t > 0. 

Proof. For v E HO defined by (2.3), set 

E(t)v = : # emeXt'(x). 
m 

Then u(x, t) = E(t)v is the unique solution of the problem (2.4), (2.5), (2.6) and the 
inequality (2.7) follows at once by Parseval's relation. Since, for t > 0, 

x I-s e-2X2tt ( < Ct1 s) 

we obtain 

IIE(t)vL' = ( XI 
1X 

2 
32e-2Xnt)1/2 

< Ct-(1-s)/2( ZXI3I2)1/2 = Ct | |v|121IIvI, 
m 

which proves (2.8). 

3. The Semidiscrete Problems. We shall discuss here the two problems 
obtained by backward and symmetric discretization with respect to time. 

(a) The Purely Implicit Method. We shall first consider the problem (1.3), (1.4), 
described in the introduction. More precisely, we introduce the elliptic operator 
Lk = I - kA and let Ek: v -- w = Ekv be defined by the solution of the following 
Dirichlet problem: 

(3.1) Lkw = v in Q2, 

(3.2) w = 0 on OdQ2. 

For t = nk, we then define Ek(t)v = Ekv. These definitions are justified by the following 
theorem. 

THEOREM 3.1. The semidiscrete problem (3.1), (3.2) admits a unique solution w, 
and w = Ekv defines a bounded linear operator Ek in L2(12). If 0 < s < 1 and T > 0, 
then, for k(l - s) < t = nk < T, Ek(t) = Ek' is a bounded linear operator from fs 
into ft1 and there is a constant C such that, for v E fs, 

I IEk(t)VIIl < Ct-(1-s)/l2 2lvIls. 

Proof. For v of the form (2.3), we have 

Ekv(x) = E 1 I3miom(x). 
m I1+ kXm 

By Parseval's relation, we have at once I lEkVI < I lvli. Applying the inequality 

(1-s)/2 + r/n)n < C, r > 0, n > (I-s), 

valid for 1, s fixed, we obtain 

Xm/(I + kX m)2n < C2(nk) (I S)x8 

and, hence, 
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/IE~vi = (1( +Xm;)2n 1f312) _ C(nk12(l-1)/2(E I I ) 1/2 

=ct- (1-s)12 VI I. 

which proves the theorem. 
Our main interest is to analyze the convergence properties, as k -+ 0, of the operator 

Ek(t). 

LEMMA 3.1. There is a constant C such that, for r > 0, 

(3.3) 11/(1 + r) e-eI < 11 - (1 + r)e-TI < Cr2, 

(3.4) 117(1 + r) ite- neI < CTr n = 1, 2, 

Proof. It is clearly sufficient to prove these inequalities for 0 < r < 1. The in- 
equality (3.3) is then obvious. To prove (3.4), we notice that, for 0 < r < 1, 

1(1 + ) e-/2 

and, hence, using (3.3), 

1 1 
n_ e-n1 -(n-I-j)r 

(I1+ r)n = + e eO1T 

Cnr2e-n/2 < Cr. 

THEOREM 3.2. There is a constant C such that, for 0 < s _ 2, v ? HS, and 0 < t = 
nk < T, 

IIEk(t)v - E(t)v II < Cks/21IvI||s. 

Proof. For v of the form (2.3), we have, for t = nk, 

IIEk(t)v - E(t)v II e (1 +kXm) Xme 1fr12). 

Using (3.4) of Lemma 3.1, we have the validity for s = 2 of 

11/(1 + kXm)n - e-nkXIl ? C(kXm)S/2. 

Since the inequality obviously also holds for s = 0, it holds for all s with 0 < s < 2. 
Consequently, we have, for such s, 

IIEk(t)v - E(t)vII < Cks.2(Z Xn 2r 1n)'/2 = Cks/211V118, 

which proves the theorem. 
For later use, we notice: 
LEMMA 3.2. There is a constant C such that, for 0 < s < 4 and v ? AS% 

I I ECv - E(k)v I I < I ILk(Ek - E(k))v II < Cks/211v11|. 

Proof. Using the fact that by (3.3) of Lemma 3.1, for 0 < s < 4, 

1 + _kXm -k < II - (1 + kXm)e-kX^|I < C(kXm)s/2, 

we obtain 
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IIEkv - E(k)vI I < I ILk(Ek - E(k))v II 

E (E| 1 i- e kX(l + kXm) 121f m12)1/2 
m 

<Cs12 (: XS Im 12) 1/2 < cks12 
ll 

(b) The Crank-Nicolson Method. In order to obtain higher accuracy, we shall 
consider here the operator Ek: V -+ W = Ekv corresponding to the symmetric dis- 
cretization 

(w - v)/k = A(' w + iv). 
Setting L' = I i UA, w = Ekv is defined this time as the solution of the Dirichlet 
problem 

(3.5) LA w = L'v in Q2, 

(3.6) w = 0 on OdQ2. 

We shall then for t = nk consider the semidiscrete solution Ek(t)v = Env and its 
convergence, as k tends to zero, to the solution E(t)v of the continuous problem. 
Although, formally, (3.5) requires that one can apply the Laplacian to the initial- 
values, we shall see that Ek is bounded in L2. We have more precisely the following. 

THEOREM 3.3. The semidiscrete problem (3.5), (3.6) has a unique solution w and 
w = Ekv defines a bounded linear operator in L2(Q). If s > 0 and T > 0, we have, for 
v fts andO < t = nk < T, 

I lEk(t)Vl |S JI|V|Is 

Proof. For v of the form (2.3), we have 

PkV(X) =k #mflm(X) 
2 kXm 

and, by repeated application, 

IIBk(t)vIIs= ( |(1 - 3kXm n 2)1/2 

< (Z XsIfI2) 1/2 = IIV|I|I 

Notice that Ek(t) does not have the smoothing property that Ek(t) had. 
LEMMA 3.3. There is a constant C such that, for T > 0, 

|1I+ 3- _ ( 1-hT 
r 
T_er 

Proof. In both cases, it is sufficient to consider 0 ? r ? 1. The first inequalities are 
then again obvious. We have, for 0 ? r ? 1, 

(1 < r)/(1 + -r) < e 
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and, hence, 

|(jj<~ IT 
e-nr < 2 

nT 
- e-il E ( O -r 

IIT1+ II 
+ (~ I'T 

-< Cnr3e/2 < cr2 

which proves (3.7). 
In the same way as in the proof of Theorem 3.2, application of this lemma gives 

the following two results. 
THEOREM 3.4. There is a constant C such that, for 0 < s < 4, v E HS, and 0 < t = 

nk < T, 

IIk(t)V - E(t)vII < Cks/2IIv1I8. 

LEMMA 3.4. There is a constant C such that, for 0 < s < 6 and v ? 11, 

I I |L(k (- E(k))v II < Cks/2V| Is . 

4. Some A Priori Estimates. In this section, we collect some a priori estimates 
which will be crucial for the analysis of the discrete problem. In addition to the norms 
in L2(12) and L2(aQ), we shall use the corresponding inner products, which we shall 
denote by ((, *)) and (, *), respectively. Further, we shall use the Dirichlet integral 
defined by 

r N av aw 
D(v, w) = J -- dx. 

xi=l ax ax, 

LEMMA 4.1. There is a positive constant C such that, for any E > 0 and v ? H', 

|V| -< ?E((VINH1 + CC- '|v((| 

Proof. Let f = (f , , NfN) ? e1(12) be such that f = v on aQ, where v is the 
exterior normal of Ai2. Using Gauss' formula, we obtain 

t 2 ds=9 (fiV2) dX fv ds = IN 
dQ i=l 3x j 

=fdiv .v2dx + fj2v - dx, 

and, hence, the result follows by trivial estimates. 
LEMMA 4.2. There is a constant C such that for any v ? H2 vanishing on da2 and 

any e > 0, 

Ev2 < EAV12 + Cc- D(v, v). 

Proof. By Lemma 4.1, we have, for any j, 

|3 V |< E I IV | 12. + e Dvv) 23 CEC1 DQ(,,v). 

The result, therefore, follows by the well-known estimate, 

((V(H|2 < C((Av((, v = 0 on a92. 
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The following two lemmas are a priori estimates for the elliptic operators involved 
in the semidiscrete problems treated in Section 3. 

LEMMA 4.3. There is a constant y such that, for v E H2, 

=1vI12 ? IILkVII2 + ykl21v12 

Proof. It suffices to prove the inequality for smooth v. Write v = H + w where 
AH = 0 in Q, w = 0 on og. We have 

||V|12 - _ILkVI12 = 2k((v, Av))- k2 IAVI12 

= 2k((v, Aw)) - k2 IAw 12. 

Now, 

((v, Aw)) = (v, ) - D(v, w) = (v, ) - D(w, w), 

since D(H, w) = 0, and hence using Lemma 4.2 with e = yk 

2k((v, Aw)) < yk?1/2m2 + k3/2- 1 
'a W 

2kD(w, w) 

?< yk1/21V2 + k211IAWII2 + (C1J-2 - 2)kD(w, w). 

The result now follows if we choose y > (ICj) 12. 
LEMMA 4.4. For any a > 0, there is a positive constant ya such that, for v E H2, 

I|L+v1l2 < (1 + ak)(IIL-vI12 + YaIV2). 

Proof. We have as above, with v = H + w, 

IL+vI12 - I IL,vI12 = 2k((v, Av)) = 2k((v, Aw)) = 2k(v, d - 2kD(w, w). 

Now, by the Cauchy inequality and Lemma 4.2 with E = 'C1k-1, 

2k(s dw) < ovm2 + k 20- 
49 W 2 

< omI 2 + l3CJO-21 I AW2 + 12kD 
2 'k kC1rIAI2+ 2kD (w, w), 

or since by Lemma 4.3, 

(lk I1AwI 11)2 = (lk IIAVI I)2 < 21lvi 12 + 21IL-vI 12 

-< 4 IIL- 112 + 2yk1121v12, 

we obtain 

|ILvI 2- IILv 112 
< 8kC1C 21 IL-v 112 + ( + 4yC,k3/2I 2)Iv12. 

The result now follows if we choose ,B = 1)1/2. 

For later reference, we conclude this section with the following trivial estimate. 
LEMMA 4.5. Let 0, T, and q be positive. Then there is a constant C such that, for 

nk < T, 
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k E ((j + O)k)- < C( log T) kmin(O 1-a) 

where 6q , is the Kronecker delta. 

5. The Discrete Problems. We shall employ for the approximate solution of 
the semidiscrete problems finite-dimensional subspaces Shy of H2 which approximate 
H2 with accuracy u in the sense that, for 0 < s < ,u, there exists a positive constant C 
such that, for any v &E ft28, there is a vh & S^ such that 

IIV - VhIIHZ < Chs?2-l1 IVI+2, 1 < 2. 

This implies the existence of a positive constant C such that, for v &E H2+8 
2 

inf E h 1l21 Iv-- olIH1 < Ch8Ivl12+8. 
OE ShIE 1=0 

Hence, when we refer to the subspace Sh, we shall mean any fixed subspace satisfying 
the above property. Such spaces have been constructed recently by many authors. 
Typical examples include piecewise polynomial functions such as piecewise Hermite 
polynomials [5], spline functions or "hill functions" [4], [10], [16], or "triangular 
elements" [7], [17]. See also [1], [8], [15]. 

We shall now formulate and analyze the discrete problems. 
(a) The Purely Implicit Method. We shall not be able to solve the Dirichlet 

problem 

(5.1) Lkw = v in Q, 

(5.2) w = 0 on AQ, 

exactly. Instead, we shall define an approximate solution W = Ekhv in Shy and take 
ukh(x, t) = EknhV(x) for our solution at t = nk of the discrete problem. For the con- 
struction of the operator Ekh, we introduce the quadratic functional 

A((p; v) = |ILkA - v|1| + 'Ykhko1, 

where 'Ykh is a real number satisfying 

(5.3) yk 12< ?Y kh _ Ck2h3, 

where -y is the constant in Lemma 4.3. Notice that, by (5.3), we assume that kh-2 is 
bounded away from zero. Further, we introduce, for so, ,6 E H2, 

(((P, 4t/))A = ((Lk(P, Lkl,t)) + 'Ykh((P, t1/), 

IkoIIA = (IILkAoII + YkhkOI2)1/2 

By the fact that (5.1), (5.2) with v = 0 only admits the trivial solution w = 0, this 
defines an inner product and a norm on H2. 

According to the following lemma, we can now define W = Ekhv as the function 
which minimizes A((p; v) as so varies through Sh. 

LEMMA 5.1. There is a unique W E Sh minimizing A(sp; v). This is the unique 
solution in Sh of 

((W, f))A = ((v, Lkf)) for all f E S"h. 
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Proof. Recalling that w = Ekv denotes the exact solution of (5.1), (5.2), we can 
write 

A(sp; v) = II (P- EkV I IA 

and, hence, A is minimized by the unique W E S' which satisfies 

((W- W,f))A = 0 forallf E Sh. 

Since, by (5.1), (5.2), ((w, f))A = ((v, Lkf)), the lemma is proved. 
The operator Ekh defined above is bounded in L2. 
LEMMA 5.2. We have, for v E L2, 

|IEkhvII I - |EkhvIIA ? IIVII 

Proof. By Lemma 5.1, we have, with W = Ekhv, 

-I I =< - livil I *ILk W l I< JI V II I Wl1A- 

Since on the other hand by Lemma 4.3, II WI I < II WI IA, the result follows. 
LEMMA 5.3. Let 0 < s < ,u. Then there is a constant C such that, for w &E 2+s 

inf lIko - wl A _ Ckh8IIwI12+8. 
P E Sh I 

Proof. We have, under the assumption (5.3) on 'Ykh, 

I kI IA ? C(|IpII + kIISPIIH2 + 1Yk/h2I1I) 

< Ck(||(P|g2 + h 2II9oI + h 1pi) 

and, hence, using Lemma 4.1 with e = h 
2 

lkIIA <? Ckh 2 E h'l'P IIH. 
1=0 

Consequently, by the definition of Sh, 

2 

inf lIo - WIIA < Ckh 2 inf E h'Il(o - WIIHI < Ckh8IIwII2+8, 
P ESh IoEShA =0 

which proves the lemma. 
LEMMA 5.4. We have, for v E ftmax(M+24) 

(5.4) IIEkhv- E(k)vII < CQkh!IvIIM,+2 + k211v1 14), 

and ifs > 0,forv E H8, 

(5.5) IIEkhV - E(k)vII ? IIEkh - E(k)vIIA ? C(hmin(8s ) + kmin(s/2,2)) I1VIIs. 

Proof. By Lemma 4.3, we have, using the definition of Ekh, 

lIEkhV - EkVII ?< IEkhV - EkVIIA = inf I kso - EkvI IA, 
V E Sh I 

and by Lemma 5.3 and Theorem 3.1, 

(5.6) IIEkhv- EkvIIA < CkhMIlEkvIIM+2 < CkhMIIvII,+2. 

Together with Theorem 3.2, this proves (5.4). In addition to (5.6), we have, by Lemma 
5.2, 
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IIEkhV - EkVlI I 21IvI1, 

and, hence, by interpolation (Lemma 2.2) for 0 ? s ? Iu + 2, 

l 1(Ekh - Ek)V IA -< C(kh')8/(A+2) IV1 lI. < C(h8 + k8/s2)lIlVl. 

Using once again Lemma 3.2, this implies (5.5) for 0 ? s < ,u + 2 and, hence, if 
, > 2, for all s ? 0. For ,A = 1 and s > 3, we have obviously 

IIEkhV - EkVll ? Ckhllvll8 < Chmin(8'l)llvlI., 

so that (5.5) holds also in this case. 
THEOREM 5.1. Let Ekh satisfy the above assumptions. Then, for s > O, T > 0, 

there is a constant C such that, for v E H8 and O < t = nk < T, 

ilEkh(t)v - E(t)vi I < Clog k) hmin(81) + (log k) kmin(8/2)} l|vi 8. 

Proof. We shall use the identity 
n-1 

Ekh(t)v - E(t)v = Eknhv - E(k)nv Eknh 1i(Ekh - E(k))E(jk)v, 
i =0 

and notice that, hence, by Lemma 5.2, 
n-1 

(5.7) 1 i Ekh(t)v - E(t)vi I _ EZ ii(Ekh - E(k))E(jk)v II. 
i =0 

For j > 0, we have, by (5.4) and Theorem 2.1 for s _ min(, + 2, 4), 

iI(Ekh - E(k))E(jk)v|i < CkhAiiE(jk)vii1+2 + Ck2iIE(Qk)vii4 

< C{kh(jk)-(M+2-8)/2 + k2(jk)-(4-8,s2 

and, hence, by Lemma 4.5, 
n-I 

Z Ii(Ekh - E(k))E(k)vi I 
(5.8) 

< C hA log- min(O, (8-A)/i) Tk2) min(0 (8-2)/2) 
k kmS 

+ k(log ki 
}iiVii8 

Taking into account the fact that k > ch2, the result now follows from (5.5), (5.7), 
and (5.8). The case s > min(,u + 2, 4) is treated similarly. This completes the proof of 
the theorem. 

(b) The Crank-Nicolson Method. In order to define the approximate solution 
W = Ekhv in Slh of the Dirichlet problem 

L4w = L,v in Q, 

w = 0 on dQ, 

we shall this time set 

((p; v) = IIL - - L,vii2 +ikhAk9i2 

where iykh satisfies ya-< $/kh < Ck2h-3, where ye. is the constant in Lemma 4.4. We 
also introduce the inner product and norm defined by 
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((op, V))x = ((LT(p, Lk41)) + ikh(, X1), 

IkoII t = (IILkoI + Ykhk9I2)1/2 

In analogy with Lemma 5.1, we then have 
LEMMA 5.5. There is a unique W E Sh minimizing A(p; v). This is the unique 

solution in Sh of 

((W, f))x = ((LAt, LATf)) for all f E S'. 

Proof. As above, we may write 

A ((p; v) I= - P-kVIIA, 

so that the functional is minimized by W satisfying, for all f & Sh, 

((W, f)) = ((Skv, f)) ((L:v, L f)). 

If we set khV = W where W is defined in Lemma 5.5, our discrete solution at 
t = nk of the discrete problem is iikh(X, t) = Ekhv. 

LEMMA 5.6. The operator kh thus defined satisfies, for small k, 

(5.9) I IkhVI I -< I IkhAVIIA -< (1 + ak) I IVI IX 

and, for nk < T, 

(5.10) | |Ekhv| | < e"l| vl |A 

Proof. Noticing that Lk = Lk/2 and that ikh > yk112 for small k, the first half of 
(5.9) follows by Lemma 4.3. By Lemma 5.5, we have, with f = W, 

IIWll2A < IIL+vII IIWIIX. 

On the other hand, by Lemma 4.4, 

IL+vII < (1 + ak) IIvI Ix. 

Together, these last two inequalities prove the second half of (5.9). This immediately 
implies (5.10). 

LEMMA 5.7. Let 0 < s1-< ,, 0-< s2 ? 6. Then, for v E ftmax(2+81 82) 

iPkhV - E(k)vIIx < C(kh81IIv112+8, + k&2/2 lvI 182). 

In particular, for any s > 2, and v &E H8, 

(5.11) i iPkhV - E(k)vii < C(hmin(8M) + kmin(8/2,2))iiv 

Proof. As in Lemma 5.3, we have 

inf ipo - wiI, < Ckh8siIwI12+8., 
VEShA 

and hence, using also Theorem 3.3, 

(5.12) iiPkhV - SkvIIx < Ckh8iISkvII2+.j < Ckh1 IVI12+81 

The first inequality then follows by Lemma 3.4. We now notice that, from (5.12), it 
follows by the inequality between the geometric and arithmetic means that, for 
2 < s < 2 + ,u 
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II| |khV - PkVIIx < C(hs + ks 2) IV I 1s, 

which proves (5.11) for 2 < S < U + 2. For s > u + 2, we have 

I SkhV - kvII _ < Ckh|IIVI12+, < Chmin(A8)IIvII,. 

This completes the proof of the lemma. 
THEOREM 5.2. For s > 2, T > 0, there is a constant C such that, for v &E A' and 

0 < t = nk < T, 

IISkh(OV - E(t)vII < C{(log-) k hmin(8,M) + (log k) kmin8/22} l1v118. 

Proof. We have as in the proof of Theorem 5.1, using Lemma 5.6, 

n-1 

II| |kh(t)V -E(t)v II E I I rkh (kh - E(k))E(jk)v I I 
j =0 

n-1 

? C I I|(kh- E(k))E(jk)v II. 
j=0 

By Lemma 5.7 and Theorem 2.1, we have, for s < min(u + 2, 6), 

II(Ekh - E(k))E(jk)vIIX ? C{kh(jk)-y(I+2-8)/2 + k3(jk)-(6-8)/2} 1 VII 8 

so that by Lemma 4.5, 

n-1 

(5 .1 3) ZE I I(Ekh - E(k))E(jk)v I I X 

? C{(log k) hmin(8M) + (log k) kmin8/22} I vIII 

The case s > min(u + 2, 6) is treated similarly. Together, (5.1 1) and (5.13) complete 
the proof. 

(c) Some Modifications of the Crank-Nicolson Method. We shall consider briefly 
the situation 0 < s < 2. In this case, the method above demands more regularity than 
the initial-values possess. It is then natural to approximate the initial-values by 
smoother functions. More precisely, we shall consider an approximating operator Ph 

with the following property: For given s with 0 < s < 2 there is a constant C such 
that if v &E H8, then PhV &E A2 and 

I IPhvI 12 < Ch (2) Iv IIs, IPhV - Vil < Ch'i|vil8. 

Such operators exist, as can easily be seen using the expansion (2.3) and the definition 
of I I * 1 18. We then set Ekh(t) = Ekh(t)Ph. For simplicity, we restrict ourselves to the case 

> 3, that is, to the case When the accuracy in Sh matches that of the discretization in 
time. We have 

THEOREM 5.3. Let u > 3. For 0 < s < 2, T > 0 there is a constant C such that, for 
v E ?T andO < t = nk < T, 

II kh(t)v - E(t)vI I < Ckh (2 8) 1 IV IvI. 

Proof. We have, using Theorem 5.2 and the definition of Ph, 
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I IPh(t)V - E(t)V I I ?< I I(Ekh(t) - E(t))PhV|| + IE(t)(Ph - I)V|| 

< C(h + k)ilPhvi 12 + C| iPhV - VI I 

< C((h2 + k)h-(2-8) + h8) lv1l < Ckh-(2-8)lIvI . 
The above method has an error estimate which for small s is unsatisfactory, since 

kh-2 > ch '2. We shall, therefore, describe a method which does not have this 
deficiency. The modification consists in making the first step somewhat differently. 
Thus, with the above notation let t = (n + ')k and set 4k^(t) = khEk/2, h. This 
amounts to taking the first half-step by the purely implicit method and using the 
result as initial-values for calculations with the Crank-Nicolson method. Notice that 
the assumption on Ik h is more restrictive than that on Ykh. 

We have the following: 
THEOREM 5.4. For s > 0, T > 0, there is a constant C such that, for v &E A' and 

0 < t = (n + ')k < T, 

kh'(t)V - E(t)vi -< C{(log )T hmin(8,M) + (log T) kmin(s/2 2)} ivi. 

Proof. We have 

I iPk/(t)v - E(t)vi I< I I(kh - E(nk))E(lk)vl I 

+ IISkh(E(2k) - Ek/2,h)VII 

= Si + S2. 

For the first term, we have, as in the proof of Theorem 5.2, 
n-1 

S1 -< E |I|IS1nP(kh - E(k))E((j + 1)k)vII 
j=o 

n-1 
? C ~ II(Ekh - E(k))E((j + 2)k)vIIx 

i=O 

By Lemma 5.7 and Theorem 2.1, we have, for s ? min(u + 2, 6), 

II(kh - E(k))E((j + 1)k)v II 

< C{khM((j + 2)k)-(M+2-8)/2 + k3((j + 1)k)- (6-)1 IIVII., 

so that again, by Lemma 4.5, 

S < C{(logT h ) min8' + (log-k) km in(/2')} IIVII. 

and, similarly, for s > min(u + 2, 6). By Lemmas 5.6 and 3.2, we have 

S2 ?_ Cl (Ekl2,h - E(lk))vIIx < ckmin(8/2,2)i1v1i1. 

This completes the proof. 
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