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Numerical Quadrature by the E-Algorithm 

By David K. Kahaner* 

Abstract. Modifications of Romberg's integration method are applicable to functions 
with endpoint singularities. Several authors have reached different conclusions on the 
usefulness of these schemes due to the potential difficulties in calculating certain exponents 
in the asymptotic error expansion. In this paper, we consider a method based on the 
e-algorithm which does not require the user to supply these parameters. Tests show this 
luxury produces a method substantially better than the unmodified Romberg's method, but 
not as good as the modified procedure which assumes all the exponents are known. It is 
possible to design a scheme which incorporates the best of both methods and allows the 
user to decide how much information he wishes to provide. The algorithm is stable numeri- 
cally in quadrature applications and converges for functions with endpoint singularities of 
an algebraic or logarithmic nature. 

1. Introduction and Summary. Let If = fO f(x) dx, and let a trapezoidal rule 
estimate of If be 

(1) Qhf = h + f(kh) + fh)} 

When m- 2, n = 0, 1, 2, ... , consider the sequence of such estimates 

(2) TO, Qhf, h = 1/2n, n = 0, 1, 

In this paper, we examine four extrapolation procedures (defined in Section 2) utilizing 
this data: (a) classical unmodified Romberg quadrature, (b) modified Romberg 
quadrature, (c) Aitken's del-square process, and (d) the e-algorithm. Our results 
strongly indicate that in the case when f has an integrable endpoint singularity of 
algebraic or logarithmic nature, (d) is a viable alternative to (a), (b), and (c), since (a) 
and (c) may converge quite slowly and (b) may be inconvenient to implement. 

2. Four Extrapolation Procedures. Let (I -Qh)f = E(h, f). 
Iff CE C(2k+l)[O, 1], 

(3) E(h, ) alh2 + a2h4 + * + akh2k + O(h2k+l), h -O 0, 
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where 

(4) as = (- 1)' IB (f(2i-1)(1) - f(2k_)(0)) (2])! 

(B2j is the 2jth Bernoulli number). If f has period 1 and is of class C2k+ 1[_ , c ] all 
the ai's are zero and E(h, f) = O(h2kl+) [1]. In this case, none of the procedures 
described below will be appropriate. 

Classical unmodified Romberg quadrature [1], [2] computes T?01, T') ... and 
then combines them linearly to eliminate successive terms in the error expansion 
E(h, f), i.e., computes Tor+i) from (1) and then T1'r), T21r-1, * , T () in turn, according 
to 

(5) Tk( = (4kTm ll) - Tk1)/(4k - 1). 

Unless a, = a2 = = akl = 0, the sequence { T*?1 } converges to If faster than 
{Tok) I. 

Recently, generalizations of the Euler-Maclaurin formula, on which (3) and (4) 
are based, have appeared [3], [4], [5], [6], and [7]. In the case when f(x) has an integrable 
algebraic singularity at an endpoint, (3) is replaced by 

(6) E(h, f) b1hal + b2ha2 + ... + bkhak + O(hak+,), 0 < a1 < a2 < ... 

For example, if f(x) = v'xg(x) with g(x) sufficiently differentiable and g(0) $ 0, 

E(h, blh )' 2 + b2h2 + b3h5'2 + b4h7/2 + o(h7/2), h -> 0. 

If one uses unmodified Romberg quadrature (5) on \Vxg(x), then If - Tk?'= 
O(h3'2), and the convergence of T,01 is at the same rate as the trapezoidal rule T(k). 
Noting this, various authors [8], [9], and [10] have suggested modifying (5) to account 
for the hai terms in (6). We then get the modified Romberg quadrature, with (5) 
replaced by 

(7) k( = (2 aki1 j) - 
t^))/(2ak 1) 

tsk) T(k) 

This modified algorithm either requires the user to supply all the a's or the code 
itself must try to estimate them [11]. 

In the case of functions with logarithmic singularities at an endpoint, the error 
expansion is more complicated. Thus, it is shown in [6] that if 

f(x) = xk(l - x)@ In xh(x), c, ,B > -1, 

k-1 

(8) E(h, f) = j, (e; + a, ln h)ho+'+1 + bjh0+ 3+' + O(hk) 
i o 

For the expansion (8), modifications to (5) analogous to (7) can be derived. 
In an attempt to relieve the user of the need for explicitly providing the error 

expansion (3), (6), or (8), we allow the exponents ai in (6) to be unknown and consider 
the problem of using three successive estimates to eliminate the lowest order term 
in the error. Thus, 
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(I - Qh)f = E(h, f) - aihal, 

(9) (I - Qh/2)f = E(h/2, f) al(h/2)al, 

(I - Qh/4)f = E(h/4, f) ai(h/4) I 

and 

If r Qh-4 (Qh/4 Qh12)2/(Qhl4 - 2Qh/2 + Qh) 

or 

(10) If rQh4 - (AQh2)2/A2 Qh 

In the form (10), this is known as Aitken's del-square process. It has succeeded in 
eliminating the lowest order in the error term (6) at the expense of one additional 
trapezoidal estimate. Of course, it does not work for (8). 

The difference between modified Romberg (7) and Aitken's (10) is more than just 
the need for a third term in (10) but rather its fundamentally nonlinear character. 
After one application of (7) and (10), respectively, to (6), we have 

(1 1) 2 alQh/2 - Qh 2ha 2 + dAa3 + 

and 

(12) If [Qh/4 - (AQh22/A2 Qh] aha2 + O(ha2); 

but (12) now contains new terms not present in the original expansion. For example, 
if Qh = ha + ha+ , a, #3 > 0 (I = 0), one application of (7) has an error which is 
O(h a+0) while two applications will produce I exactly. On the other hand, if we apply 
one step of (10) to Qh as above, 

Qh/4 - (AQh2)2/(A2 Qh) 

(13) = h + s) }/ [h{(1 - 2a+2)} + 2 {4 - 

For small h, this is O(ha + 0), but the appearance of other terms (as ha + 23) is also seen. 
A second application of (10) will eliminate the h'+ 0 term, but will not be zero because 
of these spurious terms. Experiments with this algorithm have convinced the author 
that its convergence is very slow indeed [15]. 

An important generalization of (10), known as the e-algorithm, is due to D. Shanks 
[12] and P. Wynn [13]. We compute Tlr+l) from (1) and then f2 Tr-l), ... * r(+? 
in turn, according to 

(4 m) = tf-1) + T/(t(m-1) m-2) 

(14) t( k2kI - t - 

To(k) = T(k) and T(k) = 

Let us consider Ek(h, f), the error expansion (6) truncated after k terms, 
k 

(15) Ek(h, f) = , athat, 0 < 1 < a2 * < ak. 
t 1 
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If the remaining terms in E(h, f) are ignored, it is reasonable to try to use 2k + 1 
trapezoidal estimates to compute If by solving the 2k + 1 nonlinear equations 

(16) If - Qh2 - Ek(h/2t, f), i = 0, 1, , 2k. 

Then, 

If = If + O(h2k) 

(Aitken's process demonstrates this for k = 1). The e-algorithm (14) is an efficient 
algorithm for solving (16) for any k. Thus, if the expansion (6) actually terminates 
so that Ek(h, f) = E(h, f), then [14] 

t2r + = If + O(ha+'), r = 0, 1, 2,*, k - 1, 

and, barring roundoff, 

(17) t2k= If 

(The elements T` may be thought of as work columns.) Moreover, (14) can be used 
not only when Ek is obtained by truncating (6) but also for the case when Ek is the 
truncated expansion corresponding to a function f(x) with a logarithmic singularity, 
as for example in (8). In order to see the truth of the last comment, it suffices to note 
that (17) will be true for any sequence of numbers Tor), r = 0, *. *, 2k + 1, that 
satisfy a linear difference equation with constant coefficients [17], and that Ek(h, f) 
for either (6) or (8) may be written as a linear combination of terms of the form 

(18) ha' = Xi h = 1/2n 

and 

(19) (ln h)h' = m77, h = 1/2m. 

Thus, 
k 

Ek(h, f) = E (aiX + bi + cjm-t ). 

In the simpler case of (6), the stability of the e-algorithm has been considered [14]. 
The propagation of absolute error from one odd numbered column to another is 
governed by a multiplicative factor of magnitude 

(20) -.(1/(2a - 1 ))2. 

We see that, unless there are several very high order algebraic singularities (corre- 
sponding to small a.), such error propagation is not troublesome. On the other hand, 
errors in the even numbered columns can be considerable [14]. Finally, we note that 
the error expansions (6) and (8) require the singularity to be at an endpoint. The 
analogous expansions for arbitrarily located singularities are not of the same form. 
There is no reason to suppose that any of these algorithms will be appropriate unless 
the singularity is at an endpoint. In practice, this means that while the user need not 
specify the precise nature of the singularity, he does have to know its precise location. 

3. Numerical Results. We have written a code implementing the e-algorithm 
for quadrature, and tested it for stability and accuracy. Details of these results are 
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described in [16]. In general, it performed about as expected. There was no large loss 
of accuracy in the estimates as long as reasonable precautions were taken to prevent 
the computation from continuing past convergence. Compared to- the unmodified 
Romberg integration, convergence required several orders of magnitude fewer func- 
tion values on integrands with the type of singularities described, but more function 
values than with a properly coded modified Romberg code. For smooth functions, 
substantially more function values were required than with the unmodified Romberg 
quadrature. 

Our results strongly suggest that the e-algorithm deserves to be considered in 
those applications where Romberg's method is known to converge slowly because of 
endpoint singularities, and modification to take such singularities into account is 
inconvenient. Further, this type of scheme can be built into a code that allows the 
user to specify the type of singularity if it is known, in which case he gets the more 
rapid convergence of the modified Romberg's method. If he cannot (or will not) 
specify the singularity, then the rate of convergence is still substantially better than 
the unmodified Romberg. 
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