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Generalized Recursive Multivariate Interpolation* 

By Earl H. McKinney 

Abstract. A generalized recursive interpolation technique for a set of linear functionals 
over a set of general univariate basis functions has been previously developed. This paper 
extends these results to restricted multivariate interpolation over a set of general multi- 
variate basis functions. When the data array is asuitableconfiguration(e.g., an n-dimensional 
simplex), minimal degree multivariate interpolating polynomials are produced by this recur- 
sive interpolation scheme. By using product rules, recursive univariate interpolation applied 
to each variable singly produces multivariate interpolating polynomials (not of minimal 
degree) when the data are arranged in a hyper-rectangular array. By proper ordering of 
points in a data array, multivariate polynomial interpolation is accomplished over other 
arrays such as diamonds and truncated diamonds in two dimensions and their counterparts 
in n dimensions. 

1. Introduction. The recursive procedure developed will permit the deter- 
mination of a multivariate interpolating function which interpolates a given data 
set over a set of multivariate basis functions. Walker [1], in an unpublished thesis, 
extended previous work by Thacher [2] and produced a generalized recursive 
interpolation technique for a given set of linear functionals (not restricted to function 
values alone) over a set of general univariate basis functions. Later, Newbery [3] 
published results similar to those of Walker with the restriction that the basis functions 
are specialized to univariate algebraic and trigonometric polynomial basis functions. 
The author will generalize some of Walker's results (and hence Newbery's) to re- 
stricted multivariate interpolation; i.e., the linear functional data will be function 
values only. 

A review of Walker's results for recursive univariate interpolation is included in 
Section 2. In Section 3, recursive univariate interpolation is generalized by considering 
repeated recursive univariate interpolation over hyper-rectangular arrays. This 
method is illustrated by a general 3 X 3 array. In Section 4, a theorem is given estab- 
lishing generalized recursive multivariate interpolation along with a corollary 
specializing the theorem to recursive multivariate polynomial interpolation over a 
particular configuration of data points in a specified order. This corollary determines 
the unique interpolating polynomial of total degree din n variables. Comparisons with 
other methods as well as different configurations of data points are discussed in 
Section 5. Error analysis and tests for convergence to a predetermined accuracy appear 
in Section 6. The advantages of the recursive interpolation scheme are treated in 
Section 7 and a suggestion for further investigation appears in Section 8. 
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724 EARL H. MCKINNEY 

The following notation will be adopted to represent points in Euclidean n-space Rn. 
A generic point in Rn is denoted by 

(n) = (X(1 l X (2) X X , , 

If S is a nonempty subset of Rn then a specific point p(n) E S is denoted by 
(n) __ (1) (2) (n) 

PN - (XN,, XN2, ,XNn) 

When interpolating for functions of several variables using polynomial basis 
functions, the form of the interpolating polynomial will appear as 

.n Nk-1 

p(p(n)) = a][I ]I (xk - X ) 

k=1i =O 

where the summation is over a prescribed data set fp(n) } C E:E, j = 0, 1, * , N. 

2. Univariate Interpolation. A brief review of the results of Walker and Thacher 
for generalized recursive univariate interpolation will provide the background needed 
to proceed to the multivariate case. 

An inductive algorithm was developed by Walker [1] which is suitable for any 
distribution of base points for which linearly independent basis functions can be 
constructed. The following theorem establishes the algorithm for constructing the 
sequence of interpolating functions. 

THEOREM 1. Given a set of base points {x; }, andfunction values f(x,) (j = 0, 1, 
2, *.. , m), there exists a sequence of interpolating functions { R ,(x) } defined recursively 
by 

R,(x) = R1_1(x) + a,q',(x), j = 1, 2, 3, *. , , 
(1) 

~~~~~~~~~~ftxi) R-j(i 
Ro(x) = f(xo), where a =f 

such that 

(2) Rk(x,) = f(xi), j = 0, 1, 2, * *, k; k = 0, 1, 2, * * * , 

where the p j(x) is any set of linearly independent basis functions which satisfy 

(3) spi(xi) = 0, i = 0, 1, 2, 3, , (j - 1), 

pOi(xi) $ 0. 

Proof. The proof is by induction. By (1), Ro(x) = f(xo). Assume that Rk_l(X,) = 

f(x,) for j < k. Then by (1), Rk(x,) = Rkl(xl) + akWk(x;) and, since Pk(X;) = 0 for 
j < k by (3), we have Rk(x,) = Rk_l(x;) = f(x,) for j < k. For j = k, Rk(xk) = 

Rk-l(xk) + akWpk(xk). But by (1), ak = [f(xk) - Rk-l(Xk)]/A0k(Xk). Hence, Rk(Xk) = 

Rk-l(Xk) + { [f(Xk) - Rk-l(Xk)]/Ik(xk) } Ik(Xk) = f(xk) and the induction is complete. 
COROLLARY 1. A set of polynomial basis functions for the unique mth degree inter- 

polatingpolynomialfor the data set { xi } andfunction values f(xi) (j = 0, 1, 2, 3, * , m) 
is given by 

(4) FO(x) = 1, (pi(x) = (x - X-1)Pi-1(X) (j = 1, 2, 3, * M, i). 
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This set of basis functions satisfies (3), and hence (1) produces the required mth degree 
interpolating polynomial. 

A possible set of basis functions for generalized polynomial interpolation is 
given by 

po(x) 1, pj(x) = [g,(x) - gi(xj_01]<j_AX), 

where the gj(x) are arbitrary functions except that g2(xi) $ gi(xi-1) for i > j. 
Newbery observed in [3] that the interpolating polynomial obtained from (1) 

recursively using basis functions (4) is the same as Newton's divided difference formula 
when the symmetry property of divided differences is taken into accounit. This algo- 
rithm produces the interpolated value explicitly for a given x and also permits retention 
of the calculated constants ai for interpolation at other values of x. 

3. Repeated Recursive Univariate Interpolation (Hyper-Rectangular Arrays). 
An acceptable procedure for multivariate interpolation over hyper-rectangular arrays 
in n dimensions is obtained using repeated univariate interpolation formulas as 
suggested in Milne et al. [4] and Steffensen [6]. Except for Steffensen's notation for' 
divided differences (or the square bracket notation of other authors), there appears 
to be a lack of suitable notation for representing repeated univariate rules when 
performing multivariate operations. In what follows, the symbol I will represent 
interpolation with respect to a single variable over a suitable data set. (It should be 
noted that I could be replaced by any suitable operator for generating repeated 
univariate rules such as numerical differentiation or numerical integration, for 
example.) 

Consider a given hyper-rectangular array in n dimensions denoted by the set 
(5) ix(1) , (2) (3) (~n) 

xi 2 , 
i 

, 
i * i * 

with the corresponding set of function values 

(6) { AX0 1, x(2) , x( 
3) x 

* nXX)} 

ii nonegative integers with 0 < ii < N_, j = 0, 1, 2, 3, * , n. Let (6) be denoted by 
nests of sets as follows: 

(7) { * * * { {f(x. , X(2) . , x. )} i2=0 i-. 

For example, for a 3 X 3 two-dimensional data set, (7) is represented as 

{{f(xi, Yii = {{f(xo, Yo), f(x, Y), f(x2, YO)}, {f(xo, YD), f(Xl, YD, f(x2, Y1)}, 

{f(xo, Y2), f(XI, Y2), f(x2, Y2)} }I 

In order to interpolate f(p(f)) over the data set (5) with function values given by 
(6) using repeated univariate rules, one must interpolate with respect to each variable, 
in turn, over the appropriate data set (i.e., with respect to the variables singly). Let us 
denote interpolation with respect to the variable x`'i by the operator symbol 
I,i=' (x'i) with evaluation at xi( . Then 

Ni 

I (x 'i) = { { { {PN;(X 1, x1r, , 

. , , _ 

0) 

(8) ii=O 

0 
+ 1) * * (n) 

N 
iN o y*}i X 1=0 I lij+l =0 

.. Nn " 
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which is a collection of (n - 1) nested sets (having started with n nested sets of function 
values) of interpolates. These interpolates are denoted by 

pN(X(1)(2) X . . . 0i1) X 0(i . n) 
Nj X1, X2 X X xii-1 R , Xi+1 Xis n 

to indicate polynomials of degree Ni in the case for polynomial interpolation. (Of 
course, rational functions, trigonometric functions, etc. could be used depending upon 
the choice of basis functions for interpolation.) 

Repeated univariate interpolation requires interpolation to be performed upon the 
set of interpolates obtained in (8). Continuing this process, one obtains 

n N; 
f(P(n) (X(j)j~~ (2) (3) n 

f(p(f)) ~ IITI (x ~)f =PN1N2** *N(g , X X,*N** , ,x ) 
j=l ij=O 

which, in the case for polynomial interpolation, produces an interpolating polynomial 
with terms of total degree as high as N, + N2 + N3 + * + Nn but not all lower 
degree terms. 

As an example, consider the data set { (xi, yj, Zk) } with corresponding function 
values {f(x , y3, zk)}, i, j, k = 0, 1, 2. We interpolate at (x, y, 2) as follows: 

First, with respect to x at x, 
2 

I (X)f = { {P2( , Y;, Zk) k=O, 
i-O 

then interpolate on this set of interpolates, with respect to y at y, 
2 2 

I (y) I (X)f = {P22( , Y, Zk)} k =O 
i=O i=O 

and lastly interpolate on these interpolates, with respect to z at 2, 

2 2 2 

I (z) I (y) I (X)f = P222(Q, Y, 2) _ f(X, y, Z). 
k=O i=O i=O 

With this notation established, we can use the recursive univariate interpolation 
procedure of Theorem 1, repeated over each variable in turn, to accomplish inter- 
polation recursively for multivariate functions over hyper-rectangular arrays of data 
points. 

Example. Use repeated recursive univariate interpolation over the data set 
{xi, y; } with corresponding function values {f }, i, j = 0, 1, 2. 

y 
fo2 fl2 f22 

Ifo fl; f2; 

foo fho f20 

By choosing the so functions as appropriate polynomials, Theorem 1 allows us to 
generate interpolating polynomials recursively with respect to x at x over each y, 
(j = 0, 1,2) 
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f - Ri-1(xi, y,) 
R0(g, y,) = foi, where aii - fi; - -XY) 

1k = O (X i Xk) 

R1(X, y,) = R0(X, y,) + a1gp1(X), 
i-1 

R2(9, y,) = RJ(R, y,) + a2ip2(x), (Pi(X) = I ( -Xk) 
k=O 

Hence, I2 (x)f = { R2(x, y,) } j= is a set of three interpolating polynomials each of 
degree 2 in xc. We next interpolate with respect to y upon these interpolates 

R20(, y) = R2(9, Yo), where a4(x) = R2( i,y) - I y;) 
H11k= (Yi - Yk) 

R21(x, 9) = R20(X, 9) + al(pl(y), 

j-i 

R22(9, 9) = R21(x, y) + a2(p2(y), sP(Y) = (Y - Yk). 
k =O 

The interpolating polynomial for the given data set is therefore given by 
2 2 

(9) I (y) I (x)f = R22(, 9). 
j=O i=O 

It is interesting to note the form of (9), observing that the wA(x) and ,j(y) are 
polynomials of degree i and j, respectively, and the aj(x) are polynomials of degree 2 
in x, while the ai are constants. 

2 2 

R22(x, y) = foo + E aio(pi() + Z ajp1(y). 

R22(x, y) is therefore a polynomial in the variables x, y with terms foo, x, X2, PI Fc, 
-2g -2 --2 -2 2 x y, y, x jy I xc y 

It should be observed that repeated recursive univariate interpolation by the 
method described above produces Newton's divided difference formula for polynomial 
interpolation of functions over hyper-rectangular arrays in n-space which appears in 
both [4] and [6]. 

4. Recursive Multivariate Interpolation. The recursive scheme described in 
Section 2 can be generalized to multivariate interpolation for data points in other 
than hyper-rectangular arrays. 

Using the notation for points in En defined in Section 1, the following general- 
ization of Theorem 1 results. 

THEOREM 2. Given a set of base points p {() } N = 0, 1, 2, * * , T, and function 
values f(pn)), there exists a sequence of interpolating functions { RNV(pn) } defined by 

RN(P (n) RN 1(p (n) + aN(PN(p(n), N = 1, 2, ..., T, 
(10) R(o) )N,(n ) 

= f(p~fl)), aN = 
(PN(PN) 

such that 

(11) RN(j4n)) = f(p(n)) j = 1, 2, 3, * , N, 
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where f N(p(n)) is any set of linearly independent basis functions which satisfy 

(12) 'iPn)) = 0, j = 0, 1, 2, 3, , (N - 1), 
(p n) o 

'PN(PN) 0. 

Again, a simple inductive proof, similar to that of Theorem 1, establishes that the 
RN(p(n ), defined recursively by (10) and (12), satisfy (11). 

A particular configuration, as well as an ordering, imposed upon the set of data 
points p(n), will permit the selection of polynomial basis functions PN(p(n)) which 
determines the unique interpolating polynomial of minimal degree satisfying the 
given data. 

In Milne et al. [4, p. 54], (d + 1)(d + 2)/2 data points arranged in a two dimen- 
sional trigangular array, with equal spacing of data points in each direction, determines 
the unique minimal degree interpolating polynomial in two variables including all 
terms up through total degree d. Milne et al. [4] show that Newton's advancing 
difference formula for a function of two variables may then be used to determine such 
an interpolating polynomial. Equal spacing of data points is not required. A Newton 
divided difference formula may be used if the subscripts on the coordinates of the 
data points form the specified triangular array. 

A choice of polynomial basis functions to determine the unique minimal dth 
degree interpolating polynomial for a function of n variables with (nd d) data points 
will now be displayed. We consider as given the (n+d ) data points p(n) arranged on an 
n-dimensional rectangular grid such that 

(13) 0 ? N< )' N > 0 (integers), 0 < Ni _ d. 

One ordering imposed upon the points p(n) satisfying (13) which permits a recursive 
construction of the minimal degree interpolating polynomials is obtained as follows. 
Consider the ordering to be imposed upon the subscripts N1, N2, ... , Nn of the 
point Pn= (X vl, xIv X2 x(n). 

Definition 1. NSk = = N. is the kth partial sum of the coordinates of N = 

(N1, N2, . * , Nn). 
Definition 2. N < M if, and only if, 

(a) NSSn < MSSn or 

(14) (b) NSm < MSm and NS% = MS? for some integer m such that 
0 < m < n and all integers i such that m < i < n. 

The ordering imposed by (14) produces a one-to-one mapping of the n-tuples 
(N1, N2, . , Nn) onto the nonnegative integers by 

(15) N = E (Nsi + -1) 

The existence of such mappings is well known; for instance, see [5]. The derivation of 
(15) and the establishment of the one-to-one mapping are tedious but straightforward. 
(The author will provide a constructive proof of this particular one-to-one mapping 
upon request.) It should be pointed out that a complete knowledge of the one-to-one 
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mapping represented by (14) and (15) is not essential to ensuing developments. Fig. 1 
indicates the mapping for n = 2, 3 established by (15). 

To describe the ordering represented by (14), we assert that the n-tuple (0, 0, 0, * * 
0) is mapped onto zero. If we denote the successor of N = (N1, N2, N3, * * * , Nn) by 
N' = (Nj', N2, N3, * , N.), then (14) imposes the following relations between the Ni 
and N'. 

If N2 0 0, 

N' = (N1 + 1, N2 - 1, N3, N4, . * * * Nn). 

If Ni = O, i = 2, 3, 4, ,k, (k = n included) 

N' = (0, 0, 0, * -, 0, N1 + 1, Nk+l - 1, Nk+2, N , N). 

For example, for n = 5, the successor of (1, 3, 2, 0, 3) is (2, 2, 2, 0, 3) and the 
successor of (2, 0, 0, 0, 3) is (0, 0, 0, 3, 2). 

The following corollary establishes a choice of basis functions (N(p')) for unique 
minimal degree polynomial interpolation. 

COROLLARY. A set of polynomial basis functions for the unique interpolating 
polynomial of total degree dfor (n+d ) data points p"'n = (X(, x(,r * , x v ) satisfying 
(13) and (14) with function values f(p ")) is given by 

n Nk-1 

(16) 'PN(Pn) = TI TI (Xk) - X(k)) 
k=1 i=O 

(By the usual fI convention for Nk = 0, the corresponding factor is 1.) 
Proof We need to show that conditions (12) are satisfied by the q& (p(fl)) given 

by (16). 

x(2) X(3) 

J5 

O 16 

13 19 \ 5 1 3 

- !? +4- 

t2 <\{51\f9 }>\20 
) 

2T16 x (2) 

FIGURE 1 
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Let N* be any nonnegative integer such that N* is mapped onto (N*, N*, N*, 
N*). Furthermore, assume N* < N. Then 

n Nk-1 

(17) SPN(PN*) = H H (X(k) - xik)) 
k=1 i=O 

By (14)(a), 1 N* < E _1 Ni implies N* < Nk for some k (1 < k < n). By (14)(b), 
N*Sm < NSm and N*Sm+l = NSm+l for some m implies that = N* < m= Ni. 
Since N* and Ni are nonnegative integers, there exists a k ? m such that N* < Nk. 

Hence, since 0 < i ? Nk- 1 for all k in (17), then i takes on the value N* and 
(PN(P N*) = 0 for all N* < N. 

That (p (n)) $ 0 is obvious from direct substitution of p(n) into (16). Therefore, 
it has been shown that the IPN(P'(n') are a proper set of polynomial basis functions 
satisfying (12). 

An ordering other than that chosen in Definition 2 may be selected with the proof 
of the Corollary remaining essentially unaltered. 

A set of generalized polynomial basis functions (PN(p'(n') may be chosen in the form 
n Nk-1 

(18) PN(P(n) = TI TI [gik(X (k) -gik(X ) 

k=1 i=O 

where the gik(X ()are arbitrary functions except that gik(x,k))$ gik(Xik) for j > i. 
The use of (18) in place of (16) in the above corollary does not significantly alter the 
proof. 

5. Configurations and Comparisons. It is important to note that the recursive 
multivariate polynomial interpolation procedure of Section 4 imposes configuration 
restrictions upon the subscripts of the data points and not upon the data points 
themselves. In terms of flexibility in applications, this is roughly equivalent to the 
difference between using divided differences and ordinary differences. 

Consider the case where interpolation is required near the boundary of a table, or 
some other restrictive boundary, upon the determination of function values for 
interpolation. We restrict the discussion to two dimensions for ease in representing 
configurations of data points. For example, the interpolating polynomial of total 
degree 3, obtained by using the recursive procedure of Section 4, has the form 

P(x, y) = aoo + a1o(x - xo) + aol(y - Yo) 

+ a2O(x - xO)(x - xi) + al(x - xo)(y - Yo) + ao2(Y - Yo)(Y - Y) 

+ a30(x - xO)(x - X1)(X - X2) + a2l(x - X)(x - X)(y - YO) 

+ al2(X- xo)(y - Yo)(Y - Yi) + ao3(y - Yo)(Y - Y)(Y - Y2). 

In all cases which follow the ordered pairs (i, j), refer to the subscripts on the data 
point (xi, yj) with the order of appearance of the subscripts ij on ai i indicating the 
order in which the terms, and hence data points, are taken in the recursive scheme. 
The data points could be arranged as indicated in Table 1 to perform interpolation 
along boundaries. 

For interpolation in other corners or along other sides a reflection or rotation of the 
configurations given can be used. Additional data points for higher-degree polynomial 
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interpolation would be distributed by extension of the pattern described in each case. 

TABLE 1 

(0, 3) (0, 3) 

(0, 2) (1, 2) (0, 2) (1, 2) 

(0, 1) (1, 1) (2, 1) (2, 1) (0, 1) (1, 1) 

(0, 0) (1,0) (2, 0) (3, 0) (2, 0) (0, 0) (1, 0) (3, 0) 

For interpolation away from the boundaries of the table for a point (x, y) within 
the rectangle (x,, yo), (xl, y,), (xo, y1), (xi, y1) the following scheme could be used. 

TABLE 2. Central Table Interpolation 

(0, 3) 

(2, 1) (0, 1) (I 1) 

(2, 0) (0, 0) (1, 0) (3, 0) 

(0, 2) (1, 2) 

(Note that the i and j coordinates alternate about (0, 0) in increasing order of each 
coordinate.) Of course, other assignment schemes are possible and each scheme has 
an analogous form in higher dimensions. The data point configurations described 
above are combinations of Newton and Gauss forward and backward interpolation 
formulas. For example, the central table interpolation scheme above is a Gauss-Gauss 
interpolation formula (i.e., it is a Gauss interpolation formula with respect to each 
variable). 

Milne et al. [4, Chapter IV] derives the interpolation formulas of Newton, Stirling, 
and Everett for functions of two variables with equally spaced data points. Special 
arrays of points are exhibited in the forms of diamonds, squares, and truncated 
diamonds referred to as 5-point, 9-point, 13-point, 21-point, and 25-point formulas. 
All of these formulas can be obtained by either repeated recursive univariate inter- 
polation for the square arrays (9-point and 25-point formulas) or by recursive multi- 
variate interpolation by omitting certain terms from total degree formulas. 

It is obvious that the square-array formulas of Milne et al. can be handled by 
repeated recursive univariate interpolation. A scheme for alternating rows and columns 
about a central square or point, could be arranged in order to have the higher-degree 
terms contribute relatively small amounts to the total. 

As an example of recursive multivariate interpolation applied to the 13-point 
diamond formula of Milne et al. [4, pp. 56-57], we have the following configuration 
of data points (Table 3). 

This formula is obtained by recursive multivariate interpolation by setting the 
coefficients a3, and al3 equal to zero in the recursive scheme for constructing the 
interpolating polynomial of total degree 4 from the given data. Such a polynomial is 
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TABLE 3. 13-Point Diamond Array-(3, 1) and (1, 3) Omitted 
x 

(0, 3) (1,3) 
* * x 

(2, 1) (0, 1) (1, 1) (3, 1) 

(4, 0) (2, 0) (0, 0) (1, 0) (3, 0) 

(2, 2) (0 2) (1, 2) 

(0 , 4) 

of the form 
4 m m-k k 

(19) P(x, y) = am-k,k H (x - Xi-1) H (Y yj-1) 
m=O k=O ==l 

Hence, the recursive interpolation routine for the polynomial of total degree 4 can be 
used by the simple expedient of assigning a31 = a13 = 0. 

Similar modifications of the routine for recursive multivariate interpolation of 
predetermined total degree will permit interpolation over a wide range of config- 
urations including the remaining ones discussed by Milne et al. 

6. Error Analysis and Convergence Criteria. Since the recursive repeated 
univariate interpolation procedure for hyper-rectangular arrays developed in Section 3 
and the recursive multivariate interpolation procedure developed in Section 4 are 
analogous to Newton's divided difference formula (in more than one variable), an 
ideal reference for error analysis is Steffensen [6]. Other forms of the error term for 
polynomial interpolation in several variables are given by Kincaid [7] and Sard [8]. 
Kincaid's results are also discussed in Milne et al. [4, pp. 78-80]. Kincaid's error terms 
do not require any special configuration of points and include the case where the 
interpolating polynomial need not contain all terms of total degree d in all variables. 
Sard's error terms are valid for linear functionals in general and are in integral form. 

In practical applications of interpolation, one generally does not have the necessary 
derivatives available in order to analyze the error terms. The alternative then is to 
assume convergence of the recursive scheme and compare successive iterates or 
groups of successive iterates and terminate the interpolating process when a predeter- 
mined accuracy has been reached. Of course, it is possible for the recursive scheme 
to converge to a result which satisfies some practical convergence criterion but not 
provide the prescribed accuracy. 

Since convergence criteria for repeated recursive univariate interpolation over 
hyper-rectangular arrays usually involves comparison of results upon inclusion of 
additional rows and/or columns of data points in the data set, these results will not be 
discussed. 

In the case of recursive multivariate interpolation, five different convergence 
criteria were used by the author on a representative collection of functions of two 
variables with the accuracy of the results compared with the true value in each case. 
Notationally, we shall use RN(p(")) = RN(x, y) for two variable representation of 
the interpolating function with N = (N1, N2). The criteria used are as follows: 
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(I) |RN+1(x, y) - RN(X, y)l < E. 

(II) X IRN(x, y) - RNl(X, y)L/d < e where the summation is over all N D N1 + 
N2 = d, N1 $ 0. 

(III) IRN(X, y) - RN-(x, y)l < E/(d + 1) for all N 3 N1 + N2 = d, N1 $? 0. 
(IV) IRN(X, y) - RN-(d+l)(x, Y) <E for N = N1 = 0, N2 = d only. 
(V) IRN(X, y) - RN-(d+l)(x, y)I < E and IRNl(x, y) - RN-(d+l)(X, Y)I <E for all 

N D N1 + N2 = d, N1 7 0. 
(I) requires that the absolute value of the term added to the interpolating function 

at the (N + I)st stage be less than e in absolute value. 
(II) requires that the average of the absolute values of all terms of degree d in the 

interpolating function be less than e. 
(III) requires that each term of degree d contribute less than E/(d + 1) to the 

interpolating function. If N1 $ 0, only d differences are considered. (E/(d + 1) is used 
since there are d + 1 terms of total degree d.) 

(IV) requires that the absolute value of the difference between the interpolating 
functions of total degree d and d - 1 be less than e. 

(V) requires that both the absolute value of the difference between the inter- 
polating function through terms including XN,YN2-1 and XN,YN2, respectively, and 
x Ny-1YN and XNly'2, respectively, to be less than e for all N D N1 + N2 d (N1 $ 0, 
N2 $ 0). 

Three functions were used as test functions, 

f = exp (x + y), 

g = l/(x + 10)2 + l/(xy + 4) + l/(y - 6)2, 

h = 1/(X2 - y2 - 2) + l/(x - y + 2.5). 

Each function was used under the criteria (I)-(V) above with tolerance e - .5 X 10', 
.5 X 10-5, .5 X 10-6, .5 X 10-'. The data set was a subset of (- 1, 1) X (-1, 1) with 
equally spaced points at intervals of length 2/d (d > 1) in both dimensions where d is 
the total degree of polynomial used at each stage (d increasing until the respective 
convergence criteria are met). The order in which the data points are to be taken is 
indicated in Table 2. After the convergence criteria (I)-(V) were met in each case the 
interpolated value was compared with the true value at x = .1, y = .075. 

Criterion (I) gave the required accuracy only for function f at e = .5 X 10'. 
Criteria (II)-(V) gave the required accuracy for functions f and g for all tolerances 
indicated. Criteria (II)-(V) gave the required accuracy for function h only at E = 

.5 X 10-4. 

Function h has singularities near the data set and hence one would expect to have 
difficulties obtaining a high degree of accuracy in this case. 

7. Advantages of Recursive Multivariate Interpolation. The greatest single 
advantage of recursive multivariate interpolation (including repeated univariate 
recursive interpolation over hyper-rectangular arrays) is embodied in the adjective 
recursive. For digital computer programming, a recursive scheme is usually superior, 
provided other difficulties are not encountered such as the introduction of an un- 
necessarily large number of calculations which may cause round-off error to become 
significant. The example of interpolating for the value of the elliptic integral F(0, 0) 
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at q = 49.60 and 0 = 59.4?, using the 12-point truncated diamond and the 13-point 
diamond data sets, was programmed. Milne et al. [4, pp. 62-64] constructs Lagrange- 
type formulas and interpolates for this elliptic integral over the specified 12-point and 
13-point data sets. Each data set requires a different Lagrange-type formula and 
hence must be programmed separately. By recursive multivariate interpolation, the 
same program is used with a40 = a21 = aO3 = 0 in (19) for the 12-point formula and 
a3l = a13 = 0 in (19) for the 13-point formula. The results of these interpolations 
agreed with those of Milne et al. to the same number of digits of accuracy. 

A further advantage of this method is the ability to provide for the convergence of 
the iterates to a predetermined tolerance. The Newton, Stirling, Bessell, Everett, and 
Lagrange-type discussed by Milne et al. [4] or Steffensen [6] are not basically recursive 
and hence do not easily lend themselves to comparisons of differences of successive 
results with a predetermined tolerance. 

Finally, except for the Lagrange-type formula, the formulas mentioned above, 
although capable of representation in the most general divided difference form, do 
not usually so appear, undoubtedly due to the complexity of the notation. Recursive 
multivariate interpolation does not suffer this disadvantage. In general, the equal 
mesh-size case does not provide any advantage, notational or otherwise, over the 
unequal mesh-size case. 

Remark. It should be pointed out that the repeated recursive univariate scheme 
of Section 3 could be used to construct unique total degree d interpolating functions 
(polynomials) also. To do so, one would include in the set of data points for each 
variable in turn only those points which contribute appropriate terms for the total 
degree d interpolating polynomial desired. For example, using the set of data points 

{ {xi, y X=0 produces the array (for d = 3) 

An alternate plan would be to use the method as described in Section 3, setting a, = 0 
for i + j > d in the process of calculating the coefficients leading to the interpolating 
polynomial given by (9). The proper triangular array is thus obtained from the square 
array previously assumed. 

Conversely, the recursive multivariate scheme of Section 4 could be used to perform 
interpolation over hyper-rectangular arrays of dimension ml X m2 by the simple 
expedient of setting aN = 0 in (10) if N1 > ml or N2 > m2 where N = (N1, N2). 

8. Further Investigations. Certain types of combinations of functional and 
derivative data at selected points in the data set permit Hermite-type interpolation by 
the recursive multivariate interpolation method. It can be seen that in the case where 
all points of the data set approach p(n), for instance, the recursive multivariate inter- 
polation method produces the Taylor series expansion about pfl'. Further investigation 
may provide a method whereby recursive multivariate interpolation will produce a 
method for interpolating with more general Hermite-type data over n-dimensional 
data sets. 
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