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Computation of Best Monotone Approximations* 
By James T. Lewis 

Abstract. A numerical procedure to compute the best uniform approximation to a given 
continuous function by algebraic polynomials with nonnegative rth derivative is presented 
and analyzed. The method is based on discretization and linear programming. Several 
numerical experiments are discussed. 

1. Introduction. The general problem considered in this paper is the best uniform 
approximation of a given continuous function f over a finite closed interval [a, b] by 
polynomials of degree at most n whose rth derivative is constrained to be nonnegative 
on [a, b]. Denote by P1,n the set of all algebraic polynomials a, + a,x + * * + anx' of 
degree at most n and set Kr = {p E 6l: p (r'(x) > 0 for a ? x ? b } where r is an 
integer, 1 < r < n. Kr is a closed convex cone in the (n + 1)-dimensional space 61P. We 
wish to find the best uniform approximation to f from Kr; i.e., we seek p* E Kr such 
that If - p* II = min,EKr I Hfp II, where the measure of the error is the uniform norm 

lf-pll = maxa<x<b If(x) -p(x)l. The existence of such a best approximation was 
easily established; recently it was shown in [7] that the best approximation is unique. 
The main goal of this paper is to present and analyze a method to compute the best 
approximation. The original interest was in approximation by monotonic polynomials 
(approximation from K1) and approximation by convex polynomials (approximation 
from K2); however, the method can be extended easily to the general problem of 
approximation from Kr. In Section 2, a symmetry result is established. In Section 3, a 
numerical procedure based on discretization and linear programming is presented 
and analyzed. Section 4 contains several numerical examples and a discussion of some 
interesting features which they exhibit. 

2. Symmetry. Recall that a function f is called even (odd) on [-b, b] if f(- x) = 

f(x) (respectively, f(-x) = -f(x)) for all x in [-b, b]. In the classical problem of 
uniform approximation on [-b, b] to an even (odd) function with no constraints, 
i.e., min,,,.p f - pl , the solution p*, which we will call the best unconstrained 
approximation, is also even (odd). An analogous result holds for approximation 
from Kr. 

THEOREM 1. Let f be continuous on [-b, b] and set 
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Kr = {p C (Pn p(r)(X) > 0 for -b < x < b} 

where 1 ? r ? n. 
(i) If r is an even integer and if f is even on [-b, b], then the best approximation to f 

from Kr is also even. 
(ii) If r is an odd integer and if f is odd on [-b, b], then the best approximation to f 

from Kr is also odd. 
Proof. (i) Assume r is an even integer and f is even. Let p* be the best approx- 

imation to f from Kr and set q(x) = p*(-x) for all x in [-b, b]. Then 

q(r)(x) = (-1)r[p*](r)(-x) 
? 0 for -b 

? 
x 

? 
b, 

i.e., q is in Kr. Now, 

ljf - qll = max jf(x) - q(x)j 
-bz<-b 

= max If(-x) - P*(-x)l = llf - P*jj. 
-b<xsb 

Hence, by uniqueness, q = p* and so 

p*(-x) = p*(x) for -b ? x < b. 

(ii) The proof of (ii) is accomplished by setting q(x) = -p*(-x) and proceeding 
as in the proof of (i). 

The following characterization theorem, due to Lorentz and Zeller [7], is funda- 
mental. Recall that a point x in [a, b] at which f - p](x) = ? If - p is called an 
extremal point of p and a point x at which p(r'(x) = 0 is called a constraint point. 
The union of the extremal points and the constraint points is the set of critical points. 

THEOREM 2 (LORENTZ AND ZELLER). Let f be continuous on [a, b] and 

Kr {p Cy p:(r) (x) > 0 for a < x < b}. 

Then p* E Kr is the best approximation to f from Kr if and only if there exist extremal 
points x1 * *, xa of p*, constraint points x8+1, . , xt of p* (where t < n + 2), and 
positive constants X1, X.., At such that 

8 t 

(2.1) E Xir(xX)p(x) + Z X.p((x) = 0 
i=l1i=s+l 

for all p C 6n, where 

a(xi) = sgn[f(xi) - p*(xi)] = +1 if [f - p*](xi) = +IIf - p*Il, 

= -I if [f - P*](xi) = -llf - P* II 

Proof. [7, p. 5]. 

3. Computational Procedure; Discretization Error. We next present a 
numerical procedure to compute the best approximation from Kr; this method is 
described briefly in [5, p. 27]. The problems of particular interest are approximation 
by monotonic polynomials and approximation by convex polynomials. The discussion 
will be carried out for approximation by convex polynomials; the analysis for the 
more general problem of approximation from Kr is similar. Let Xm = { x0, X, .. , xm }, 
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where a = xo < x, < ... < xm = b, be a discrete subset of [a, b]. We consider the 
constrained problem on Xm: 

min max If(x,) - p(x,)l, 

subject to p"(xj) > 0 for all xi e Xm. Setting p(x) = a, + aix + + an Xn, this 
becomes 

n 
(3.1) min max f(xi) E ai(xi)- 

ao ,-an Xij Xm i=O 

subject to 
n 

(3.2) Zai(i)(i - 1)(xi)i2 > O . j = 0,1, *I , m. 
i =2 

This is equivalent to the linear programming problem 

(3.3) min X, 

subject to 
n 

-X - f ai(xi)i < -Axi)s 
i =o 

n 
(3.4) -X + E ai(xi)i < 

i =o 

n 
-,ai(i)(i - 

1)(Xi)i-2 
< 

?, j = O 1 ***m. 
i=2 

X represents the deviation (maximum error) over the discrete set Xrn. The problem 
(3.3), (3.4) can be solved by linear programming techniques; several examples are 
presented and discussed in the next section. Let us now consider the relationship of 
the discretized problem (3.1), (3.2) to the original problem of approximation on the 
interval [a, b]. Two lemmas will be needed. 

LEMMA 1. For any p C 'Pn, 

2n 2 
max Wp'(x)I < b a max Ip(x) I. 
a5xsb a -<x b 

Proof. This is Markov's inequality stated for [a, b]; see, for example, [1, p. 91]. 
LEMMA 2. Let Xm, m = 1, 2, * * , be a sequence of discrete subsets of [a, b] such that 

am = max min Iy-xi -->O 
yG[a,b] xiGX1n 

as m -> o. If pm is a solution of the discretized problem (3.1), (3.2) then 
{pm: m = 1, 2, I.. } is uniformly bounded on [a, b]. 

Proof. 

max If(x,) - pm(xi)l < max If(xi) - 01 ? I1fII. 

So 

max Ipm(xi)I _ 2 11f1I for all m. 
XiXj e, 
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Let Io * , I,, be n + 1 disjoint subintervals of [a, b] with spacing at least e between 
any two of them. Then, since am -) as m -* 0, there exists M such that for all m > M 
there are points xi., . * , xi. of Xm satisfying xi; C I, j = 0, ** , n. Using the 
Lagrange interpolating polynomial form, we can write 

n n 

Pm(X) E Pm(Xii) H X X, i 
k=O j=O; jk Xik Xii 

Hence, 
n n 

IPm(X)I - E Pm(xi k)/ H X x-i 
k=O i=O;ilk Xik xii 

< (n + 1).2. 1fIj{b -a 

independent of m and x. Hence, {pm,} is uniformly bounded. 
In general, p,m will not satisfy the constraints on all of [a, b], i.e.,p" may be negative. 

However, the violation is easily bounded. 
THEOREM 3. Let Xm = {xo, Xl ... * Xm }, m = 1, 2, *, be a sequence of discrete 

subsets of [a, b] with a = X< K Xi < ... < Xm = b such that 

am= max min ly-xxi I O as m - O. 
yE[a,b] xizXm 

If pm is a solution of the discretized problem (3.1), (3.2), then there exists a constant B 
independent of m such that 

Pm'Y > -m - B f or al l y in [a, b] . 

Proof. Let y be an interior point of [a, b] at which p" assumes its minimum value. 
(If PI' assumes its minimum at a or b, the conclusion follows trivially.) Let xi be a 
closest point in Xm to y. Using Taylor's formula, 

pm(xi) = Pm'(Y) + (xi - Y)pm`(Y) + (2! (z), 

where z is between x; and y. Since pm"'(y) = 0, we obtain 

p (y) = pU,(Xj) 2 ( (z, 

> 
2 

max jp'v(z)j . 
- 2 a?<z?b 

Four applications of Lemma 1 show that there exists a constant M such that 

max Ipiv(z)I _ M max Ipm(z)I . 
a<z<b a<z<b 

Since fp,,, } is uniformly bounded on [a, b], the conclusion follows. 
Let 

co(f; 3) = sup{ |f(x) - f(y)/: x, y E [a, b], Ix - yI < al 
denote the modulus of continuity of f on [a, b]. The next theorem is the main result 
on the discretization error. 
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THEOREM 4. Let Xm = {Xo, Xi, . , * * xm }, m = 1, 2, * * , be a sequence of discrete 
subsets of [a, b] with a = xo < x1 < ... < xm = b and such that 

am = max min ly-xxi- IO as m - o. 
ye[aab] x;EXm 

Let pm be a solution of the discretizedproblem (3.1), (3.2) andp* the best approximation 
to the continuous function f from K2. Then, {pm } converges uniformly to p* as m O. 

Furthermore, there exist constants C and D independent of m such that 

(3.5) If -P I I I If Pm|I -< C 6im 
and 

(3.6) llf - pmil - Illf - p* -< w(f; bm) + D m. 

Proof. By Lemma 2, {pm } is uniformly bounded and, hence, there exists a uni- 
formly convergent subsequence {pmk } with limit, say, po. We first show po e K2. If 
not, then there is a point y in [a, b] such that pl'(y) = - < 0. Two applications of 
Lemma 1 imply the existence of a constant R such that 

|IP"' | - p"IIl R I IPmk - I I , 
and, hence, there exists K such that I IP kp P Mk/2 for all k ? K. Sop,"(y) <- 
for all k ? K which contradicts Theorem 3. 

We next show I If-pol I = I If- 1p* .Sincepo - K2, clearly, I If-p* I I _ I If-pol 1. 
Assume If -p* I = If - po IH - e where e > 0. Let y e [a, b] be a point where 
IfOy) - po()I = If - poI. Then 

Illf - Poll = 1f(Y) - Po(W)I 
< lf(y) - f(x)l + If(x) 

- 
Pmk(x)l 

+ lpmk(X) - Pmk(Y)l + lPmk(Y) -PO(Y)I 

where x C Xmi and Ix - yl am 

_ w(f; bmk) + max |f(x) pmk(x)l 

+ lPrnk(z) Ix -Y I + I lPnk -PO I I 

where z is between x and y. Lemmas 1, 2 imply the existence of a constant T such that 
maxa?z?b lpmk(z)l < T for all k. So for k large enough, we obtain 

lf- poll < max 1f(x) - Pmk(x)l + e/2. 

Hence, 

Ilf - P*II = Ilf - Poll - e ? max 1f(x)- Plk(x)l - e/2 
XeXm k 

which contradicts the definition of Pmk* So lf - PoIW = lf - p*11. Since the best 
approximation from K2 is unique, po = p*. Since every convergent subsequence has 
limit p*, the sequence {pm } has limit p*. 

Now, let qm(x) = pm(x) + B* 2. x2/2 where B is the constant of Theorem 3. Then 
q. C K2 and, hence, 
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lif - p*lI ?< Ilf - qmll < li -f -l ? + I pm -qml 

< lIlf _P.11 + c. a2 

where C = (B/2) max {a2, b2 }, which establishes (3.5). 
Let y E [a, b] be a point where If(y) - pM(y) = f - P, and let x E Xm satisfy 

|Y - XI ? am. Then 

IIf - P'-1 I f(Y) - Pm(Y)I 

< |f(y) - t(x)l + If(x) - Pm(X)I + IPm(X) -P(Y)| 

- w(f; am) + max If(x) - pm(x)| + [mp(z) Ix - y| 
XeX,m 

< w(f; am) + max It(x) - p*(x)I + D bmi 
XeX,m 

where D = sUpm I lp < o by Lemmas 1, 2, 

< w(f; am) + lIf - p*II + D bm 

which establishes (3.6). This completes the proof. 
It follows from Theorem 4 that if f satisfies a Lipschitz condition on [a, b], i.e., 

Ify) - f(x)l < E. Ix - yl for all x, y in [a, b], then (3.5) and (3.6) imply the existence 
of a constant F independent of m such that 

I lf - p*11 - llf - Pmii I < F/m. 

4. Numerical Examples. A number of numerical examples were performed to 
illustrate the procedure described in the previous section to compute the best convex 
approximation; also, several examples illustrating the computation of the best mono- 
tonic approximation (approximation from K,) were run. A solution of the problem 
(3.1), (3.2) was obtained by applying the revised simplex method to the dual of the 
linear programming problem (3.3), (3.4); the reader unfamiliar with linear program- 
ming terminology and techniques may consult [2]. 

For a given convex function f, it often happens that the solution of the problem of 
finding the best uniform approximation (with no constraints applied) will turn out to 
be convex; this solution then will also be the best approximation from K2. If it were 
known a priori that this were the case, then the Remes exchange algorithms for 
unconstrained uniform approximation could be used. However, it is not at all obvious 
when the best unconstrained approximation will turn out to be convex; this is an 
interesting problem in itself. Of course, similar remarks apply to the more general 
problem of approximation from Kr. To construct examples for which the uncon- 
strained approximation would not turn out to satisfy the constraints, the problem 
(3.1), (3.2) was solved for Xm with uniform spacing .1. If there were no points of Xm at 
which p"'(x) = 0, then this was taken as an indication that the best unconstrained 
approximation on [a, b] would turn out to be convex and the example was abandoned. 
If there were points of Xm at which p"(x) = 0, then the example was continued for 
spacing .01 and .005. In all examples, points at which p"'(x) = 0 continued to appear; 
in fact, near those for spacing .1. 

In Examples 1-6, exhibited in Tables 1-6, the problem was to find the best convex 



COMPUTATION OF BEST MONOTONE APPROXIMATIONS 743 

^ 

+ 

+ , + i 

+ 0 ) H r-l I o H u' 
I. . CO 1- 

r .~ "z 

+ o C) , ro C\) , o ,< 
. 

, 
I _ . 

R+ (D 0 .+ ^, 

oHU) 
o 

H ^C-4o H 
-- 1- 

I u' CO * + u' . + o 

1-1,. *- ^ + -- * I.- to ^ + + 
I Q 0C ^ + U') dx ^ + dxe to + s 

1- 
Cs H*_O *\ N 

X CD * co to to LO IU *^C U') U U 

n ^V+ I ,o n * 
o L .-+. I -0 O HOI 

+- O O * O^,- V I V I O *0 O OD C 

0 ? * ?S- Ct ? ^ +- H X C:)oC:) 
r I - 0 

,,4|_n., 

n++o 

0 C:) 
w M) 

co C:)n 0Ico ++ + IX 
x xO C 

C:Co C) 

C: + 0 C:Q av I ; ; v ; ; 
..... ^^ I r- 

W-4 
+ Ot 

"4 
+ .. 

. 

^ ^ ^ C) V C) ~4 ) 4- ). 4C) + + ) 

+ + + + I IIX.Q 

,,,, _ _ , ~~~~~~~I I IX 

V. 
o o 

o L)O CD 0 CD l LO LO D 0- c 11 E= n 144 "* '4 11 E to r- Vr C- 11 e \ c \l cv E \ ) C) 
E- Z!- L-- O- 0 O O ht O O z d4 144 

_o o r- O- O- O- O0 0 0 0 0 

co 000 000 c 
2Xoooo n o 

0 0 0 CO r- --- r- 

la I3 0) n mm to O 

Eqd ??O O LO (D E- zc O0 Fd 
c\ HH to ;; OOO V (n ld q 

C 0 o r00C 00 cs)o (ODO 

00 C) 
?X?OOU( 

0 0 

tD tO to r4 dl 

coN N N C\ c\ 01 c\l c\l C\? L\0 E\ 
0 000 CO * * 0 * co COF o00 

H^HH d4+r- 0 0 

O O tD CO OD r- rI0 '- r- H 0 c\ 01 co 0000 co 0000 o 000 co c\ c \ 

n (D El E- (D O r- r- V) O O r- H 
El- O O 0 U') (D (D (D U' U') U') o LO LO 

O n lqd ldi ldi O (D - El E- ?N L 0 co to to 

o~~~~~~~~~~~~~~~~~~~~~C 0) m 
o Ho) 

01 t o to 

\l 0 0 0 c\ 0 0- 0 Q 00l - 0 
CO CO sd 



744 JAMES T. LEWIS 

r4 + + 

+ 

CO 0 r-4 to 
-H 0 4-) 10 0 

C; 
0 0 
P, + P., + + 

, + --- 1- 
H + - OD r-i + 0) U') 
CO -- CC) Lf') CO -,qdi M 
C) (O U') 

4-) 
"-q 

r4 --- 
0) OD (O 

(ID 

+ + + + + + 
+ 1- 1- 1- 

x 00 0 00 0 n t1r) 
qdi qdi %44 

x 

r4 OD CD D-- 
U') U') U') n te) VI) to 

e< lidi q q 0 0 0 co 0 0 0 
C\l 00 0 00 0 

x . . . 
r-4 + 

E- V) lld4 C\l r4 OD 0) a) 
U') C\l n 0 OD co N 0) 0) + O 

U') lqdi LO LO LO OD OD (X) LO C\l 0 0) 
co 000 0 0 0 co (D m 0) 0 r-4 

x r-4 r-i r4 U') U') 
1- + 

CO-4 r r4 r 
El-- lqdi r-4 m C\l C\l 
0 r4 C\l "di OD aD 

.44 LO T) LO n n n r-4 
co U') a) 0 co C-- E- E\- co 0 00 C\j OD 

OD OD OD Ol Ol CQ CO 

co co co OD 
U') 0) U') (O LO EP-41 OD OD N 
C\l Ol 0 m m C\l U') E-- 

n OD Q (O n n C\l C\l n 0) [-- C\l 0 
CO ol N N co .04 lq4 lld4 co 0 C\l .44 - 0 '14 

00 0 04 C\l C\? Q OD OD 0 qdi 

OD E- CQ (O (O 
C\l C\l .04 0 0 0 C.) 

N 0 0 C\l lqdi lqdi lqdi C\l a -O 
co 0 00 0 E- L\- V.- co 0 0 0 0 0 lqdi 

r-4 r-I r4 r4 --- qdi . 
Co I 

to lld4 qdi OD 0) r-4 4-) 
C\l 0) 0 n C\l C\l C\l U') [-- -4 + 

r-i lld4 lqdi LO r-4 to to n r-4 a) n m q + - 
co lqdi lqdi lqdi co lqdi lqdi lqdi co 0 0) 0) 0 + LO 

mmm r-i r-i r-A 
CD OD OD 

m 1911 E- to to to 
r-4 OD V-- n to to 
E- (O to 0 n to n 0 

co (O to to Cd LO U') LO co 0 00 I I I 
QO (O CD 00 0 1- --., 

r-4 r-4 U-) 40 r-4 r-4 LO r-4 r4 LO 
C\l 0 0 C\l -00 C\l -0 0 

C) 



COMPUTATION OF BEST MONOTONE APPROXIMATIONS 745 

Table 8. f(x) = sin x3 

h =26; aO a1 a2 a3 a4 a5 a6 xm 

.1 -.00091 0 .00457 1.13028 -.00678 -.28083 .00312 .00798 
.01 .00002 0 -.00011 1.12878 .00017 -.27917 .00008 .00814 
005 .00054 0 -.00296 1.12876 .00463 -.27915 - .00220 .00814 

critical points 
_l.O(+), -.9(-), -.6(+), 0.0(c), .6(-), .9(+), 10(-) 
-1o0(+) -.89 (-), -.56(+), 0.0(c), .56(-), .89(+), 1.O(-) 
-lo(+),s -.89(-) -.ss555(+), 0.0(c), .555(-), .89(+), 1.o(.-) 

Table 9. f (x) f pexD(-x ) if -1 < x < 0 
-f (-x) if 0 < x < I 

hm=2 ? a0 Al a2 a3 a4 a5 a6 Xm 

.1 .00914 0 -.05700 .59812 .09300 .04973 -.04515 .o1573 
.01 .00017 0 -.00108 .60382 .00183 .04458 -.00092 .01628 

.005 .00061 0 -.00394 .60387 .00668 .04455 - .00335 .01629 

critical points 
-l.0(+), -.9(-), -.5(+), 0.0(c), .5(-), .9(+), l.0(-) 

.0(+), -._86(-), s-.5(+), 0.0(c), .5(-), .86(+), 1.0(-) 
-1.0(+), -.865(-), -.495(+), 0.0(c), .495(-), .865(+), 1.0(-) 

Table 10. f(x) = 1 - - 

h =26r a0 a1 a2 a3 a4 a5 a6 xm 
,l -.02236 .12468 .40478 -.08510 -1.40152 .63902 1.31016 .03037 

.01 -.03786 .24555 .57496 -.41906 -1.88319 .85323 1.60623 .06016 
.005 -.03787 .24553 .57500 -.41881 -1.88300 .85299 1.60601 .06017 

critical points 
-lsO(c), - .g(+), - _2(c) , -.l(+), .4(-), . 7(+)g . 9(-), 1.lo(+) 
-1.0(c), -.87(+), -.27(c), -.18(+), .39(-), .79(+), .98(-), 1.0(+) 
-1.0(c), -.875(+), -.28(c), -.175(+), .395(-), .795(+), .98(-), 1.0(+) 

Table 11. f(x) = 1 - exp(-x5 

hm=26m a0 a1 a2 a3 a4 a5 a6 xm 
-.1 .01495 .12863 -.29483 -.52903 1.41533 1.54861 -1.67853 .02698 

.01 .01540 .14030 -.28^744 -.56071 1.40938 1.56579 -1.68042 .02982 
.005 .01541 .14043 -.28764 -.56108 1.41009 1.56600 -1.68094 .02985 

critical points 
_1*0-) ~*(+)- .7(-)g -.~3(+)g . 2(-), .3(c), C7(-) , 1.0(+) 

.1.0(-)g -.93(+), -.62(-), -.34(+), .21(-), .26(c), .73(-), 1.0(+) 
-1.0(-), -.935(+), -.62(-), -.34(+), .21(-), .26(c), .725(-), 1.0(+) 

Table 12. f(x) = ln(l.l+x3 

h =2%; a0 a1 a2 a3 a4 a5 a6 m 
.1 .13731 .36643 -.78856 -.88069 2.83139 2.00568 -2.91687 .07444 

.01 .14957 .47414 -.90758 -1.18251 3.20917 2.20123 -3.15905 .10183 
.005 .14971 .47581 -.90914 -1.18729 3.21448 2.20435 -3.16255 .1o221 

critical points 
_1-(- X~*9+)s -.7(-) g ~-4(+)g .2(-)g . 3(c)v 9 9(-), 1.0*(c) 

-1.0(-)9 -.96(+), -.76(-), -.36(+), .19(-), .3(c), .9(-), 1.0(c) 
-1.0(-), -.955(+), -.76(-), -.36(+), .19(-), .305(c), .905(-), 1.o(c) 
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approximation to the specified function f(x) by polynomials of degree at most five 
over [a, b] = [-1, 1]. In Examples 7-12, exhibited in Tables 7-12, the problem was to 
find the best monotonic approximation (from K1) to f(x) by polynomials of degree at 
most six over [- 1, 1]. The sets Xm were taken to be equally spaced subsets of [- 1, 1] 
with m + 1 points. The labels in the tables will be explained with reference to Example 
1. In Example 1, the problem was to find the best uniform approximation on [-1, 1] 
to f(x) = x6 by a convex fifth-degree polynomial 5=1 aixt. The numerical results 
(rounded off to 5 decimal places) of solving the discretized problem for spacing 
hm = 26m = .1, .01, .005 are exhibited in Table 1. N,m is the deviation of pm over Xm. 
Under the heading "critical points", - 1.0(+) indicates that -1.0 is a plus extremal 
point, -.8(-) indicates that -.8 is a minus extremal, and 0.0(+, c) indicates that 
0.0 is a plus extremal and also a constraint point. In this example, by using symmetry 
and the numerical results, one can guess that the best convex approximation on 
[-1, 1] is x4 - X where X is the deviation. This can be verified by using the charac- 
terization theorem, Theorem 2. The error curve is e(x) = X- (X4- X). - 1.0, 0.0, and 
1.0 are plus extremals. Minus extremals occur at -(2/3)1/2 and +(2/3)1/2 where 
e'(x) = 0. 0.0 is a constraint point. The linear relationship (2.1) of the characterization 
theorem is (setting R = (2/3)1/2) 

R4p(-1) - p(-R) + 2(1 - R4)p(O) - p(R) + R4p(1) + (R2 - R4)p"(0) = 0 

which can be checked for p(x) = 1, x, ... , X5. The deviation is X = 2/27. This 
information, also rounded off, is included in Table 1 on the line with "exact" under hm. 

It is interesting to note that in several of the examples the number of critical 
points is less than n + 2; in the unconstrained problem the number of extremal 
points is always n + 2. Also, a variety of possible orders for the critical points is 
exhibited. For instance, Examples 4 and 5 have the order: plus extremal, constraint 
point, plus extremal, whereas Examples 8 and 9 have the order: plus extremal, con- 
straint point, minus extremal. Example 7 has two constraint points in succession. In 
several examples, a constraint point coincided with an extremal point; in all such 
cases the adjacent extremal points were of type opposite that of the constraint- 
extremal point. 

It can be seen from several of the examples that the analogue of the symmetry 
theorem, Theorem 2, is not true for constrained approximation over a discrete set Xm. 
The best constrained approximation over Xm is not unique in general; e.g., if we call 
p(x) the solution of (3.1), (3.2) with hm 26m = .1 in Example 1, then p(-x) would 
also be a solution. 

Notice that as hm decreases in a particular example, the deviation N,m is non- 
decreasing. This is true because Xm C Xm, for m' > m and a solution of (3.1), (3.2) 
over Xm, would be a candidate for a solution of (3.1), (3.2) over Xm. 
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