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Von Neumann's Comparison Method for Random 
Sampling from the Normal and Other 

Distributions* 

By George E. Forsythe"R 

Abstract. The author presents a generalization he worked out in 1950 of von Neumann's 
method of generating random samples from the exponential distribution by comparisons 
of uniform random numbers on (0, 1). It is shown how to generate samples from any distribu- 
tion whose probability density function is piecewise both absolutely continuous and mono- 
tonic on (- co, co). A special case delivers normal deviates at an average cost of only 4.036 
uniform deviates each. This seems more efficient than the Center-Tail method of Dieter 
and Ahrens, which uses a related, but different, method of generalizing the von Neumann 
idea to the normal distribution. 

1. Introduction. In the summer of 1949, at the Institute for Numerical Analysis 
on the campus of the University of California, Los Angeles, John von Neumann [3] 
lectured on various aspects of generating pseudorandom numbers and variables. 
At the end, he presented an ingenious method for generating a sample from an 
exponential distribution, based solely on comparisons of uniform deviates. In his 
last sentence, he commented that his "method could be modified to yield a distri- 
bution satisfying any first-order differential equation". 

In 1949 or 1950, I wrote some notes about what I assumed von Neumann had 
in mind, but I do not recall ever discussing the matter with him. This belated polishing 
and publication of those notes is stimulated by papers by Ahrens and Dieter [1], [2] 
in which several related algorithms are studied, and by a personal discussion with 
the authors on how the von Neumann idea can be extended. 

In Section 2, the general method is presented, and in Section 3, its efficiency is 
analyzed. In Sections 4 and 5, it is shown how the exponential and normal distri- 
butions show up as special cases. In Section 6, the method for a normal distribution 
is compared with the Center-Tail method of [1] and [2]. In Section 7, possible gen- 
eralizations are mentioned. 
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Although this introduction has emphasized historical matters, the method of 
Section 6 is a good one, and is competitive with the best known methods for gen- 
erating normal deviates. 

I thank both Professors Ahrens and Dieter for their careful criticism of a first 
draft of this paper. 

2. The General Algorithm. Let f(x) > 0 be defined for all x ? 0 and satisfy 
the first-order linear differential equation 

(1) f'(x) + b(x)f(x) = 0 (O < x < ), 

where b(x) ? 0. Let 
x 

(2) B(x) = f b(t) dt, 

and assume that 

(3) C= e-B(x) dx < ??* 

Then 

(4) f(x) = C-1e-B(x) 

is the unique solution of (1) with f ' f(x) dx = 1, and hence f is the probability density 
distribution of a nonnegative random variable. 

Suppose we have a supply of independent random variables u with a uniform 
distribution on [0, 1), and that we wish to generate a random variable y with the 
density distribution f(x). Here is one way to proceed. 

We first prepare three tables of constants { qk }, { r5 }, { ch } for k = 0, 1, , K, 
as follows. (K is defined below.) Let qo = 0. For each k = 1, 2, ... , K, pick qk as 
large as possible, subject to the two constraints 

(5)*** qk 
- 

qk-1 < 1, 

(6) B(qk) - B(qk-1) _ 1. 

Next, compute 

rqk 

(7) rk= f(x)dx (k = O,1, , K). 

Here K is chosen as the least index such that rK exceeds the largest representable 
number less than 1. (K may be chosen smaller, if one sets rK = 1, and if one is willing 
to truncate the generated variable by reducing any value above qK to the interval 
[q, l, qK).) Finally, compute 

(8) dk = qk - qk-1 (k = 1, 2, * * , K). 

For simplicity, we define the functions 

(9) Gk(x) = B(qk-1 + x) - B(qk-1) (k = 1, 2, -, K). 

*** Editorial commentt: The referees thought condition (5) to be superfluous. 
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Now, we present the algorithm. Steps 1 to 3 determine which interval [qk-1, qk) 

the variable y will belong to. Steps 4 to 11 determine the value of y within that interval. 
1. [Begin choice of interval.] Set k <- 1. Generate a uniform deviate u. 
2. [Test.] If u ? rk, go to step 4. 
3. [Increase interval.] If u > rk, set k <- k + 1 and go back to step 2. 
4. [Begin computation of y in the selected interval.] Generate another uniform 

deviate u and set w <- udk. 
5. Set t +- Gk(w). 

6. Generate another uniform deviate u*. 
7. [Test.] If u* > t, go to step 11. 
8. [Trial continues.] If u* < t, generate another uniform deviate u. 
9. [Test.] If u < u*, set t <- u and go back to step 6. 

10. [Reject the trial.] If u _ u*, go back to step 4. 
11. [Finish.] Return y +- qk-1 + w as the sample variable. 
We now show that the above algorithm works as claimed. Since we assume that 

each u < 1, the test in step 2 must be passed when k = K, if not sooner. Hence, 
an interval [qk-l, qk) is selected, and the values of rk were chosen to make the prob- 
abilities of choosing the various intervals correct. 

Fix k. The remainder of the algorithm can be described as follows: First, a random 
number w is selected uniformly from the interval 0 < w < dk. Then the algorithm 
continues to generate independent uniform deviates u, from [0, 1) until the least n 
is found with 

(10) U2 - Gk(W) (n = 1), or 

Un+1 >_ U. < Un-1 < . 
. .< u3 < U2 < Gk(W) (n _ 2). 

With probability 1, such an n will be found, as will be shown. If n is odd, we return 
y +- qk-1 + w. If n is even, we reject w and all the u, choose a new w, and repeat. 

We now determine the probability P(k, w) that one w determined in step 4 will 
be accepted without returning to step 4. Let Ei(k, w) be the universe of all events. 
For n = 2, 3, 5 , let En(k, w) be the event 

Un < Un-1 < *.*.* < U3 < U2 < Gk(w). 

Then the probability of En(k, w) is given by 

ProbtEX(k, w)} = 1 (n = 1) 

rG k(w) 

=10 dx2 (n = 2) 

[Gk (w) rx2 Xn-i 

= jGk(w) dx2 f dx3 ... f dxn (n > 3) 

= Gk(w)n-1/(n - 1)! (all n). 

The occurrence of (10) is the conjunction of En(k, w) and not-En+1(k, w). Since 
En+ (k, w) implies En(k, w), the probability that (10) occurs for a given n and w is 

( 1 1 ) Prob[En(k, w) and not-En+1(k, w)} = G(n 1) n! 
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Summing over all odd n, we see that 

(12) P(k, w) = Gk(W) n1 Gk(W)n1 e-Gk w 
0ddL(fl - 1)! n! ] = e 

Since w ? d,c, we have 

Gk(w) ? Gk(dk) = B(qk) - B(qk-1) 1, 

whence 

(13) P(k, w) > e-', for all k and w. 

Now dk 'd; is the probability that w is selected in the interval t < w ? < + d;. 
Combining this with (12), we see that the probability that t ? w ? < + d; and that 
w is accepted is given by 

(14) Prob{j ? w < t + d; and w is accepted} = e Gk(w) di/dk. 

Corresponding to an accepted w, we return y = qk-I + w as the sample variable. 
Hence, from (14), the probability that y is in the range x < y < x + dx, for given k, is 

1 -Gk(x-qk- )dx 1 e -B(X)+q dx, by (9) 
dk dk 

Ce l)C le-(x 
dk 

dlkf(qk-) f(x) dx, by (4). 

That is, 

(15) Prob{x < y ? x + dx and y is accepted} -(x) _d 
dkf (qk- I 

Since this is proportional to f(x) dx, we see that any accepted y has the desired prob- 
ability density distribution within the interval [qk-1, qk). Since, from (13), the prob- 
ability of an infinite loop back to step 4 is zero, the second half of the algorithm 
terminates with probability 1. This concludes the demonstration that the algorithm 
works as claimed. 

3. Efficiency of the Algorithm. For a general function b, I shall derive a repre- 
sentation for the expected number of uniformly distributed random variables u 
that must be used to generate one variable y with the probability density proportional 
to f(x). A similar derivation is given in [2]. 

The preliminary game to select k-steps 1 to 3 of the algorithm requires one u. 
The rest of the algorithm is different for each k, and we shall first determine the 

expected number N(k) of steps to determine y. To do this, we shall first assume 
that k is fixed and that w has been picked in the interval 0 < w ? d,. Define En(k, w) 
as in Section 2, and introduce the abbreviations 

(16) en = en(k, w) = Prob{E,,(k, w)} (n = 1, 2, .) 

and 
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(17) g = Gk(w). 

Then, as in Section 2, we have the following expression for the probability P(k, w) 
of accepting w without returning to step 4: 

P(k, w) = (el - e2) + (e3 - e4) + (e5 - ej) + 

Moreover, given k and w and given that w is accepted, the expected number of uniform 
deviates u needed will be 

ni,a(k, w) = P(k, w)-'[2(el - e2) + 4(e3 - e4) + 6(e5 - e) + ] 

(18) 1 ~~~ ~ ~~~n-1 n- 

P(k, w) ncn [n-1 n! (n + 1). 

Similarly, the probability 1 - P(k, w) that w is rejected is given by 

1 - P(k, w) = (e2 - e3) + (e4 - e5) + (e6 - e7) + 

Moreover, given k and w and that w is rejected, the expected number of uniform 
deviates u needed is 

mj(k, w) = [1 - P(k, w)]-1[3(e2 - e3) + 5(e4 - e5) + 7(e, - e7) + * 

(19) 1 n-1 n 

P(k, w) even n,n>2 (11 - 1)! n! ( 

Now, if a w is rejected, the algorithm returns to step 4, a new iv is picked, and 
the process repeats. Let M(k, w) be the expected number of uniform deviates selected 
until a y is finally selected, given a fixed k and an initially chosen w. Then N(k) is 
the average of M(k, w) over all w uniformly distributed on 0 < w < dk. 

We have 

(20) M(k, w) = P(k, w)mlla(k, w) + [1 - P(k, w)][m,(k, w) + N(k)], 

since, in case w is rejected, the whole process is repeated. Using the expressions 
(18) and (19) for ma(k, w) and mr(k, w), we get from (20) that 

co) n-1 n 
M(k, w) = [ 

g 
1 (n + 1) + [1 - P(k, w)]N(k) 

= 1 + e' + [1 - P(k, w)]N(k), 

or 

(21) M(k, w) = 1 + eGk(w) + [1 - P(k, w)]N(k). 

Averaging (21) for 0 < w < dk, and using (12), we find that 

N(k) = I +_J ek dw + N(k)[l - ek dw] 

Solving for N(k), we get 
dk + d dk 

(22) N(k) = dk + eGk^(w) dw/ e- Gk(w) dw. 
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Finally, the expected number N of uniform deviates drawn in the main game 
until a y is returned is the average of N(k) over the intervals, weighted by the prob- 
abilities of selecting the various intervals. That is, 

co 

(23) NI= N(k)[rk -rk-1]. 

If we make use of (4), (7), and (9) to express N in terms of B(x), we obtain the ugly 
representation 

rqk Pqk 

dk + e-(Qk- ) J B(x) dx e-B(x) dx 
N~~ ~ ~~~~~ - qk1 qk - 

fqk fO 
k=l e B(qk e- dx e-B(x) dx 

-E [ dk e B(qk-i) + e 2B(qk) es(x) dX] 
e-B(x) dx k=- kk-i 

4. Special Case: Exponential Distribution. If b(x) = 1 in (1), then B(x) = x 
and y(x) = e-x, corresponding to the exponential distribution treated in [3]. For the 
algorithm of Section 2, we have qk = k, dk = 1, rk = 1 - e-k, and Gk(x) = x, for 
all k. Since dk and Gk(x) are independent of k, steps 4 to 10 of the algorithm are 
the same for all k. They can therefore be carried out independently of steps 1 to 3. 
By (12), the probability that a chosen w is not accepted is 1 - P(k, w) = 1- e-w 
(for all k), and the average value of 1 - e-w over 0 < w ? 1 is e- 1. 

If the preliminary game of steps 1 to 3 were played, the interval [k - 1, k) would 
be selected with probability rk - rkl1 = e- (k-i - e-k = e-k(e - 1), for k = 1, 
2, * . . Thus the interval [0, 1) would be accepted with probability 1 - e-l, and 
rejected with probability e-1. For k = 1, 2, , if [k - 1, k) is rejected, then [k, 
k + 1) would be accepted with probability 1 - e-1, and rejected with probability 
e-1. Since the rejection ratio for each interval has the same value e-1, which is the 
a priori probability of rejecting in the main game any w selected in step 4, 
von Neumann could use the rejection of w as the signal to change the interval from 
[k - 1, k) to [k, k + 1). Thus, the preliminary game of steps 1-3 is unnecessary for 
the exponential distribution. This made von Neumann's game very elegant. I know 
of no comparable trick for general b(x). 

From (22) and (23), since N(k) = A, we see that for the exponential distribution 

- I1+(e-1) e (25) N = - - 1 = 
__- 4.30026, 

1 - e1 I - e1 

as stated in [1]. There was an error in [3]. 

5. Special Case: Normal Distribution. If b(x) = x in (1), then B(x) = x2/2 
and f(x) = (2/7r)l/2e- /2, corresponding to the positive half of the normal distri- 
bution. For the algorithm of Section 2, we have 

qo = 0, q1 = 1 qk = (2k - 1 )1/2 (k > 2). 

Hence, 
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d= 1, d2 = 31/2 _ 1- dk = (2k - 1)1/2 - (2k - 3)1 /2 (k > 2). 

Also, 

Gk(X) = X2/2 + qk-lX (k ? 1). 

The values of rk must be computed from the probability integral. The table below 
gives 15 decimal values of qk, di,, rk, and N(k) for k = 1, 2, * , 36, as computed 
in Fortran on Stanford's IBM 360/67 computer in double precision. 

To generate normal deviates, one selects K and prestores the values of rk, qk, 

and d,, for k = 1, 2, . , K. Then set qo <- 0 and dK<-- 1. (The limit K = 12 permits 
normal deviates up to ?5.0 to be generated, and the deviates will be truncated less 
than once in a million trials. A higher limit will decrease the probability of truncation. 

As suggested in [2], one should start the algorithm with a preliminary deter- 
mination of the sign of the normal deviate. We do this in steps Ni-N3 of the following 
algorithm. At entry to step N4, u is a uniform deviate on the interval [0, 1). The rest 
is the algorithm of Section 2, with the sign appended in the last step. 

Ni. [Begin choice of sign and interval.] Set k <-- 1. Generate a uniform deviate u 
on [0, 1). Set u *- 2u. 

N2. [Test for sign.] If u < 1, set s <-- 1 and go to step N4. 
N3. If u > 1, sets <- -1, and setu <- u - 1. 
N4. [Test for interval.] If u < rk, go to step N6. 
N5. [Increase interval.] If u > rk, set k <-- k + 1 and go back to step N4. 
N6. [Begin generation of IyI in the selected interval.] Generate another uniform 

deviate u on [0, 1) and set w <-- udck. 
N7. Set t <-- Gk(w). 

N8. Generate another uniform deviate u* on [0, 1). 
N9. [Test.] If u* > t, go to step N13. 

N10. [Trial continues.] If u* < t, generate another uniform deviate u on [0, 1). 
NI1. [Test.] If u < u*, set t <-- u and go back to step N8. 

N12. [Reject the trial.] If u > u*, go back to step N6. 
N13. [Finish.] Return y <-- s(qkA- + w) as the sample normal variable. 

As in Section 3, we let N(k) be the expected number of selections of uniform 
deviates in steps N4-N13, as a function of k. We have from (22): 

+ Af C22 dw 
N(1) = f1I 

e- w2/2 d 

I eQd 
rqk 

dk + e3/2-kC ew2/2 dw 

N(k) = (k ? 2). 
ek-3/2 e-w2/2 dw 

Numerical values of N(k) are given in the table. Using the asymptotic formula 

f eit'2 dt a? [e -- ( 1i ?1)]+ as x o 

one can show that 
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(26) lim N(k) = e/(l - e1) 4: 4.30026. 
k -c 

Cf. (25). The equality (26) was written to me by U. Dieter. 
I have used the same computer to establish that 

N c= E N(k)(rk - rk l) 3.03585, 
k=l 

so that the expected number of uniform deviates chosen in order to generate one 
normal deviate is 1 + N. 4.03585. 

The correctness of this algorithm for generating normal deviates, as well as the 
value of N, have been confirmed in unpublished experiments by A. I. Forsythe and 
independently by J. H. Ahrens. 

6. Comparison with the Center-Tail Method of Dieter and Ahrens. In [1], Dieter 
and Ahrens give a related but different modification of the von Neumann idea for 
the generation of normal deviates. There are only two intervals, the center and the 
tail, and the algorithms are quite different for the two. The expected number of 
uniform deviates needed is near 6.321, and computation of a square root is required 
in approximately 16 per cent of the cases. 

The algorithm of Section 5 above requires no function call, but its main advantage 
over the Center-Tail method lies in requiring about two-thirds the number of uniform 
deviates. This should be reflected in a shorter average time of execution. 

The Dieter-Ahrens algorithm for the center interval closely resembles my algo- 
rithm for each interval, and the proofs are very close to those given above. The big 
difference is that in [1] all variables u, have the cumulative distribution function 
x2 (0 < x < 1), and the comparisons are of the form 

Un+1 - Un < Un-1 < Un-2 < .*. .< U3 < U2 < U1 - 

In contrast, in this paper all variables u, have uniform distributions and the com- 
parisons take the form (for the principal case k = 1): 

n Un < Un-1 < U7-2 < ...< U3 < U2 < u1/2. 

Changing the distribution function in [1] costs an extra uniform deviate and a com- 
parison for each u,, whereas forming u2/2 = G,(w) in Section 5 is done only once for 
each chain of u,'s. Moreover, the fact that u2/2 is usually small means that, most 
of the time, u2 > u2/2 and hence u, is accepted immediately. This contributes to 
keeping N low in my algorithm. Finally, the use of Gk(w) makes it possible to use 
the von Neumann technique in any interval in which Gk(w) can be evaluated. 

In a more recent manuscript [2], Dieter and Ahrens have improved their Center- 
Tail method so that the comparisons are simpler and the expected number of uniform 
deviates needed is reduced to near 5.236. According to the authors, the improved 
Center-Tail method is still somewhat slower than my algorithm. 

7. Further Generalizations. Let f(x) (-o < x < co) be the probability density 
function of a random variable F. Under what conditions on f could the von Neumann 
idea be applied to pick a sample from F? It is sufficient that the interval (-, cn) 

be the union of a set of abutting intervals Ik = [qk-l1 qk] (k = * -. , -2, -1, 0, 1, 
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2, -*) such that, in each closed interval Ik, either f(x) =_ 0 or the following three 
conditions all hold: f(x) > 0, f is absolutely continuous, and f is monotonic. 

Then a preliminary game can be played to select an interval Ik. If b(x) = 

-f'(x)/f(x) > 0 in Ik, the algorithm of Section 2 can be adapted to select a value 
in Ik with a density distribution proportional to f(x). (It may be necessary to sub- 
divide Ik so that (5) and (6) hold.) 

If b(x) < 0 in Ik, change x to - x and follow an analogous algorithm. 
The main practical difficulties of the algorithm are these: 
(a) One must evaluate various integrals like f-r f(t) dt, in order to determine the 

parameters needed to pick the intervals Ik during execution, and to evaluate the 
needed rk, q,, and d,. These computations have to be done only once in designing 
the algorithm. 

(b) One must evaluate G,(w) for arbitrary w in [0, dk] during each execution of 
the algorithm. Note that 

Gk(W) = B(qk-1 + w) -B(qk-1) 

= 

fQk~~ b(t) dt 
= 

Wf()dt 

k-1 k-i f (t) 

= 1n[f(qk-l)/f(qk-1 + W)]. 

Since only (b) is done on-line, the success of an algorithm would seem to depend 
only on the ability to evaluate ln f(x) rapidly. We thus see that having f(x) = 

C exp(sp(x)) (and hence a solution of an equation of type (1)) is of great practical 
advantage, but it is not essential in principle to the use of von Neumann's idea. 
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