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On the Solution of Block-Tridiagonal Systems Arising 
from Certain Finite-Difference Equations* 

By J. M. Varah 

Abstract. We consider the solution of the linear systems arising from certain implicit 
finite-difference approximations to systems of linear differential equations. In particular, 
we consider those schemes which lead to matrices of block-tridiagonal form. There are two 
common methods for solving such equations: using a block-tridiagonal factorization 
(blocksolve), or treating the matrix as a band matrix (bandsolve). 

First, we discuss conditions for ensuring the numerical stability of the block-tridiagonal 
factorization for general matrices of this form. Then, we compare the two methods for 
general block-tridiagonal matrices (including matrices arising from the Crank-Nicolson 
scheme for systems of parabolic equations) and for a more specialized block-tridiagonal 
matrix which arises from schemes of H. B. Keller for systems of two-point boundary value 
problems and parabolic equations. 

1. Introduction. The approximation of a time-dependent system of linear 
partial differential equations in one space variable by an implicit finite-difference 
scheme leads to a linear algebraic system with a matrix of a definite band structure. 
This system must be solved at each time-step and thus it is worthwhile to solve this 
system as efficiently as possible. When only one equation is involved, this is fairly 
straightforward: For example, approximating the heat equation 

Ut = UXX 0 < X < 0 _ t < T, 

U(X, 0) = f(x), U(O, t) = g1(t), u(1, t) = g2(t) 

by the Crank-Nicolson scheme 

) M+1 =( k (I - D+ D 2I + D D v' 

leads to a tridiagonal matrix equation, for which the direct solution, using Gaussian 
elimination, is well known (see e.g. [3, p. 56]). Here 

?= v(jAx, mAt), 
k= At= time-step, 
h Ax = space-step (h = I/(n - 1)), 
D+, D are the usual forward and backward spatial difference operators. 
However, when the problem in question is a system of differential equations, 

or if it is put in system form for solution, the structure of the accompanying matrix 
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is more complicated. In particular, let us assume that the unknown grid functions 
V = ((V1)?, (V2)m? 

... (v,)m) are numbered for the matrix equation so that com- 
ponents are consecutive; then the matrix has a block-banded structure with p X p 
blocks instead of single elements. 

Note. This ordering may not in fact be optimal in the sense of number of opera- 
tions for solution (see George [9] for some very nice new results on optimal orderings). 
However, the ordering given here is certainly natural, easy to program, and leads 
to a bandwidth as smalf as possible. 

For many of the basic schemes used for solving such systems, the matrix is in 
fact block-tridiagonal, i.e., 

B, C1 

A2 B2 

(1 ) A = . . C1_ 

An Bn 

with each A,, Bi, Ci square. For example, with the parabolic system (here u = 

(u1, UA- , Up)) 

ut = P(X t)uX, 0 < x < 1, 0 ? t _ T, 

u(x, 0) = f(x), 

(2) Qlux + Q0u = g'(t) at x = 0, 
Q2u = g (t) 

Rlux + Rou = g"'(t)j at x =1, 

R2u = gIV (t)J 

the Crank-Nicolson scheme 

D+P - 2 
, = ( I + 2 D+P( X 2 

, D ) 

with any kind of discrete boundary conditions can be expressed in the form (1) 
with each block of order p. 

Recently, Keller has proposed new schemes for a first-order system of two-point 
bound.ary value problems [4], and for parabolic systems [5]; both of these can be 
expressed as block-tridiagonal systems (see Section 3). Other examples of block- 
tridiagonal schemes can be found in Richtmyer and Morton [6]. 

There are two common methods for solving the system (1); treating it as a band 
matrix, or using its block-tridiagonal structure. Either way, for an accurate solution, 
we need to ensure that the intermediate quantities do not become too large (we call 
this numerical stability). In the case of a band matrix, this can be done by partial 
pivoting; however, this increases the amount of work necessary, so it is useful to 
know when pivoting is not required. Sufficient conditions for this (namely A diagonally 
dominant or A symmetric positive definite) were first given by Wilkinson [8] and 
are also discussed in Wendroff [7]. 
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In Section 2, we discuss the same problem for a general block-tridiagonal system, 
and, in Section 3, compare the work involved in the band and block methods for 
the particular schemes mentioned above. 

2. Solution of General Block-Tridiagonal Systems. The direct solution of (1) 
by block-Gaussian elimination without pivoting is well known (see for example 
Isaacson and Keller [3, p. 59]); the block-triangular decomposition can be expressed as 

B1 C1 I U1 C1 

A2 B2 C2 L2 I U2 C, 

A,, B. L,,I U 

or A = LU. The recurrence for the Li, U, is 

U, B, 

(4) L,? A? -1 L i =2, n. 

U, B, L I C,J 

For numerical stability, we need a bound on the pivotal growth, i.e., 

max(IIL, IW, II U, I) < K for some norm. In the scalar case, this is guaranteed if A is 
diagonally dominant; we wish to show that a similar result holds here. 

Definition 1. The matrix A of (1) is block diagonally dominant with respect 
to the matrix norm I I * I I if 

( 5) | | B 
_ 

I (I I A, I I + I |IC, I ||) - n . 

This concept has been discussed often in the literature; see, for example, Feingold 
and Varga [1]. 

A necessary condition for this, of course, is that the diagonal blocks B, be non- 
singular, and we assume this in what follows. We also assume C, # 0, for, if some 
C, = 0, the system would be decoupled. 

THEOREM 2.1. If A is block-diagonally dominant, then the block-triangular 
decomposition (3) is numerically stable and, in fact, 

| |L?I | IA,? |/| |C? - 1 , | ||UJ I | | ||B? | + | |A,11.| 

Proof. From (4), it is clear we need only a bound for U` . We show by in- 

duction that tU`'H < ?1/1H CW. This is clear for i = 1 from (4) and (5). Assume for 
i - 1; then 

U, B B- A, U- 1IC? -1 

= B,(I - B) A, U7_CI11) = B,(I - R). 

Now II ?RI I 1- I IB-'I I I I C, I I from (5) and the induction hypothesis. Thus, 

I I U-' I < I |B | 1/(I IB| | II I IC,I I ) = 1/H C I ?. 
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Now the above bounds on IL11, 11U,l follow easily from (4). Q.E.D. 
If we assume A is block-diagonally dominant by columns rather than rows, a 

similar analysis gives 1L,11 < 1, 11U,11 _ BW11 + 11CW11, which is the obvious gen- 
eralization of Theorem 5, p. 56 of [3]. 

We can, in fact, be more general than this by including block-diagonal scaling 
via DAE, 

Dn j EnE 

If A = LU is the block-triangular factorization (3), then the corresponding factoriza- 
tion for DAE is (DL)(UE), and we can apply Theorem 2.1 to this matrix. Thus, we 
have (as in the scalar case) 

COROLLARY. The block-triangular decomposition (3) is numerically stable if 
DAE is block-diagonally dominant for some block-diagonal D, E with I DI , I D-' 1, 

E ' , I E-1l bounded. 
One fruitful choice of D, E is D, = B-1, E, = e2J. This leads to the following: 
THEOREM 2.2. Let A be as in (1) and define a, = (I I B- 1 C, I I I I B; + A, + 1 I)1/2 (assume 

0a, 5j 0). Then the block-tr-idiagonalfactorization (3) is numerically stable if the matrix 

0! ?1 1 
a{n-I 

0!n-i 1 

is positive semidefinite. 
Before proving this, we should remark that this theorem includes the result of 

Richtmyer and Morton [6, p. 275 if.] as a special case, namely with a!, a 0! and the 
condition a _ 12 

Proof. With D, = B?', Ei = ej, DAE is block-diagonally dominant if the 
following set of inequalities holds: 

e2 J|B_1CI| II_ el, 

e-l I IB)'AJII + e1+1 I IBTC, I_ e, i = 2, n , - 1, 

en-I |B_' An| _ en- 

With 6, = IB'C,11, y, = IB;A,11, this holds if there is a positive vector e so that 

1 -61 

'Y2 1 - 

Pe e> 0. 

An-] 

'Yn 1 
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But this holds whenever it holds for the symmetrized matrix 

'-1 - a1 

-t 1 -Ot2 

DPDJ? = I- R. 

-an-1 

-an-1 1 

Now if (I - R) is positive definite, we know from its M-matrix properties (see, for 
example, Householder [2, p. 58]) that there is a positive vector e so that (I - R)e > 0. 
And if it is singular but positive semidefinite, we take for e the null vector of (I -R); 
it must have all positive components as it is the Perron vector of R (R is irreducible 
because no ae, = 0). So a sufficient condition for numerical stability is (I - R) positive 
semidefinite. But since R's eigenvalues occur in (+,-) pairs, this holds if and only 
if I + R = S is positive semidefinite. Q.E.D. 

3. Solution of Systems: Blocksolve vs. Bandsolve. We consider two kinds of 
systems: the general block-tridiagonal matrix (1) and a specialized form arising 
from the solution of first-order systems. The general form (1) arises for example in 
the solution of (2) via the Crank-Nicolson scheme. For a constant coefficient problem 
(i.e., P = constant), we have A, = C, = - XP/2, B, = I + XP where X = k/h2, 
and since P is positive definite, we can apply Theorem 2.2 to show the numerical 
stability of the block-tridiagonal factorization. For variable coefficients, we will 
certainly have this stability for h small enough. Treating the system as a band matrix, 
we may have to row pivot the first p equations (these are the boundary conditions) 
but this is not necessary with the rest because of the positive definiteness. 

So we compare operations of bandsolve and blocksolve for general systems (1) 
without pivoting (the blocks are p X p and there are n such blocks in each row and 
column). 

(a) Bandsolve: 
(i) LU decomposition: Each set of p equations requires 

(2p)(2p-1) + (2p- 1)(2p-2) + - + (p + l)p 

= p(7p2 - 1)/3 multiplications. 

(ii) Backsolution: Both forward and backward substitutions require 

(p + 1) + . + 2p = p(3p + 1)/2 operations per p equations. 

This gives a total of np2(7p/3 + 3) multiplications (carrying only O(np2) terms). 
(b) Blocksolve: (See (4).) 

(i) Block LU decomposition: For i = 2, n , M, we have 

LU decomposition of U, 1: p3/3 operations 73 

solution of L,(U,1) = A,: p3 operations total 73P 
formation of U, = Bi - L2Ci_: p3 operations3 
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(ii) Backsolution: 

Ly = f takes np2 

Ux = y takes 2np2 (using the saved LU decomposition of each U2). 

This gives a total of np2(7p/3 + 3), the same as for bandsolve. 
Note. In a private communication, Gene Golub has shown that, for a symmetric 

positive definite block-tridiagonal matrix A, using the Cholesky decomposition 
once can reduce the operation count for blocksolve to 5np3/3 + O(np2). 

Now consider the more specialized matrix form: 

F I I 

(6)--- F I~G 

l~ 
~~~~ 

l 

Here all blocks are p X p except Fo (q X p) and Go (p - q X p). When split up so all 
blocks are p X p (as indicated by the dotted lines), it becomes a block-tridiagonal 
system. 

This form arises in solving the general first-order system 

u'(x) = K(x)u(x) + f(x), 0 _ x _ 1, 

with separated boundary conditions 

Fou(O) = a, Gou(1) = 

by the midpoint rule 

(7) V- 1 = K(x, /2)(v I- v2i) + f(x, 1/2)- 

See Keller [4] for details. Here Fo has q rows (assumed linearly independent) and 
Go has p - q rows. 

This matrix also comes up in solving the parabolic system (2) by Keller's box 
scheme [5]. Since the problem is converted to a first-order system (with unknowns 
u, ut), the matrix blocks are of order 2p now, and q = p. 

We again wish to compare the solution of (6) by band and block methods. First, 
we examine the stability or pivoting problem for the midpoint rule and box scheme. 
For the midpoint rule, from (7), we have 

F, = - I - h, K(x,l12)j2, G, = I - hi K(x_l/2)j2. 

Thus, for max, hi = h small enough, these are nonsingular. However, as a band 
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matrix there is no guarantee that the diagonal pivots will be large, and pivoting 
may be necessary; for example, the first column of F0 may be all zero necessitating 
an initial row interchange using a row of F1. This, of course, increases the bandwidth 
and the work involved. We include below a calculation of the work required for 
bandsolve using pivoting. Similarly, for the block-tridiagonal decomposition, the 
diagonal blocks B, may be singular. Thus, B, will be singular if the q rows of F0 
and the first (p - q) rows of F1 are dependent. But if so, we can interchange rows 
of F1 (and G1) so B1 is nonsingular; moreover, this preserves the matrix form (6). 
We can apply a similar "pivoting" for each such diagonal block as we proceed, 
and it seems clear that this will be numerically stable for h small enough. Indeed, 
if we assume the boundary matrix F0 is scaled so F0 = (Ho I), then for h small enough 

Ho I 

U, = B1 = + 0(h); 

I O 

and since 

A, [ j + 0(h), 

we have 

Ho Il 
U2 H + 0(h), 

so the diagonal blocks U, stay well conditioned. 
Now consider the box scheme (see Keller [5]). For simplicity, we will only con- 

sider it applied to the heat equation u, = uti with a,u + a1lu prescribed at x = 0. 
This can be written as a first-order system: u, = v, v, = ut, and then differenced as 

(8) D__uX =(vn + Vl), DJ(v + v1) = D_t(un + U31). 

This leads to an implicit equation for (ut, v) on the nth time line with matrix 

ao a, 0 0 

1 h/2 -1 h/2 O 

B= h/k 1 h/k -1 

0 0 1 h/2 

0 

Clearly, we cannot guarantee the stability of bandsolve without pivoting, and, simi- 
larly, the block-tridiagonal factorization may be unstable (a, = 0 implies IU1 U- 

O(1/h), and, in fact, then each IIU,II = O(1/h), i = 2, 3, *- , n). However, if we 
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interchange the equations in (8), we obtain the matrix 

ao0 a, 0 0 

h/k 1 h/k -1 

B'= 1 h/2 -1 h/2 

0 0 h/k 1 

0 

Treating this as a band matrix, it is easy to see the bandsolve decomposition is 
numerically stable with a slight restriction on h and k. Indeed, because of the sign 
pattern, if our LU decomposition proceeds so that the third pivot BI3 is <0 inde- 
pendent of h, then from that point on the pivots will slowly increase in magnitude 
(by O(h) on each step), giving a stable decomposition. But this third pivot is, omitting 
O(h) terms, (-2 + 1/(1 - hal/ka0,)). If aoa, < 0, we have -2 < B13 < -1 with 
no restriction on h and k; if aoai > 0, we have -3 < BI3 < -2 for k/h < ai/2ao 
and-I < B3 ? -< for k/h > 3ai/ao. 

Treating B' as a block-tridiagonal matrix, for numerical stability we again need 
to ensure k/h 5-' ai/ao, so U, is nonsingular. In fact if we carry through the algorithm, 
we see that 

[h/ke -1 -I/e1 + 0(h), i -I2, 3, h/k IJ 

where e2 = a,/a, - h/k, e,+1 = - 2(h/k)e2, i = 2, 3, . For stability, we need 
only to keep the e, away from zero. Note that e, +1 < e, and, thus, we have a stable 
decomposition for all h and k if a0a1 < 0. If a0a1 > 0, it is stable if e2 < 0 (for 
example, if k/h < 'a?1/ao); if a,/ao << 1 so this would be unduly restrictive, we have 
stability if we choose k/h so that e2 > 0, e3 < 0. 

Although we have only discussed the box scheme for the heat equation, it is 
clear that similar considerations could be applied to the box scheme for more general 
parabolic equations and systems. 

Now we consider the operation counts for the matrix (6) using both bandsolve 
and blocksolve. For this, we make use of the zero patterns, but make no assumptions 
about the nonzero elements for the sake of generality. Thus, the operation times 
could be cut somewhat for special nonzero elements; for example, in the box scheme 
one might take special account of the ones appearing (this is done by Keller [5]). 

(a) Bandsolve for (6) (no pivoting). 
(i) LU decomposition: Each set of p rows takes 

p(p + q-1) + (p- 1)(p + q-2) + + (p-q + 1)p 

+ (2p-q)(p-1) + (2p-q- 1)(p-2) + + (p + 1)q 

- np(5p2 + 3pq - 3q2 _ 3p + 6q - 2)/6 for all np rows. 
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(ii) Backsolution: 

Ly = f takes for each set of p rows (except first) 

[(p + 1) + -** + (p + q)] + [(q + 1) + * + p], 

Ux = y takes for each set of p rows (except last) 

[p+(p- 1)+ *- +(p-q+ 1)]+[(2p-q)+ - +(p+ 1)] 

giving a total of np(2p + 1) multiplications. 
(b) Bandsolve for (6) (with pivoting). Now L will have the same form, but U 

could look like the upper triangular part of a general block-tridiagonal matrix. 
(i) LU decomposition: Each set of p rows takes 

2p(p + q-1) + (2p- 1)(p + q-2) + * - + (p + 1)q 

= np(5p2 + 9pq - 3p + 3q - 2)/6 for all np rows. 

(ii) Backsolution: 

Ly = f same as (a), i.e. 

n[(p + 1) + *** + (p + q) + (q + 1) + ** + p] 

= np(p + 2q + 1)/2, 

Ux = y same as for general block-tridiagonal, i.e. np(3p + 1)/2 

giving a total of np(2p + q + 1) multiplications for the backsolution. 
(c) Blocksolve for (6). 

(i) Block LU decomposition: For i = 2, * , n, we have 

LU decomposition of U,1: p3/3 operations total 
solution of L,(U,-1) = A,: qp2 operations np(p2j3 + 2pq - q2) 
formation of U. = B, - L, C, 1: pq(p - q) opns. J 

(Note that L, is zero in its last (p - q) rows and C, is zero in its first q rows.) 
(ii) Backsolution: 

Ly = f takes npq operations, 
Ux = y takes np(2p - q) operations. 

We can summarize these operation counts, keeping only terms O(npq): 

(a) bandsolve (no pivoting) - np(6p2 2pq - q2?p? + q), 
(b) bandsolve (with pivoting) - np(56P + 2pq + 2p + ? q), 
(c) blocksolve - npQ3p2 + 2pq - q2 + 2p). 

It is clear that (b) is always slower than (c), but the interesting comparison is (a) vs. (c): 
(c) is better for r = q/p near zero (e.g., q = 1), but (a) is better for r near '. (We 
need only consider 0 < r < ' since for r > I it is more efficient to turn the matrix 
around.) To get a graphical comparison, we can drop the terms in npq, np2, and 
divide by np3; then each count is only a function of r: 
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5 

(b) 5+ ? /r ()6 +2r 

(c) ? + 2r-r2 2 

3 

0.5 

Using just these terms, we see that (a) is better for r < i, (c) better for r > i, - _ 0.38, 
with the difference at r = - amounting to about 12%. Actually, the graph is biased 
in favor of (c) especially for r small, because the term in np2 has been dropped. For 
an additional comparison, we give the operation counts from the table for p = 8: 

count q 

np 1 2 3 4 

(a) 70 73 76 77 

(b) 78 92 105 119 

(c) 52 65 76 85 
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