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On the General Hermite Cardinal Interpolation

By R. Kress

Abstract. A sequence of interpolation series is given which generalizes Whittaker’s
cardinal function to the case of Hermite interpolation. By integrating the interpolation
series, a sequence of new quadrature formulae for f ® o f(x) dx is obtained. Derivative-free
remainders are stated for these interpolation and quadrature formulae.

Given a function f : R — C and a real number # > 0, the series
h o (=D"f(mh) . =
T omere z — mh sm h

_h o _f(mh)

T meZoz — mh

z

T.(f)(2):

sin%(z — mh), z& C,

is called the cardinal series of the function f with respect to the interval A. If the series
converges, its sum T,(f) is called the cardinal function or cardinal interpolation of the
function f. Obviously,

T,()(mh) = f(mh),  m =0, %1, &2, -+,

holds. In the case when f : B— C is analyticin a strip B:= R X [—a,a] C C, a > 0,
and satisfies certain conditions at infinity, a derivative-free remainder for this cardinal
interpolation was independently found by Kress [2] and McNamee, Stenger and
Whitney [6].

In the present paper, we generalize the cardinal interpolation and give a sequence
of Hermite cardinal interpolations T, ,(f),p = 0, 1,2, --- , with

TS (mh) = {P(mh), qg=0,1,---,p, m=0,=x1,£2,---.

The usual cardinal interpolation is included as the particular case p = 0.

In Section 1, we give the explicit form of T, ,(f) and state a derivative-free re-
mainder. Making use of this remainder, we describe a class of functions for which
Tp,h(f) = f .

In Section 2, we apply the general cardinal functions to derive a sequence I, i(f),
p=0,2,4, -, of integration formulae for infinite integrals involving the deriva-
tives f"(mh), ¢ = 0,2, --- , p,m = 0, =1, £2, --- , which may be regarded as
generalizations of the trapezoidal rule. The remainder, given by Goodwin [1],
Martensen [4] and McNamee [5] for the trapezoidal rule, is extended to the quad-
rature formulae I, ,(f).
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926 R. KRESS

The general cardinal interpolation developed in this paper is closely related to
the general Hermite trigonometric interpolation of periodic functions [3].

1. Interpolation. Let p = O be an integer and let 2 > O be real. Define p + 1
entire functions ¢, ¢ = 0, 1, --- , p, by

q . p+1 2[(p—aq)/2] r
a.n t(2):= Z—! (33‘("—/”)—2) > a,(p)(’;:- z) , zEC,

(W/h)z r=0;r even
where the a,(p) are the coefficients of the Laurent expansion
1 = a,
(1.2) -y & <

sin z r=0;r even Z

To avoid indexing difficulties, we do not indicate the dependence of the ¢, on p and A.
LemMma 1.1. Foreveryr = 0,1, --- | p, the functions t,, q = 0, 1, - - - | p, satisfy

(1.3) 1" 0) = &,
(1.4) 1 (mh) = 0, m= 1, 42
Proof. From (1.1) and (1.2), we obtain

tQ(z) = Zq/q! + Zp+lllq(Z), q = 0’ 1’ Y /S
with certain entire functions u,, and (1.3) immediately follows. The relation (1.4)
trivially holds.
Definition 1.1. Let p = 0 be an integer and let h > 0 be real. Given a function
f: R — C, { € C”(R), the pth cardinal series of f with respect to the interval h is defined
by
1.5) T, (D= 3 Z [O(mhyt(z — mh),  z € C.

m=—w gq=

If the series converges, its sum T, ,(f) is called the pth cardinal function of f.

Lemma 1.1 implies

THEOREM 1.1. The pth cardinal function T, (f) is a Hermite interpolation of the
Sfunction f with equidistant interpolation points
1.6)  T,0(mhy = {P(mh), q=10,1,---,p, m=0,=%£l,

The first cardinal series is listed below.

To,:(f)z) = — ; (=" f(mh)h sin hz,
TN = (ﬁ) > {(Z {mh) 5+ f im,};)h}Sin2%Z,
= () £ corfptet - o,

f'(mh) f'(mi)\ . 5
Ty T mh}sm R

In the case when the function f is analytic in a strip B:= R X [—a, a] C C,
a > 0, we shall give a sufficient condition on the convergence of the pth cardinal
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series of f and shall obtain a representation of the remainder

a.7m R, w():= | — Tou(D).

Lemma 1.2. Let the function f be analytic in the strip B.= R X [—a, a] C C,
a > 0. Then

xa(2)f(2) — Z Zf“”(mh)tqz — mh)

m=-n ¢=0

(1.8) R Y (&) d¢
T 2mi Wl ¢ = osi @/ - ¢ G
where C, denotes the boundary of a rectangle B:= [—(n + Ph, (n + i ]
[—a, a] C B and where x, denotes the characteristic function of B, with x.(2) =
z&E B, and x.(z) = 0, z & B,.
Proof. The function F: B, — C, defined by

1 o
1.9  F@E):= T (f(z) Z Z O (mh)t,(z — mh)) z € B,,

m=-n ¢=0

is analytic. Hence, by Cauchy’s theorem,

(1.10) xore =0 [ e cec

Using the identities
d¢ . S
o @ = DG — mh)™ (= mh)™

g=20,1,---,p,m=0, %1, --- , #n, we substitute (1.9) into (1.10) and obtain

(1.8).
THEOREM 1.2. Let the function | be analytic and bounded in the strip B:= R X
[—a,a] C C,a > 0, and let

x-(2), z& C,,

(.11 [ era<e, [ lers<e.

Then, for arbitrary p = 0 and h > 0, the pth cardinal series of f with respect to the
interval h is locally uniformly convergent for all x & R and the remaindgr (1.7) is

given by
_ LT T f4) ds
(1.12) Rl = 2mi 1 hx{f—w_m (¢ — x)sin”*'(r/h)¢
_ [ 1) dg
‘/;wi-za (i‘ - x) Sinp+l(7r/h)§.} ’ * e R’
and bounded by

1 sin(r/h)x {( ooie .
IRD h(f)(x)l = 2(1ra)1/- <smh(1r//1)a> /‘—M—ia |f(§‘)| ds)

©+ia 172
([ hora)}, ser

(1.13)
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Proof. Let f be bounded by M. Then we estimate the integrals

fi(n+l/2)h+ia f(i_) di_
tm1/h—ia (§ — X) Sin“l(”"/h)f

Thus, by Lemma 1.2,

2Ma .
T (n+ PHh— |x|

fx) = lim[ Z 1 (mm)t,(x — mh)

A { f*‘"“””“"“ 1) de
(.19 T2 W e @ = sin® /g

+(n+1/2)h+ia
3 1) dg }]
—mi/htia § — X) SinPH(T/h)g- ’ * ER,

where convergence is locally uniform for all x € R. Upon noting that

. T
s1nh§‘

gsinh%a, ¢ = §& =+ ia,
and

fm h ds/|¢ — x| = n/a,

—otia

Schwarz’s inequality yields

©tia f(g_) dg. '\/11' ( ©tia . )1/2
fm G =% sin”“(vr/h)rl = Vasinh™ \a/h)a fm HOFds) . xER.

Hence, letting n — « in (1.14) completes the proof.
Remark. From the bound (1.13), we easily see that

ml T,:(Hx) = fx), p=0,1,-,

and

lim T, ,(N(x) = fx), k>0, sinh% a>1,

p—®

where convergence is uniform for all x € R. In both cases h — 0, p fixed and p —
h fixed, the convergence is exponential.
The following theorem describes a class of functions for which T, ,(f) = f is true.
THEOREM 1.3. Let f be an entire function, such that

(1.15) f@l £ ™', z=x4iyEC,

with real numbers ¢ Z 0 and 0 < p < (p + 1)w/h. Then the pth cardinal series for f
with respect to h is locally uniformly convergent for all z & C, and the identity

(1.16) T, () = {(2), z & C,

holds.
Proof. By (1.15) we have
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| 1) - ce®M!
lsin®"r/m)¢| = sinh®*'Gx/h) |0

0<exp[—[(p 4+ 1)1;r - p] lnl]) , {=t+ineE C,

as |g| — =, and therefore

(n+1/2)htia
. ) d¢ _
lal-»lg -/;(n+1/2)hi|'a € —x) sinp“(')r/h)g‘ =0
that is, by Lemma 1.2,
f@) = ‘_Z,_ 2_: 1 Omiytz — mh)
1 T f‘"“””‘““’ (9]
(1.17) + g o0 hz{ wrirmieia & — 25t/ X
_ /—(n+l/2)h+|m f(f) dg-}
m+1/Dh-io (§ — Z) Sinpﬂ(ﬂ'/h)f ’
z=x+iyEC
for all n with (n + $)h > |x|. Making use of
. 1
sm% {} = cosh% 7= > expl:% |77|-:| , ¢ = =&+ Hr + in,
we conclude that
27+ % 1

fi(n+1/2)h+im f(g.) d§‘ < .
somrmimie (€ — 2)sin”'@/WE] T (0 4+ Da/h) — p (n + Hh — |x]
Letting n — « in (1.17), the assertion of the theorem follows.

Example. If we choose f(z) := e**, z &€ C,0 = p < (p + 1)n/h, we obtain
the local uniform convergent expansion

(1.18) Z Z (i)™ 1,z — mh), z & C.

m=—oo ¢=0

Setting p:= ra/h, r = 0,1, --- , p, we derive

(1.19) exp[zr—z] Z E (tr ) (—1)"t(z — mh), z& C.

m=-o ¢g=0

2. Numerical Integration. We integrate the pth cardinal series of f termwise
and obtain the series

»

@1 Lai=h 2 2 (;) aq,f (mh)
m=—w ¢g=0;q even 7
with the weights

1 [(2z\ r®
N (2.2) Aq,p-= E (7) f ta(x) dx’ qg = 0’ 2’ cee LD
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If g is odd, the integral (2.2) vanishes, since in this case the function ¢, is odd. The
series (2.1) may be regarded as generalizations of the trapezoidal rule approximation
for the integral [=, f(x) dx.
In order to derive simple recurrence formulae for the weights a, ,, we state
THEOREM 2.1. Let p be even. Then the weights a,, , are uniquely determined by
the identity
/2

2.3 D a = H (a+ @/9P)* zEC.

¢=0;q even

Proof. Integrating (1.19), we have

h » a po
f exp[irzx] dx = 4, (ir E) f 1.(x) dx, r=20,2,-,p,
0 h q=0;q even h -

thus, we are led to the system of p/2 + 1 linear equations

Ay,p = 1,
(2.4) »
> (Na,=0, r=1,---,p/2.

q=0;q even

Since the determinant D, of (2.4) is a Vandermonde determinant with

/2
D, = i(r/2)(1)/2+1) i—I (q2 _ r2) #£ 0
? >

a>r=0
the weights a,,, are uniquely determined by the system (2.4).
Define a polynomial P, of degree p by

P

P,2:= > a,," zEC.

¢=0;q even
Then (2.4) reads
P,0) = 1,
P,(ri) = 0, r= =1, -+, £p/2.

Hence P,(z) = [I?2 (1 + (z/¢)%), and (2.3) is established.
From (2.3) it follows that

p—2 P
U+ @/p)) 2 Gz’ = D and,  p=2,4, .
q=0;q even q@=0;q even

Comparing the coefficients, we find the desired recursion formulae
aO.P=1’ p=092,'.'9
(2.5) Qg,p = Qq,p—2 -+ (2/p)2aa-2.p—2a g=2,4,--- ,p—2, p=2,4,---,

1
Ty F

Using (2.5), we obtain

=0,2,...

* TI*7% is to be interpreted as unity when p = 0.
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Lo () =k 2 f(mh),

L) =h }_j f(mh)+ E "(mh),

5

L) = h _Z_: fomh) + o Z {"(mh) + < §_j {7 (mh).
In the case of odd p, we integrate (1.19) for » = 0, 2, --- , p — 1 and get the
system of (p + 1)/2 linear equations

@, = 1,
(2.6) -1
> (N, =0, r=1,--,(— 1)/2.
g¢=0;q even

Comparing (2.6) with (2.4), we see that a,., = @4, p-1, ¢ = 0, 2, --- , p — 1. Thus,
if pis odd, I, ,(f) = I,-,,x({f) is valid. Therefore, we may restrict ourselves to even p.

In the case when the function f is analytic, we state a sufficient condition on the
convergence of the series (2.1) and give a remainder in the following:

THEOREM 2.2. Let the function { be analytic in the strip B:= R X [—a, a] C C,
a> 0,letf(z) >0,z = x + iy as x — == uniformly for all —a < y < a and let

2.7 j; ) i@ ds < =, j: [i@)] ds < .

Then [2,, f(x) dx exists, and the series (2.1) is convergent for even p = 0 and h > 0.
The remainder

@.8) Ear= [ 100 ax — 1,,0)
is given by
Ep.h(f)
% p+ 1){ =t explilp + 1 — 2q)r/h)S]
0oy @ )"“ 2 (-1 ( g I... Sin® /)¢ o) a
[T expl—i(p + 1 — 2q)a/h)¢] }
[ o 1) d

with the bound

_expl—(r/h)al ( e )
@10)  [Ba] = g ([ el as+ [ el as
Proof. From the assumption (2.7), we see by Cauchy’s theorem that [Z, f(x) dx
exists.
Using the identity

sine T = XU D@D (25 1) e igte/ e,
h (21) q=0 q
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we deduce from the residue theorem that

1 (7 sin” @/mx  explite + D/ & q<p + 1) .
;f_m x—fp =< @iy g( D", ) expl—2igl/ k)],

¢ = ¢+ ia,

1" sin”'@/h)x _ expl—ip + Dar/h)] & q<p + 1) .

- ‘/‘_w x — g— dx = (2i)P qz_%( 1) q exp[2zq(1r/h)§'],
=& — ia.

From this the estimates

17 sin>ar/h)x ' expl—(p + D)w/h)a] % (p + 1
™ f_w x—¢ dx| = g 2, q

) exp[2q(r/h)al

2.11)

q=0

< exp[—(r/h)al, § = &=+ ia,

follow.
Integrating (1.8) over (— =, =) and interchanging the order of integration,
we obtain
(n+1/2)h n ] h a
[T =0 3 5 (2 a0
—(n+1/2)h 2T

m=-n ¢=0

1 ji(9) ( ® sin® ' (r/h)x )
+27ri . S @/ h)¢ f_m F—x dx ) dg.

With the aid of (2.11), we can estimate
ft(n+1/2)h+ia f({) (/m sin"“(r/h)x

T 1
£(n+1/2)hmsa SIDT T (r/h)¢ {—x

= 2a max |f(£@x 4+ Hr + in),

1€[~a,a)

1

™

s

and
1

™

o

f(n+1/2)htia 1) (['” sin”*'(r/h)x

TS
—(n+1/2)heia SIN”" (/h)¢ ¢ —x

exp[—(ﬂ'/h)a] (n+1/2)htia
= sinb® ' (@r/h)a J_iijoyneia

1)1 ds.

Thus, by the assumptions on f, letting n —  completes the proof.
Remark. From the bound (2.10), we have

lim IP.h(f) = f f(x) dx’ D = Oa 2, MY
h—0 —c
and
lim I, ,(f) = f fx) dx, k> 0, sinh%a > 1,

p— o

where convergence is exponential in both cases h — 0, fixed and p— o, hfixed.
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