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A Unified Presentation of Certain 
Classical Polynomials 

By H. M. Srivastava and J. P. Singhal 

Abstract. This paper attempts to present a unified treatment of the classical orthogonal 
polynomials, viz. Jacobi, Laguerre and Hermite polynomials, and their generalizations 
introduced from time to time. The results obtained here include a number of linear, bilinear 
and bilateral generating functions and operational formulas for the polynomials 
{Tn(a )(X, a, b, c, d, p, r) I n = 0, 1, 2, * }, defined by Eq. (3) below.* 

1. Introduction and Definition. In an attempt to give a unified presentation 
of the classical orthogonal polynomials, viz. Jacobi, Laguerre and Hermite poly- 
nomials, Fujiwara [4] studied the polynomials defined by the generalized Rodrigues' 
formula 

(1) p7(x) x) Da{(x - a )a(b - 

where D = dldx. 
The polynomials pn(x) are orthogonal with respect to the weight function 

(x - a)a(b - x)#, where a, > - 1, over the interval [a, b]. In fact, as pointed out 
by Szego himself [10, p. 58], they can be rewritten as (cf. also [2]) 

(2) pj(x) = c (a - b)nPna)(2{ _ b} + I 

where Pna``)(x) is the classical Jacobi polynomial, orthogonal with respect to the 
weight function (1 - x)a(I + x), where a, > - 1, over the interval [-1, 1]. By 
recourse to certain limiting processes, it is easy to verify that the pnx), as also the 
Jacobi polynomials P`a')(x), give rise to Hermite and Laguerre polynomials. 

It may be of interest to study here the polynomial system { Tn7 'a)(x, a, b, c, d, p, r)} 
defined by 

Tn( (XIaIa, b, c, d, p, r) 

(3) (ax + b)a(cx + d)~ exp(pxr) D {(ax + b)n?a(CX + d exp(-pxr)} 
n! 
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Apart from being more general than pn(x), the polynomial system defined by (3) 
has a distinct advantage in that it can be specialized to almost all classes of orthogonal 
polynomials without using any limiting processes. In particular, we mention the 
following obvious connections. 

(4) T.a )(X, a, -a, c, c, 0, r) = Ta )(x, a, -a, c, c, p, 0) = (2ca)nPna )(x). 

(5) Tna ?(x, a, 0,0O, d, 1, 1) = (ad)nLna)(x). 

(6) Tna ;(x, 0, b, c, O, I, I) = (bc L () (x). 

(7) Tna )(x, 0, b, 0, d, 1, 2) = (-bd)nHn(x) 

(8) Ta ?(x, a, O c, 0, 2, - 1) = (2ac) n() 

(a-,f) 
X a.0. I I . 

_ (- adX)n (9) Tna )(x a, 0, 0, d, p, r) X- H(x, a, p). 

Here, Yna)(x) denotes the generalized Bessel polynomial of Krall and Frink [6] 
defined by 

(10) Yna)(X) = 2Fo[-n, n + a + 1; -; -2X], 

and Hn(x, a, p) is the generalized Hermite polynomial 

(11) Hr(x, a, p) = (- )nx-a exp(pxr) Dn{xa exp(_pxr)}, 

introduced earlier by Gould and Hopper [5]. 
By making use of Leibniz' rule, Tn`'#)(x, a, b, c, d, p, r) can be expressed in the 

form 

T.(a )(x a, b, c, d, p, r) = (ad - bc)n 

(12) n -k j(ax + b)(cx + d)}k ?ak#k) 
( 

c x 
d - ) 

k=oM ad -bc ) ad-bc 

Moreover, it is readily seen that 

(13) Tna )(X, a, b, c, d, p, r) = (ab)nT) a(d a, b, a2d, b2c (dbc P r), 

which is a generalization of the familiar result [10, p. 59] 

(14) p( a .ta)(_X) = (_)np(a)(x) 

involving Jacobi polynomials. 

2. Generating Functions. From the definition (3), we have 

n=O {(ax + b)(cx + d)} T A (x, a, b, c, d, p, r) 

(15) = (ax + b) (cx + d) A exp(pxr) 

co tn ntn a-n n+I-nr) 
* 

- D {(ax + b)n?a n(cx + d exp( pxr)} 
n=O n 
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and, on interpreting this last expression by means of Lagrange's theorem [7] 

(16) = E 
- D8[(x)(x)}, y = x + t4(y), 1 - t4, (y) n=O 

we find that 
co 

Tn n n (x , a, b, c, d, p r)n 
n=O 

(aY+b)a(cy+ d)~ exp {pxr _py 

-at(l-X)(cx+d)(ax?+b)(cx?+d) _x(ax+b) (cx+d d I at( -X* +d)ay+b Icy+d) -ct(lI 
- 

)(ax+ bA\ay+b \c-y?d) 

where 

(ax + b\ (cx + d\ 
y = x + t(ax + b)(cx + d)ay+b/ (cy+d/ 

If we put 

(ax + b)j(ay + b) = 1 + u, (cx + d)j(cy + d) = 1 + v, 

then we shall get the generating function 
co 

E T nnMn ) (x, a, b, c, d, p, r)tn 
(17) n=O 

(1 + Uya(l + vy| r ax - bu 
1 + (1 - X)u + (1 -z)v exP1yx -P\ a + auJf 

where u and v are given by 

(18) 
u = -at(cx + d)(1 + u)X(1 + v)', 

v = -ct(ax + b)(1 + u) 1(1 + v)". 

Alternatively, by letting u = -t/(1 + t) and v = - n/(l + q), the generating 
function (17) can be written as 

co 

ETn n n (x , a, b, c, d, p r)t 
(19) n=o 

(1 )+ I( +r)1~ 

1 + 0 (I + o"-1 -) t exp px r-px + (ax + b))} 

where 

(20) = at(cx + d)(1 + t)1x(1 + 
)l- 

I7 = ct(ax + b)(1 + t)1x(1 + )1- 

In view of the relationships (4) through (9), the results given above would readily 

yield a large number of generating functions for the polynomials of Jacobi, Hermite, 
Laguerre, Gegenbauer, and many others. For instance, we have the following special 
cases: 
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(i) If X = = 0, then both (17) and (19) would give us the elegant generating 
function 

ETn.A (xI a. b, c, d, p, r) 
n=O 

(21) = 2a+ P-{1 + (bc - ad)t + p} a{ - (bc - ad)t + p}A 

exP{[Pxr - Pr [ ? + a(b t -+ ?d))t j}, 

where p = {1 - 2t(bc + 2acx + ad) + t2(bc - ad)2} 1/2 

(ii) For p or r = 0 and -a/b = cld = 1, (17) and (19) correspond to our main 
results in [9], while (21) would give us the familiar generating function ([10, p. 69]; 
see also [7, Vol. 1, pp. 127, 303, Problem 219]) 

co 

(22) P( p(a,)(X)tn = 2a+#R-'(1 - t + R)-c(1 + t + R) , 
n=O 

in which R = (1 - 2xt + t2)1/2. 

(iii) On combining (8) with (17) and (18), we get the known generating function 
[1, p. 654] 

(23) EYn (x)L (1 + u)`{1 + (2 + X)uV1 exp{t(l + u)1 }, n=O n. 

where - xt = u(I + u)x+ 1. 
(iv) On using (9) with (19) and (20), we are led to the generating function 

(24) >jHnr(X, a - Xn, p) = (1 + t)a`1(1 + Xt + t)Y1 exp[pxr{1 - (1 + t)T}] n=O n. 

where t = -x-lt(I + ) 
The last result (24) does not seem to have been noticed earlier. 

3. Operational Formulas. In this section, we shall make use of the differential 
operator 8 = xd/dx which possesses the following interesting properties: 

(25) x D = 5( - 1) ... (b - n + 1), 

(26) f(5) exp { g(x)} h(x) = exp { g(x)} f { a + xg'} h(x). 

Assuming Y to be a sufficiently differentiable function and using the properties 
(25) and (26), we observe that 

(ax + b)a(CX + d)- exp(pxr) Dn{(ax + b)n+a(CX + d) exp(_pxr) Y} 
(2 7 ) _ _ _ _ _ _ _ _ 

n_ ___n 

{(ax + b)(cx + d)} (n + abx -n + d 
x 2=1 ax + b ~cx + d 

whereas, by employing Leibniz' rule, the left-hand side of (27) can also be expressed 
in the form 

n(ax + b)k(CX + d)k (a?k,k k y n! 
( 

T7( k 1k)(xI a, b, c, d, p, r) D Y. 

Equivalence of the two expressions yields the operational formula 
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fI [ n + a+ )x + c(n + )x - prxr -j + 

(28) !x n (ax + b)k(cx + d)k 

t(ax + b)(cx + d) k k! 

*Tk f?) (x, a, b, c, d, p, r) D Y 

For Y = 1, (27) would give us 

n9rr + aa(n + a)x + c(n + +3)x - prx -. + 11.1 

(29) fj~~+ ax +b cx +d 

=n!{(?bT.? 
( }Tal(XI a, b, c, d, p, r). 

If in (29) we replace n by n + m and then interpret the left-hand side with the 
help of (28) and (29), we shall get the interesting formula 

m+ n T (+.)(x b, b d, r) = 
(ax + b)k(cx + d)k 

(30) n a,bn Ep,r -k k! 

T(a+k,'k k3?,#n 
T-k k)(x a, b, c, d, p, r) DkT(a? n (x, a, b, c, d, p, r). 

As an application of (30), we first replace a, f by a - n and -n, respectively, 
multiply both sides by tn, take their sums from n = 0 to n = o and then interpret 
its right-hand side with the help of Taylor's theorem and formula (18). We are thus 
led to the following generating function: 

, (m+n) +an n(x, a, b c, d, p r) tn 
n=O n 

(31) = {1 + at(cx + d)}a{1 + ct(ax + b)}j 

*exp { pxr - p(x + t(ax + b)(cx + d))r} 

T.(a ?7(x + t(ax + b)(cx + d), a, b, c, d, p, r). 

On the other hand, by making use of the definition (3) and Lagrange's theorem 

(16), we observe that 

E (m + )T(a+ (x a, b, c, d, p, r)( ) 

(ax + b)-a(cx + d)-y 1 ( d m a 
(1 -c exp(pxr)-! 

7 Je {(ay + b) rm (cy + d)fl?m exp(-py')}, 

where y = (x + dt)(I - ct)- 1. 
Interpreting the right-hand side of the last equation by means of (3), we get 

another generating function in the form 

, (m+nT an+ ( a b, c d, p r)tn 

(32) = {1 + t(ad - bc)} a 1 - ct(ax + b)}j a m 1 

exp px p 
x + dt(ax + b) rTma1# x c+dt(ax + b) b a , c, d, p, r exp{pxr - -(c+ t (ax + Tb) I - c dt(ax + b)d,r) 
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It is worthwhile to remark here that in view of relations (5) and (6), the generating 
function (32) provides us with a unification of a large number of results including, 
for instance, the known formulas (cf., e.g., [2, pp. 221-222]) 

(33) L ( )Ln?)(x)tn - (1 tya-m-l exp(-1 x x ) 

and 

(34) L ( + )L +;(X)t= (1 + t)a exp(-xt)L(a) {x(1 + t)} . 

4. Bilateral Generating Functions. In this section, we apply the generating 
relations (31) and (32) to prove the following theorems. 

THEOREM 1. If 

(35) F[X, t] =?an Tn '(X, a, b, c, d, p, r)t, 
n=O 

where the an are arbitrary constants, then 

+ t(ad - bC)} I 1-ct(ax + b)} 
- a exp{pxr P ct(ax + b)) f 

(36) 

F[x?T(axab) I = Tan)(X, a,b, c, d, p, r)n(y)tn, 

where 0n(Y) is a polynomial of degree n in y given by 

(37) _n(y) = E (n)akyk- 

THEOREM 2. For arbitrary a, n> 0, let 
co 

(38) G[x, t] = I anTna - )(x, a, b, c, d, p, r 
n=O 

then 

{1 + at(cx+ d)} a{1+ ct(ax+ b)} exp{pxr-p(x+t(ax+b)(cx +d))r} 

(39) *G[x + t(ax + b)(cx + d), yt/l{ 1 + at(cx + d)} { 1 + ct(ax + b)}] 
co 

= T Tn (X a, b, c, d, p, r)n(Y) 
n= O 

where _n(Y) is given by (37). 
To prove Theorem 1, we substitute the series expansion of yn(y), given by (37), 

on the right-hand side of (36) and we get 
co 

E Tna )(XI a, b, c, d, p, r)On(Y)t' 
n=O 

= kt E (n + k)T a-n-k )(X a b c d p r)tn. 
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On summing the inner series with the help of (32) and then interpreting the re- 
sulting expression by means of (35), we are led immediately to Theorem 1. 

Similar is the proof of Theorem 2. Indeed, we make use of the generating relation 
(31) in place of (32). 

Alternatively, Theorems 1 and 2 may be deduced as corollaries of a general result 
on bilateral generating functions given elsewhere by us [8]. 
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