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Diophantine Approximation of Ternary 
Linear Forms. II* 

By T. W. Cusick 

Abstract. Let 0 denote the positive root of the equation x3 + x2 - 2x - 1 = 0; that is, 
0 = 2 cos(2-r/7). The main result of the paper is the evaluation of the constant 
lim supM-, min M2lx + Oy + 62zI, where the min is taken over all integers x, y, z satisfying 
1 ? max (IYl, IZI) _ M. Its value is (20 + 3)/7 .78485. The same method can be applied 
to other constants of the same type. 

1. Introduction. Let 0 denote the positive root of the equation x3 + x2 - 

2x - 1 = 0; that is, 0 = 2 cos(2ir/7). The main result of this paper is the evaluation 

of the constant lim supM,,,. min M2 IX + Gy + 02Zj, where the min is taken over all 

integers x, y, z satisfying 1 < max (IYI, IzI) ? M. Before going further, I shall indicate 
how this constant fits into the general theory of Diophantine approximations. 

Dirichlet's well-known theorem on Diophantine approximation states that for 

any real number a and any positive integer M, there exist integers x and y satisfying 

Jay-xI < M-1, 1 < y M. 

There are two n-dimensional generalizations of this result. First, for any real numbers 

at (1 < i ? n) and any positive integer M, there exist integers xi (1 < i < n + 1) 
satisfying 

(1) max laiXn+1 - Xi I < M- 1/n 1 _ Xn+1 <A MA 
1 < i ? n 

Second, for any real numbers ai (1 _ i < n) and any positive integer M, there exist 

integers xi (1 < i < n + 1) satisfying 

(2) jXn+1 + aix, + a2X2 + + a^nXnI < M-n, 1 < max Ix21 < M. 
1 < t < n 

Both of these theorems are immediate consequences of Minkowski's linear forms 

theorem. 
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It is natural to ask whether, for given a1, ... , an, either of these theorems can 
be improved. Only large values of M are of real interest, so we say that (1) is improved 
by the constant c (c < 1) for a given n-tuple al, * * *, a,n if for all sufficiently large 
M (1) holds with M- /n replaced by cM- l/n. Similarly, we say that (2) is improved 
by the constanf c for agiven-nrtuple Q*- a1, if for all sufficiently large M (2)- holds- 
with Mn replaced by cMn. 

Now for any a1, , a,n define 

Cl (al***, an) = lim sup min Mln max jaixn+1 - xi1, 

where the min is taken over all integers xi (1 < i < n + 1) satisfying 1 < xn+1 < M, 
and 

C2(a1, * *, a*n) = lim sup min Mnl xn+1 + alxl + * + anXnI,j 

where the min is taken over all integers xi (1 ? i < n + 1) satisfying 

1 < max (xll, . * * X lxnl) < M. 

It is clear that, for any c < ci(a1, * *, an), (1) can be improved by the constant c, 
and that this is false for any c > ci(a1, * *, an). Similarly, for any c < C2(ai, * * * 

, an), 
(2) can be improved by the constant c, and this is false for any c > C2(ai, ... 

* an), 

In the case n = 1, ci(a) = C2(a) and it is possible, by the use of continued fractions, 
to completely solve the problem of evaluating ci(a). 

Let [ao, al, a2, *. ] denote the simple continued fraction expansion of the real 
number a. Then, independently and at about the same time, Davenport and Schmidt 
[3, Theorem 1, pp. 113-114] and Lesca [6, p. 61] proved that 

(3) cl(a) = (I + lim inf [0, an+1, an+2, . *][o, an, an-1, l , a 
n- 0 

Lesca [6, Chapter 3, pp. 57-72] carried the study of cl(a) further. He showed that 
there is an infinite sequence of values of cl(a) between its smallest possible value 
(5 + V/5)/10 (attained for a = '(1 + V/5)) and (1 + V/5)/4. This sequence of 
successive minimal values of cl(a) is analogous to the more familiar sequence of 
successive minimal values of lim inf, y y(ay - { ay }I)I (here { ay } denotes the nearest 
integer to ay) first described by Markoff (see, for example, Chapter II of the book 
by Cassels [1]). Lesca proved various further results about the sequence of minimal 
values of cl(a), analogous to some of Markoff's theorems. 

It follows immediately from the formula (3) that cl(a) = 1 for almost all a, 
and that ci(a) < 1 if and only if the partial quotients ai in the continued fraction 
for a are bounded, i.e., a is "badly approximable". This suggests an interesting 
question: For n > 1, what is the largest constant Cn such that ci(ai, *, an) > Cn 
holds for almost all n-tuples a1, .., a,n? This problem was posed by Jarnik [5] 
in 1958; I am not aware of any earlier references to the problem. 

There was no progress on this problem until Davenport and Schmidt [4] proved 
that, for each n > 1, ci(a1, * * *, an) = 1 for almost all a1, * * , a,.. They also showed 
that C2(ai, . * * , a,n) = 1 for almost all a1, * *, a,.. 

Davenport and Schmidt [3, Theorem 2, p. 115] also proved that, for each n > 1, 
a sufficient (but not necessary) condition for the constants c1(a1, *.. , a,n) and 
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C2(()l. a An) to be less than I is that a1, . . , a. is a badly approximable n-tuple. 
(An n-tuple a1, ee l , an is said to be badly approximable if there is some constant 
c > 0 such that 

max 1aixn+1 - Xi I > C |Xn+1 I 
1 S- i s; n 

for all integers xi (1 < i < n + 1) with xn+ 1 0; or, equivalently, if there is some 
constant c > 0 such that 

|Xn+1 + a1X1 + * + a.Xn > c(max ixi I) 

for all integers xi (1 < i < n + 1) with xl, , xn not all zero.) Since any numbers 
a1, * * *, a,n in a real algebraic number field of degree n + 1 such that 1, a1, * * *, an 

are linearly independent over the rationals make up a badly approximable n-tuple 
(see Cassels [1, pp. 79-80]), it follows that the constant C2(0, 02), with which this paper 
is concerned, is less than 1. Davenport and Schmidt [3, pp. 122-126] proved that 
C2(0, 02) < 1O/11 = .90909 ... 

The obstacle in the way of an exact evaluation of c2(0, 02) is, of course, the absence 
of a continued fraction algorithm, which was essential in deriving (3). However, it 
turns out that the algorithm introduced in my paper [2] for the purpose of finding 
integer solutions x, y, z of the inequality 

Ix + ay + f3zj max (y2, z2) < C, 

where a and ,B are algebraic integers in a totally real cubic field and c is a small con- 
stant, has many features similar to those of the simple continued fraction algorithm. 
In fact, the algorithm of [2] makes it possible to evaluate C2(0, 02) via some moderately 
lengthy computations. 

2. Some Preliminaries. I begin by giving a brief exposition of the application 
of the method of my paper [2] to the inequality 

(4) Ix + 0y + 02zi max (y2, Z2) < 1.3. 

For a detailed account of the method and proofs of various assertions made here, 
the reader should refer to [2]. 

Let F denote the cubic field defined by 0, and let 0' = 2 cos(47r/7), 0" 
2 cos(67r/7) be the conjugates of 0. Then (note that all decimals in this paper are 
truncated, not rounded off) 

0 = 1.24697960 . . ., 0' = -.44504186 ..., 0" = -1.80193773 .... 

Since F is a cyclic or Abelian field, 0' and 0" belong to F. Also, 1, 0, 02 is an integral 
basis for F. 

The field F and the linear form x + oy + 02z were used as an example in [2, 
Section 6], so I simply state the results obtained there. 

Let sp = 1/0' as in [2, Section 6], so 0, sp is a pair of fundamental units for F. 
If w is any unit of norm 1 in F, let Q(w) denote the 3 by 3 integer matrix which satisfies 

[1 0 02]Q(W) = [W Xcow02] 

(in the terminology of [2, p. 166], Q(co) takes x + Oy + 02z to co(x + Oy + 02Z)). Thus 
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O 0 1 -1 0 -1 

Q(0) I 0 2 A () - -1 -2 ' 

_O 1- I O -1I 0 

The set of matrices { Q(w): X is a unit with norm 1 in F} is a commutative group 
under matrix multiplication with generators Q(O) and Q(sp) [2, Lemma 1, p. 167]. 

Given any unit co of norm 1 in F, co1 = 0m'n for some unique integers m and 
n. Define R(m, n) = OcX-1; then [2, formula (13), p. 169], 

IR(m, n)I = lb(' + gm O + kmn)oI2, 
where b(n) I(nI k(n) are the entries of the middle column of Q(Omsnn), read from top 
to bottom. Further define 

(5) S(m, n) = IR(m, n)| max((g n)2, (km )2). 

For each integer n, let v(n) denote the value of m with the property that S(v(n), n) < 
S(m, n) for all integers m - v(n). If, as in [2, Section 4], the values of S(m, n) are 
tabulated in a rectangular array with the integers m arranged on a vertical axis and 
the integers n arranged on a horizontal axis, then S(v(n), n) is the smallest entry 
in one of the columns of the array. The second quadrant (m > 0, n < 0) of the array 
is the only portion which is of interest for the linear form x + Gy + 02z [2, formula 
(19), p. 171]. For the convenience of the reader, Table 1 of [2], which gives part of 
the second quadrant of the array for n > -40, is reproduced in this paper. 

It is proved in [2, Section 7] that if (x, y, z) = (b, g, k) is a solution of 
IX + Gy + 02Z1 max(y2, Z2) < .187N, where N is the smallest value larger than 1 
which can be taken by the norm of x + Gy + 02z, then, except possibly for a finite 
number of exceptions, (b, g, k) = (b n) gbn) k n') for some integers m _ 0, n < 0. 
It is easy to see that N > 7, for a computation gives 

Norm (x + Oy + 02z) = X3 + y3 + Z3 _ x2y + 5X2z 

- 2Xy2 + 6XZ2 _ y2z - 2yz2 - xyz 

and simple congruence considerations show that the right-hand side is divisible 
by 2, 3 or 5 if and only if each of x, y, z is divisible by 2, 3 or 5, respectively. Hence, 
except possibly for a finite number of exceptions, every solution of (4) corresponds 
to some S(m, n) with m > 0, n < 0. 

If a is any function of 0, 0' and 0", let a' and a" denote the numbers obtained 
by replacing 0, 0', 0" by 0', 0", 0 and 0", 0, 0', respectively, in the expression for a. 
Thus if c-' = 0m,n, then c'- = 0'm,/nt and c"1 = 0o"m/tin. Now let n be any fixed 
integer and put w-1 = Omscn ; define u(n) to be the value of m with the property that 

I lwu(nd)/u(n) I I | < I c41/c4j - I1 

for all integers m # u(n). The function u(n) is easy to calculate, as the following 
lemma [2, Lemma 5, p. 170] shows: 

LEMMA 1. Define E1 = 00/2 and E2 = 1.n2I The integer u(n) is equal to the 
unique integer m which satisfies 

log(2(1 + E1,') 1) n log E2 log(2(1 + E1')) (6) 
log E1 log E1 

+ 
log E1 
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Let E(n) denote w(A) / ) = (00,2)u(n)(q,,p,2)n; this function will be very important 
later on. Note that it follows simply from the definition of u(n) that [2, formula (17), 
p. 170] 

(7) 2 0 1 > I E(n)l > 2 012 

for every n. So we define E+ = 20-1 and E_ = 20'2. 

By [2, Theorem 1, p. 171], for every integer n < 0, 

ri ? v(n) - u(n) > r2 

where r1 and r2 are integers which can be calculated. 
The calculation of ri and r2 depends on the following considerations. Define 

Tm,n = max (g(?)+ml, jku()nm). It is easily seen [2, remarks preceding Lemma 6] 
that S(u(n) + m, n) < S(u(n) + m + 1, n) holds if and only if 

(8) Tm+l,n/Tm,n > 0"; 

and that, for each n, Tm+?in/Tmn -> I > 0- 1/2 as m - +o and Tm?i,n/Tm,n -> 

|0,| < 0-1/2 as m - -o. Thus, for a given n, (8) is true for all sufficiently large m 
and false for all sufficiently large Iml, m < 0. If integers m+ and m_ can be found 
with the property that, for each n < 0, (8) holds for all m > m+ and (8) is false for 
all m < m - 1, then we may clearly take r, = m+ and r2 = m_. 

A method for finding m+ and m_ is given in [2, Lemma 6]. The following notations 
simplify the explanation of this procedure: For any m and n, Tm+?,, /Tm,n is equal 
to one of the four quotients 

fgu(n) +m+l/gu((n) +m I Igu(n() ? m+l/ku (n) k m Ikn Ik? (m) ) +i/k m Ik'(n)+m+l/ gu(n)+m I; 

we say Tm+?,n/Tm,n is of type 1, 2, 3 or 4, respectively. Next we define 

(9) G = 
170(0,2 _ 0,,2) K = 7 0(0" - 0'), 

and further define two numbers I = I(m, n) and J = J(m, n) in F, each of which 
depends on the type of Tm+l,n/Tm,n, as follows: If the type of Tm+?,n/Trn,n is 1, 2, 
3 or 4, then (I, J) equals (G, G), (G, K), (K, K) or (K, G), respectively. 

Define the function f,(m, E) for t = 1, 2, 3, 4 by 

ft(m, E) = 10'EI'0'm + 0"I'0"mj/IEJ'0'm + J"0"tml 

where I and J have the values which they take on for type t and E is a parameter 
which satisfies E+ > JEJ > E_. 

It is proved in [2, Lemma 6] that for each sufficiently large fixed lnl, n < 0, the 
inequality (8) is false for some m only if f t(m, E) < 0-1/2 is possible for some choice 
of t and E. A calculation shows that l0"i"/J"[ > a-1/2 for each t, so f t(m, E) must 
exceed 0-1/2 for large enough m. This implies (8) is true for large enough m, and 
so gives an upper bound on v(n) - u(n). Carrying out the calculations for each t 
gives the following: 

ft(0, E) < 0-1/2 is not possible for t = 1, 3, 4, 

(10) f2(0, E) < 0-1/2 is possible, but only for E < 0, 

f2(l, E) < a-1/2 iS not possible. 
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It follows that 1 > v(n) - u(n) for Inj large enough, n < 0. 
It is also proved in [2, Lemma 6] that, for each sufficiently large fixed lnl, n < 0, 

the inequality (8) is true for some m only if f,(m, E) > 01/2 is possible for some 
choice of t and E. Since IO'I'/J', < a-1"/ for each t, f t(m, E) is less than 0- "2 for 
sufficiently large Iml, m < 0. Thus we can calculate a lower bound for v(n) - u(n) 
as follows: 

ft(-1, E) > 0-1/2 iS possible for t = 1, 2, 3, 4, 

(11) ft(-2, E) > 0-1/2 is possible only for t = 1, 2, 4, 

f t(-3, E) > 0-1/2 is possible only for t = 4. 

It follows that v(n) - u(n) ? -3 for Inj large enough, n < 0. 
In fact, 1 > v(n) - u(n) ? -3 holds for all n < 0, as was remarked in [2, p. 177]. 

For the purposes of this paper, it is convenient to improve on these inequalities. 
THEOREM 1. For each even integer n < 0, u(n) equals either 1(n) + 1 or v(n) + 2. 

For each odd integer n < 0, u(n) equals either v(n) or v(n) + 1. 
Proof. Define the function g(m, E) by 

EG'1O,m + G ,m 
g(m, E) = EKIO'm + K" 0 ml 

where G and K are the constants defined by (9) and E is a parameter which satisfies 
E+ > IEI > E_. 

By an argument similar to that used in [2, Lemma 6], we find that for each suffi- 
ciently large fixed lnl, n < 0, the inequality 

ug(n) +m/ku(n)?mI < 1 

is false for some m only if g(m, E) > 1 is possible for some choice of E. A calculation 
shows that g(m, E) tends to a constant less than l as m + o and as m - o, 
and a little more computation gives 

g(i, E) > 1 holds for i = 0, -1 if and only if E > 0, 
g(2, E) > 1 is not possible, 

g(+1, E) > 1 is possible, but only for E > I030'1 = 1.1588 ... 

g(-2, E) > 1 is possible, but only for E satisfying I"K = .5549 ... > E> 0, 
g(-3, E) > 1 is not possible. 

It follows immediately that, for all sufficiently large lnl, n < 0, 

Tm,n = Ik (n)+mI for each m < -3 and each m > 2, 

T, = Ig ()n)lI is only possible if E > 1030', 1, 

(12) Tt n = Ig(n(n)?zI, E(n) > O, (12) T,, n = 19u(n)+J1(i = 0 1, 
Ti,n = IkuI(n)+ |, E(n) < 0, 

T-2,n = Igu(n)-21 is only possible if 10"1-1 > E > 0. 

Referring to (10), we see that 1 = v(n) - u(n) could occur only if Tl,n = gun()) +? 

TO,= n ku (n) and E < 0; however, this would contradict the second statement in 
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(12), so we may conclude that 0 ? v(n) -u(n) for all sufficiently large lnl, n < 0. 
Similarly, (11) implies that v(n) - u(n) =-3 could occur only if T-2,, = (n) 

and T3,n = [gu4(n))_ , which would contradict the first statement in (12). Therefore 
v(n) - u(n) > -2 for all sufficiently large In , n < 0. 

In order to establish that u(n) = v(n) does not hold for some integer n, it suffices 
to show that (8) holds with m = -1 for the given n. It is proved in [2, Lemma 6] 
that, for each sufficiently large fixed lnl, n < 0, the inequality (8) is true with m = - 1 
if f t(- 1, E(n)) > 0-1/2 is true, where t is the type of TO,n/T-h,n. Since E(n) is positive 
if and only if n is even, it follows from the third statement in (12) that u(n) = v(n) 
is false for each sufficiently large even lnl, n < 0, provided f (- 1, E) > 0- 1/2 is true 
for any allowable positive value of E (which can be verified by a simple calculation). 

If u(n) = v(n) + 2 for some n, then (8) is true with m = -2; it then follows from 
the second statement in (11) that, if InI is sufficiently large and n < 0, T1, n/T2, n is 

of type 1, 2 or 4. Since E(n) is positive if and only if n is even, the third statement 
in (12) implies that T1, n/T-2,. can be of type 1 or 2 only if n is even, and the third 
and fourth statements in (12) imply that T-,X,/T-2,n cannot be of type 4. Thus for 
Inj sufficiently large, n < 0, we can have u(n) = v(n) + 2 only for n even. 

This completes the proof of the theorem for sufficiently large lnl, and it is easily 
verified that in fact the theorem holds for every n < 0 (see [2, Tables 1 and 2]). 

The following simple lemma summarizes some useful facts about the function u(n). 
LEMMA 2. Suppose n < 0; then u(n) increases as n decreases. There are no more 

than four consecutive values of n for which u(n) has the same value. Whenever u(n) 
takes on a given value, it has that value for at least three consecutive values of n. For 
n < 0, u(n) takes on every integer value > 0. 

Proof. A little calculation using (6) in Lemma 1 gives 

u(n - 4) > u(n) + 1 > u(n- 1) > u(n) 

for every n < 0. We also find that 

u(n - 1) = u(n) + 1 implies u(n - 1) = u(n- 2) = u(n - 3). 

Putting these facts together gives the lemma. 
The pattern of values of u(n), -1 > n > -40, is easily seen in Table 1, where 

the numbers S(u(n), n) are indicated by asterisks. 

3. Evaluation of C2(0, 02). Since 0, 02 is a badly approximable pair (see the 
Introduction), there is a positive lower bound for the numbers S(m, n). The following 
result [2, Lemma 10, p. 177] gives the value of the smallest constant c such that, 
given any e > 0, the inequality S(m, n) < c + e holds infinitely often. This constant 
is plainly equal to lim infn_-o S(v(n), n). 

LEMMA 3. Let 0 = 2 cos(27r/7); then 

lim inf min Ix + Oy + 02z1 max(y2 Z2) = 4 (02 + 30 - 3) = .1874 . . 
M-+C M 

where the min is taken over all integers x, y, z such that max (Y, IzI) = M. 
The following lemma indicates, among other things, that S(u(n)- 1, n) is arbi- 

trarily near the constant of Lemma 3 for suitable even values of n. 
LEMMA 4. Let E(n) = (00"2)u(n)(,p,2).I If n -- - cO through even values of n, 

then 
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(13) S(u(n) + i, n) - 0+1'(O'G' IE(n)l1/2 + 0"/G" IE(n)l 12)2 -? 0 

(i = 0 or -1). 

If n - o through odd values of n, then 

(14) S(u(n) + i, n) - O'+1(O'K' IE(n)I1/2 - 0"'K" IE(n)l 1/2)2 0 

(i = 0 or -1). 

Proof. Define w-(1) = Ou(n) p. It follows from the definition of R(m, n) that, 
for any integer i, R(u(n) + i, n) = 0i+ 1 (w=), so (5) implies 

(15) S(u(n) + i, n) = i?1 IWu(n) I max((gu(n) )2, (ku(n) )2) 

for any integer i. 
It is obvious that E(n) is positive if and only if n is even; hence the third statement 

in (12), (15) and [2, formula (16) with p = u(n), m = 0 or -1] imply that 
i?11 / ,2 

0 O'H O't H' 0"IH" , ) (16) S(u(n + i, n') = -( +-I + --I/' O -) 
I u(n) I \ u(n) Wu(n) Wu (n) 

where the constant H is equal to either G (if n is even) or K (if n is odd). 
It is easily seen that E(n) = Wu(n)Au (n = (Wu(n)fu(n))-1 and (Au(n) I 

> o as n -o. 

These facts in conjunction with (16) imply the lemma. 
If i = -1, the functions appearing in (13) and (14) are important enough to be 

given names; define 

r(E) = (E1/2G'/0' + E-1/2G",/O")2, K(E) = (E1/2K'/0' - E-1/2Kt /011)2 

The minimum value of r(E) occurs for E = 0o-, and r(0-1) is just the constant of 
Lemma 3 (see Figure 1). Hence 

(17) lim inf S(v(n), n) = lim inf S(u(n) - 1, n). 
n--+ o n even 

This relation does not, of course, mean that v(n) = u(n) - 1 for n even. It can be 
shown that the equality v(n) = u(n) - 2, which is allowable for n even by Theorem 1, 
does occur, although very rarely. 

We now turn to our main result. 

A: (E, .2117 ...) 
K(E) B: (1/0, .1874 ...) 

C: (E+, .2108 ...) 
D: (E, .4332 ...) 

.D F E)F: (- 1/0", .4211 ...) 

t 

A B C 
~~~~~~~~~~~~~G: (E +, .5 512 ...t 

E = .3961 ... E+= 1.6038. 

FIGURE 1 
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THEOREM 2. Let 0 = 2 cos(27r/7); then 

(18) lrn sup min M2 Ix + Gy + 02z1 = +(20 + 3) = .78485 ... 

where the min is taken over all integers x, y, z satisfying 1 < max (IYI, IzI) < M. 
Because of (17), the integers TI1 2, n even, will play a special role in what follows. 

We first require a lemma giving bounds on the ratio TI1 ,n2T1 , n even. 
LEMMA 5. If n - -o through even values of n such that u(n - 2) = u(n), then 

(19) T n- 1 + E(n)G'/012 + G"/0"2 12 

T- 1 n E(n)G'/0' + G"/0" 0 
and 

2 2 

(20) lim sup = 5.6773 . .. , lim inf n- 2 = 4.4707 . 
T-1,n T-1,n 

If n - c - through even values of n such that u(n - 2) = u(n) + 1, then 

(21) T____ _ - E(n)G' + G" 
(21) ', ,, 1 E(n)G'/0' + G"/0 _ 0 
and 

2 2 

(22) lim sup 2 = 45715 .. lim inf 2 = 3.5998 . 
T_1,n T1 ,n 

Proof. Note that by Lemma 2 the only possible values for u(n - 2) are u(n) 
and u(n) + 1. By the third statement in (12), TII,l = g((n), The same statement 
plus a little manipulation with the matrices in [2, Section 3] gives 

T_- 2= 1 b - gn) (n)_l + ki (n if u(n - 2) = u(n) 

and 

T_ 2= 1 b(n - g (n)_l + 2k(n_) if u(n - 2) = u(n) + 1. 

Using [2, formula (16) with p = u(n), m = -1], we can calculate functions of 
E(n) to which bn(n) _jg (n) l1 and k )_1/gu ),_ tend as n -* - through even values; 
we use the same facts about E(n) and Wu(n) that were applied to (16) in the proof of 
Lemma 4. A little more calculation gives (19) and (21). 

To prove (20) and (22), we need only find the maximum and minimum of the 
functions of E(n) in (19) and (21), subject to the constraints 

(23) uu(n - 2) = u(n) if and only if E_ < IE(n)J < 2030,2 = .7680 . 

u(n - 2) = u(n) + 1 if and only if 2030,2 < IE(n)I < E+1. 

To prove (23), we use the fact that E(n) = ou(n)+2noi2u(n)+n Thus E(n - 2) 
E(n)/040'2 l 2.0881E(n) if u(n - 2) = u(n) and E(n- 2) = E(n)/03 ~ .5157E(n) 
if u(n - 2) = u(n) + 1; hence (7) implies (23). 

For future reference, define 

-(EG' /02 + G /0"2) -(EG' + G") 
h1(E) EG /0' + G/0" 

, h2(E) = 
EG /0I + G /0" 

Figure 2 gives graphs of these functions. 
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C A: (E _ 1.1i44 ...) 
B: (-1/0", 1.2469 ...) 

. D C: (E+, 1.6829...) 
D: (E, 1.3532 ...) 
F: (E, .8973 ...) 

h 2(E) F 

E =.3961 ... E= 1.6038... 

FIGURE 2 

It may be appropriate to mention here that E(n)I (n = -1, -2, *--) is dense 
in the interval [E_, E+] (this follows easily from Kronecker's theorem on inhomo- 
geneous Diophantine approximation [1, p. 53]). This fact will be used several times 
later on, without explicit mention (e.g., in the discussion after Lemma 6 in this 
section). 

It follows from (13) that 
2 IL() ~ 

()(n)_121 __) = 2 1 (24) lim sup T-1,n lb(n))-l + gu()_-l 0+t'- k= max r(E) = .2117 . 
n-co;n even E_- E _ E+ 

so we may assume in (18) that T 1 n-2 2> T! 1 ,neven, sayM2 = nTI1,, a >1 
Hence 

(25) TI1 n-2/T-1 n > a > 1. 

It is clear from (24) that the lim sup in (18) will be approached only for those M for 
which a is reasonably large. Lemma 5 gives upper bounds on the size of a, because 
of (25). 

Since all solutions of (4) correspond to some S(m, n) and we know C2(0, 02) < 1, 
in evaluating min M2 [x + Gy + 02ZI in (18), where M2 = a2TI1 and (25) holds, 
it suffices to consider only those integer triples (x, y, z) which are equal to (bu(n+ i) +m3 

gu(n?+i)?+m, u (n?++)m) for some integers j and m. Given such a triple, we have 

M2 Ix + Gy + 02z1 = aTI1,n IR(u(n + j) + m, n + 1) 

and 
2 22 (26) M = aT7I,n => Tm,n+i- 

Combining (25) and (26) gives 

(27) T2 l,n2/T_ 1,7 > a > Tm,n+i/T-l,n 

Thus the problem of evaluating the constant in (18) is reduced to that of evaluating 

(28) lim sup min sup aT2 1, IR(u(n + j) + m, n + i)l, 
n-c-) j,m a 

where j and m are any integers and a satisfies (27). The remainder of this section is 
devoted to evaluating (28). 
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By the definitions R(m, n) = Ow-' and w,' = 0m0-n 

IR(u(n + j) + m, n + 1)I = 0m+l+u(n+j) 01I-n-j 

= 0u(n+ j) -u(n) +m+1 0'1j- IR(u(n) - 1, m)I. 

Hence, by Lemma 4 with i = -1, if n - c - through even values of n, then 

(29) T-1,n IR(u(n + j) + m, n + D)I - Iu(n?j)-u(n)?m?1 I-'Kr(E(n)) -> 0; 

if n - -o through odd values of n, then 

TI1,n IR(u(n + j) + m, n + )I - I u(nI)-u(n) +m+l K( E()) -- o 

Calculations based on (29) will give the following lemma. 
LEMMA 6. Suppose n < 0, n even. If Inj is sufficiently large, then 

(30) min sup aTl ,n IR(u(n + j) + m, n + j)I, 
i, an ( 

where j and m are any integers and a satisfies (27), is given by the following integer 
pairs j, m: 

(A) i = 0, m = -1 if _ 302 + 30 + 2 = 1.0760 . .. < E(n) < E+, 

(B) = 0, m = -2 if 203 0,2 = .7680 . .. K< E(n) < _302 + 30 + 2 
or E_ < E(n) < 10"I1K = .5549 

(C) j= -2, m = 0 if 10"1K1 < E(n) < 2030,2. 

We postpone the lengthy proof of Lemma 6 until the next section, and conclude 
this section by deriving Theorem 2 from Lemma 6. We deal with the three cases in 
Lemma 6 one at a time. 

Case (A). By (23), we have u(n- 2) = u(n) + 1, so (21) applies. It follows 
from (21), (25) and (29) that 

lim sup sup aT1 ,n IR(u(n)- 1, n)I = max (1 + h2(E))2r(E), 
n- - (xo a E 

where the max is taken over -302 + 30 + 2 < E ? E+. Calculation shows that 
the maximum occurs at E = _302 + 30 + 2, and the value of the maximum is 
(20 + 3)/7 = .78485 ... 

Case (B). Suppose first that 2030,2 < E(n) < K 3 02 + 3 0 + 2, so u(n - 2) = 

u(n) + 1 by (23). Then (21), (25) and (29) imply 

lim sup sup axT1,n IR(u(n) - 2, n)I = max (1 + h2(E)) 0- (E), 
n- - (xo a E 

where the max is taken over 203 0,2 < E ? _302 + 30 + 2. Calculation shows that 
the maximum is strictly smaller than (20 + 3)/7. 

Now suppose that E_ < E(n) < 10"K-1, so u(n - 2) = u(n) by (23). Then (19), 
(25) and (29) imply 

lim sup sup acTi1 IR(u(n) - 2, n)I = max (1 + hl(E))20 1r(E), 
n- - (xo a E 

where the max is taken over E_ < E < I0" I Calculation shows that the maximum 
occurs at E = 10"1-1, and the value of the maximum is (20 + 3)/7 = .78485 ... 
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Case (C). By (23), we have u(n - 2) = u(n), so (19), (25) and (29) imply 

lim sup sup aTI1,n IR(u(n - 2), n - 2)1 = max (1 + h1(E))200'2r(E), 
n- - (xo a E 

where the max is taken over "K0" < E < 20 30,2. Calculation shows that the maxi- 
mum is less than .3. 

Combining the above results for Cases (A), (B) and (C) gives Theorem 2. Indeed, 
we have proved even more, for the preceding discussion clearly gives considerable 
information about those values of M for which min M2 [x + Gy + 02ZI in (18) is 
near its lim sup. 

4. Proof of Lemma 6. First we require three computational lemmas. 
LEMMA 7. For each integer m, if n c-o through even values, then Tm,n/Til,n- 

q(E(n), m) -O 0, where 

q(E(n), 1) = E(n)GK/' + GK"O" if ED_ < E(n) < 10301.1 = 1.1588 8 

q(E(), ) =E(n)G'10' + G"10" 

q(E(n) I) = E(n)G'/0' + G"/O" if 103oil 
1 < E(n) < E+, 

q(E(n), 0) = hAE(n)), 

(31) q(E(n), -2) = hl(E(n)) if E_ < E(n) < 10"1 1 = 5549 . 

(32) q(E(n), -2) = 
E(n)G'/0' + G'-'/0'-' if IO1" K1 < E(n) < E+, 

(33) q(E(n), ni) = | E(n))GK/O + Gl/O"l if m < -3 or m > 2. 

COROLLARY 1. If n < 0, n even and In| is sufficiently large, then Tm.n > Th1,n 
holds for all integers m # 0, - 1. 

COROLLARY 2. If n < 0, n even and In| is sufficiently large, then T1," > To,n 
holds only if E(n) > 1030,1-1 = 1.1588 ... 

COROLLARY 3. If n < 0, n even and Inj is sufficiently large, then for each integer 
m ? -3 we have Tm n/ n > 774 

Proof. The various statements in (12) determine Tm, n for each integer m, with 
conditions involving the size of E(n) if m = 1 or m = -2. Thus the formulas for 
q(E(n), m) follow as in the proof of Lemma 5. 

The first corollary follows from the fact that, if m # 0, q(E, m) > 1 holds for 
all E satisfying E_ ? E _ E+. The second corollary follows from the fact that q(E, 0) 
> 1 if and only if E _ 030IK'. 

To prove the third corollary, we calculate that if m _ -3, then q(E, - 3)2 

(2.75)2 > 7 and q(E, m)2 > (2.75)2 10'1-2m-6 > 7.4-m- 3 for all E satisfying E ? 
E E+. 

LEMMA 8. If n - -o through even values of n such that u(n - 1) = u(n), then 

(34) T-l,n-l/T-l,n - (1 + h1(E(n))) -O 0 

and 
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T2 _T2 
(35) lim sup 2 = 6.4376 . . , lim inf = 4.4707 . 

T-1 ,n T-1,n 

If n - o through even values of n such that u(n - 1) = u(n) + 1, then 

T_ 1 n-l/T-ln- (1 + h2(E(n))) -O 0 

and 
2 2 

T_ n_ T - _ - 

(36) lim sup T2 = 5.5380 .l.i. , lm inf 2 = 3.5998 . 
T-1 n T-1,n 

COROLLARY. If n < 0, n even and In| is sufficiently large, then T, n-1 >_ T1,n-2 

with equality if and only if E(n) < 2030,2 = .7680 ... orE(n) > 2 I0"-1 = 1.1099 
Proof. Note that by Lemma 2 the only possible values for u(n- 1) are u(n) 

and u(n) + 1. We proceed as in the proof of Lemma 5, using the facts 

(37) T1,n- = b( - gn)l)_l + k(n) lI if u(n - 1) = u(n), 

(38) T 1 l = I - g~(n)) + 2k(n)l if u(n - 1) = u(n) + 1, 

and 

(39) u(n - 1) = u(n) if and only if E < IE(n)I < 210"I'1 = 1.1099 

u(n - 1) = u(n) + 1 if and only if 210"1' < IE(n)l < E+. 

To prove the corollary, we observe that comparing (37) and (38) with the cor- 
responding formulas for T-, n-2 in the proof of Lemma 5 shows that T_1,n1 = 

T_1,n-2 if u(n - 1) = u(n - 2); combining (23) and (39) gives the ranges of E(n) 
for which u(n - 1) = u(n - 2) holds. For the remaining values of E(n), a calculation 
using (21) and (34) gives T-1,Xn_ > T_1,n2. 

LEMMA 9. For each integer m, if n - -o through even values, then 

Tm n-_ I IE(n - 1)1 K'0'm - _K"0"tmI o 

T_1 n-1 |E(n - 1)| K /0 K -K '/0' 

COROLLARY 1. If n < 0, n even and In| is sufficiently large, then Tm,n-I > T-ln-1 

holds for all integers m 7 0, 1, -1. 
COROLLARY 2. If n < 0, n even and Inj is sufficiently large, then T1, n-1 > Ton- 1 

holds only if IE(n - 1)I > 0- 1 = .8019 ... and TI,n1 > T, n1 holds only if JE(n -1) 
> 02 = 1.5549... 

COROLLARY 3. If n < 0, n even and nI is sufficiently large, then, for each integer 
m _ -4, we have Tm,n-1/T1,n-1 > 20 4-. 

Proof. It follows from (12) that Tm 1 = , kk +mn for all m, so Lemma 9 
follows after a by now familiar kind of calculation (note that E(n - 1) is negative 
because n - 1 is odd). 

The proofs of the corollaries parallel the proofs of the similar corollaries to 
Lemma 7. 

We shall prove Lemma 6 by showing that the only possibilities for the minimum 
in (30) are those given by (A), (B), (C) in the lemma. 

The case j = 0, m = - 1. Here (27) reduces to (25), which holds for all suffi- 
ciently large Inj by Lemma 5. So the case j = 0, m = -1 always gives a candidate 
for the minimum in (30). 
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The cases j = O, m > 0. Forj = 0, m > 0, (29) gives 
2 

T_1,n IR(u(n), n)I - 1 T(E(n)) 0 

and for j = 0,rm = -1, (29) gives 
2 

(40) T_1,n IR(u(n)- , n) - (E(n)) 0, 
as n - o through even values. Since m > 0 implies r(E) < 0"" 1r(E) for any E, 
the min in (30) cannot occur for j = 0, m > 0 if Inj is sufficiently large. 

The case j = 0, m = -2. In this case (29) gives 
2 

(41) T-1,n IR(u(n) - 2, n)I 0 6 1r(E(n)) > 0. 

The corresponding result for j = 0, m = -1 is (40), so j = 0, m = -2 is a better 
candidate for the min in (30) whenever (27) holds for j = 0, m = -2. Calculations 
using Lemma 5 and (31), (32) of Lemma 7 show that, for sufficiently large 
|n|, T-1 ,n2/T1l,n > T2,n/T1, n is true if E(n) < - 302 + 30 + 2 = 1.0760 . .. , but 
false if E(n) > - 302 + 30 + 2. Thus j = 0, m = -2 is a better candidate than 
j = 0, m =- if and only if E(n) < - 302 + 30 + 2. 

The cases j = 0, m < -3. For m < -3, the size of Tn n/TI1,n is determined 
by Lemma 7, (33); calculation shows that q(E, m)2 > (2.75)2 > 7 for E_ < E < E+. 
Since TI1 ,n2/TI 1n < 6 for Inj large by (20) and (22), we find that (27) never holds 
for j = 0, m _ -3, InI large. 

The case j = -2. By Lemma 7, Corollary 1, (27) with j = -2 is possible for 
large InI only if m = 0. Even when m = 0, by Lemma 7, Corollary 2, (27) holds only 
if E(n - 2) > 1030'1-1 = 1.1588 ... 

By (23), E(n - 2) > 1.1588 implies u(n - 4) = u(n - 2) + 1, and by Lemma 2 
this implies u(n - 2) = u(n). Thus we have (see the discussion below (23)) E(n - 2) = 
E(n)/040'2, and (27) holds only if 2030,2 = .7680 ... > E(n) > 100'1 = 10"K-1 = 

.5549 ... . For these values of E(n), j = -2, m = 0 is a better candidate for the 
min in (30) than j = 0, m = -2, because (29) gives 

TI1,n IR(u(n - 2), n - 2)1 - 66'2r(E(n)) -> 0 

if j = -2, m = 0, and the constant 00,2 = .2469 ... is smaller than the constant 
0-1 = .8019 ... in the corresponding formula (41) for the case j = 0, m = -2. 

Putting together the candidates j, m for the min in (30) which we have so far, 
we obtain exactly the Cases (A), (B), (C) of Lemma 6. Thus the proof of Lemma 6 
is complete if we show that the pairs j, m not yet considered (that is, pairs with j - 0 
and j - -2) never give the minimum in (30). 

The cases j < -4, j even. It follows from (27) that T_1,n2 > Tm,n+ j. We know 
from Lemma 5 that T_1, n2 < T_1,n4 for all large Inj and from Lemma 7, Corollaries 
1 and 2, that T_1,n4 < Tm,n-4 for m - 0 or E(n - 4) < 6030'K-1, and all large InI. 
Hence if j < -4, j even, (27) is possible with Inj large only if T1,n > To,n-2 can 
occur with Inj large and E(n - 2) > 103'K1-1. As we saw in the case j = -2, this 
implies u(n - 2) = u(n), so the reasoning of the proof of Lemma 5 gives 

Ton- = lb (n)- _ (n) + 2kv (ni 

As in the proof of (21), we find that To,n-2/T-l,n -(1 + h2(E(n))) -> 0 as n - o 

through even values. The function 1 + h2(E) always exceeds 1, so T1, _n > To0,-2 
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cannot occur for large lnl. This eliminates the cases i < -4, j even as candidates 
for the min in (30). 

The cases j > 2, j even. Let j = 2t, t > 1; then the following lower bound on 
the coefficient of r(E(n)) in (29) is a trivial consequence of Lemma 2 and the fact 
that I 

6|- 2 = 5.0489 ... > 5: 

eu(n+Y)-u(n)+m+1 1011-i > om+l-t 1011-2t > o+-5 

The coefficient of r(E(n)) in (29) is 1 if j = 0, m = -1 (see (40)); hence an integer 
pair j = 2t, m can be a candidate for the minimum in (30) only if 

(42) Om+1-t5t < 1. 

Since t > 1, (42) implies m < - 3. 
If (27) holds for j = 2t, t > 1 m < -3 we deduce the following for all sufficiently 

large In : 

(43) 6t+'T_ >+ T T1,n-2 > T n+j >74m3_t 

The first inequality follows from (20) and (22), the second from (27), and the third 
from Lemma 7, Corollary 3. 

Now (43) implies 6 +1 > 7.4- m- , which gives a lower bound for m in terms of t. 
Calculation shows that for any t > 1 this lower bound contradicts (42). Hence the 
cases j > 2, j even never give a candidate for the min in (30). 

The case j = -1. If j = -1 and m ? 2 or m < -1, it follows immediately 
from Lemma 8, Corollary and Lemma 9, Corollary 1 that (27) is impossible for 
large lnl. 

If j = -1, m = 0, it follows from Lemma 8, Corollary and Lemma 9, Corollary 2 
that (27) is possible only if JE(n - 1)1 > 0-1 = .8019 ... ; this inequality implies 
E(n - 1) = E(n)/602', and so is equivalent to 2 1 0' = 1.1099 ... > E(n) > 100'1 = 

10"I-1 = .5549 . . . . In the range 2 0302 = .7680 ... > E(n) > I 0''I- 1, the candidate 
j = -2, m = 0 for the min in (30) is superior to the candidate j = -1, m = 0, 
because the coefficient of r(E(n)) in (29) is 00,2 = .2469 ... if j = -2, m = 0 and 
is I 0061 = .5549 if] = - 1, m = 0. In the remaining range 2 1 66'1 > E(n) > 203 02, 

we have for Inm large 

(44) T1,n -1 TO,n-1 To n-l > (5.6)(.85) > 4.7 > T-l,n-2 

T-l1,n T-I],n -1 T-l,n T-l1,n 

(the first inequality follows from a calculation using (34) and Lemma 9 with m = 0, 
and the third inequality follows from Lemma 5, (22)), SO (27) does not hold. This 
completes the proof that j = -1, m = 0 does not give the minimum in (30). 

If j = -1, m = 1, it follows from Lemma 8, Corollary and Lemma 9, Corollary 2 
that (27) is possible only if JE(n - 1)1 > 02 = 1.5549 .. . , that is, only if 2 I 6'| = 

1.1099 . . . > E(n) > 1040, = 1.076 ... ; but (44) shows that (27) does not hold for 
this range of E(n). 

The cases j < -3, j odd. If (27) is true for j < -3, j odd, and any m, then 
T_1,n-2 > Tm,n+ j. However, for large In| a calculation using Lemma 9 gives Tm2n+i > 

.6T2 for any m and (35), (36) give TI 1 2 > 3.5T1 T +2 Thus (27) would imply 
T_,n-2 > 2.1T1 n+j+l, which plainly contradicts Lemma 5 for j < -3, j odd. 
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The cases j ? 1, j odd. Let j = 2t + 1, t _ 0; these cases are dealt with in the 
same way as the cases j ? 2, j even above. 

First we find a trivial lower bound on the coefficient of r(E(n)) in (29): 

eu(n+ij)-u(n) +m+1 10 1-i > em-t 1at1-2t-1 

6 ? ~~~ e'Kt1 ~> 26m-t5t. 

The analogue of (42) is 

(45) 20 mt5t < 1 

(which implies m ? -4 since t ? 0) and the analogue of (43) is 
t+-1 2 2m4 2 

(46) 6 T 17 +, > T 1, n2 > Tm,n+i > 20.4 4 

where the last inequality follows from Lemma 9, Corollary 3. Calculation shows 
that, for any t ? 0, the bounds on m given by (45) and (46) are contradictory. 

All cases have now been covered, so the proof of Lemma 6 is complete. 

5. Concluding Remarks. It is clear that if the method of [2] can be applied to 
a linear form x + oay + fBz, then the method of the present paper can be used to 
attempt to find c2(ae, ,B). The attempt will succeed if and only if the method of [2] 
gives all solutions of Ix + oay + f3zl max(y2, Z2) < c for a sufficiently large c. It is 
certainly sufficient if c ? 1, as was the case for the example in this paper (see (4) 
and the first paragraph after (25)). It may even be the case that if the method of [2] 
applies to the linear form x + oay + fBz, then the constant c can always be taken 
large enough to permit the evaluation of c2(a, 0); but it appears to be difficult to 
prove anything in this direction. 
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