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A Finite Element Collocation Method for 
Quasilinear Parabolic Equations 

By Jim Douglas, Jr., and Todd Dupont 

Abstract. Let the parabolic problem c(x, t, u)ut = a(x, t, u)u,. + b(x, t, u, ut), 0 < x < 1, 
O < t < T, u(x, 0) = f(x), u(O, t) = go(t), u(l, t) = g1(t), be solved approximately by the 
continuous-time collocation process based on having the differential equation satisfied at 
Gaussian points tij and li,2 in subintervals (xi-,, xi) for a function U:[O, T] ->* C3, the class 
of Hermite piecewise-cubic polynomial functions with knots 0 = xo < xi < ... = 1. 
It is shown that u - U = O(h4) uniformly in x and t, where h = max(xi -xi-). 

1. Introduction. Consider the quasilinear parabolic differential equation 

(1.1) c(x, t, u) at = a(x, t, u) + b(x, t, u , < x < 1, 0 < t < T, 

subject to the initial condition 

(1.2) u(x, 0) = /(x), 0 < x < 1, 

and the boundary conditions 

(1.3) u(0, t) = go(t), u(1, t) = g1(t), 0 < t ? T. 

Assume the stability condition 

(1.4) 0 < m _ c(x, t, u) _ M, m _ a(x, t, u) _ M < c, 

for 0 ? x < 1, 0 < t _ T, and - o < u < c. 
We shall be concerned with the numerical solution of (1.1)-(1.3) by a method 

of collocation for the particular case in which the approximate solution is an Hermite 
piecewise-cubic polynomial in the space variable x at each time t. More precisely, let 

0 = Xo < Xi < ... < X76= 1, hi =xi-xi-X_,, 

and 

I; = [Xj_1, xj, I = [0, 1]. 

Let 

3C3- {v = v(x) E C(I) v V is a cubic polynomial on each Ii, j = 1, n , . 

We shall seek a map U: [0, T1 --+ C3 such that U is a good approximation of u for 
0 < t ? T. Recall that a basis for 3C, can be constructed by translation and nor- 
malized piecewise-dilation of two functions. Let 
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1 -3X2 + 2x3, 0 x 1, 

V(x)= I - 3X 2 - 2x 3, - < x _ 0, 

t0, lxi > 1, 

Jx( -x)2, 0O x_ 1, 

S(x) = x(l + x)2 -1 _ x _ O, 

to, lxi> 1. 

Set 

[V((x - xi)/hh+1), x _ xi, 

1 V((x - xi)/hi), x < xi, 

fhi+1S((x - xi)/hi+1), x _ xi, 
S 

hiS((x - xi)/hi), x _ xi, 

where ho = h+= 1. Then, 

3C3 = Span[ V0, S0o , V., Sn] 

and dim(3C3) = 2n + 2. Thus, we need 2n + 2 relations at each time t to specify 
the approximate solution U(t). Two of these conditions obviously can be obtained 
from the boundary conditions; i.e., the coefficients of V0 and V, are given by g0(t) 
and g1(t), respectively. The method of collocation requires that the remaining re- 
lations be obtained by having the differential equation satisfied at 2n points. Since 
there are n intervals I, it seems natural to locate two points in each interval. For 
reasons associated with approximation theory that will be explained later, we shall 
choose the points in the following fashion: 

(1.5) (i,k = 12(Xi1 + Xi) + ( k1) 2i j = 1, * , n, k = 1, 2. 2 -V/3 

Thus, our collocation method is specified by the equations (the writing of the in- 
dependent variables x and t being partially suppressed) 

(16 U) at a( U) bx bU, d- }t, k, t) = , j=, ..n, k =1, 2, 

U(0, t) = go(t), U(1, t) = g1(t) 

for 0 < t < T. In addition, it is necessary to specify initial conditions for U; the 
easiest way to do this if f E C'(I) is to let U(x, 0) be the 3C3-interpolant of f; i.e., 
U(x, 0) and aU/ax (x, 0) agree with f and f' at the node points xi, respectively. 

The object of this paper is to analyze the convergence of the solution U of (1.6) 
to u. Obviously, it is a prerequisite to show that U exists and is unique. We shall 
demonstrate that there is a constant C depending on u and certain of its derivatives 
such that 

I U - U|lL-(o,T;L-(I)) ? Ch , h = max hi, 
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if U(x, 0) is chosen as indicated above. This is optimal order convergence, since 
U E 3C. We do not know the minimal smoothness necessary to preserve the fourth 
order convergence; consequently, we shall not complicate the arguments in this 
paper by seeking minimal smoothness requirements on u. 

The placement of the collocation points j, k is critical in obtaining the 0(h4) 
estimate. For other choices of the collocation points, only second order accuracy 
is obtained. Obviously, the tj, k can be perturbed by terms of 0(h4) without causing 
a loss in order of accuracy, but such modifications of the method generate no new 
ideas. 

Before practical calculations can be made, it is necessary to discretize (1.6) in 
time. This can be done in the usual ways, e.g., backward differencing, Crank-Nicolson, 
etc. The proofs of convergence for these cases can be carried out without great 
difficulty based on the methods of this paper; however, we shall defer presenting 
these results so that they can be combined with the extension of the single space 
variable results to several variables. 

It should be noted that Eq. (1.1) was not given in divergence form. There does 
not seem to be any advantage to having a divergence form for collocation methods, 
in sharp contrast to Galerkin and finite-difference procedures. It is clear that, under 
the hypothesis (1.4), no loss of generality in (1.6) results from dividing out the co- 
efficient a(x, t, u), since the arithmetic is unaltered. We shall henceforth assume 

(1.7) a(x, t, u) 1. 

We can also assume g&(t) = g1(t) = 0 by modifying b and c. For convenience, we 
shall do so. 

The Hermite cubic space 3C3 can be employed in a Galerkin procedure just as 
readily as in a collocation method. It is also the case that 0(h4) accuracy results 
[5]. Thus, some comparisons should be offered between the two methods. Practically, 
the collocation method should run noticeably faster on the computer than Galerkin, 
given exactly the same nodes. First, there are no quadratures to evaluate in the 
collocation method. Even with the various methods that have been devised to reduce 
the effort involved in these quadratures [2], they remain a significant part of any 
Galerkin calculation. Second, there are only four nonzero coefficients in any of the 
2n equations generated by (1.6), while there are six in the Galerkin case. Thus, solving 
the algebraic systems that result from discretization in time is simpler for collocation. 
Now, our arguments to be presented below require more smoothness on u for the 
collocation method than is required for the Galerkin method to obtain the optimal 
order of convergence. Whether this is real or only a failing of this proof is unknown 
to us. It is not known whether the same h leads to a smaller error for collocation or 
Galerkin. 

2. Some Preliminary Lemmas. We shall indicate the L2 inner products on 
I and I; as follows (only real functions will arise): 

1 ~ ~n n zi 
(2.1) (u,v) = uv dx = E (u,v); = E f uv dx. 

it isonvenentt 1 defij-n 

It is convenient to define 
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(2.2) (u,v), = 2(U(Q;,1)v(Qi,1) + UQj,2)VQi,2))hi, 

U12i = (UU) i 

and 
n 

(2.3) (u,v) = (u, v)i, Ut2 = (u, U). 

LEMMA 2.1. For all f and g in 3C3, 

n 

(2.4) -(f", g) = (f', g') - f'g lo + 1080 f'g"'h5, 

where f'" is the (constant) value of the third derivative of f on Ii. 
Proof. It is sufficient to treat just one interval of length hi, since the boundary 

terms collapse on summation over intervals. Note that the points t, and ti,2 are 
exactly the Gaussian quadrature points for the choice of two points and a uniform 
weight function [1], [4]. Hence, if p is a polynomial of degree three, 

h I 

(p, ), p dx. 

Thus, if 
3 3 

P(x) = W aix, q(x) = bix 
i=O =0 

then 
ht hl 

-(p" q) = -f P"q dx -(6a3x, b3x3)1 + f 6a3b3x4 dx. 

A trivial calculation shows that (x, x3)l = 7h5/36; thus 

-(p q) = f p"q dx + 0 p 80 

and the lemma follows. 
It is another easy calculation to see that 

max (P ) p a nonconstant cubic = 
720 

(f (~)2 dXJ 
Thus, 

n n 

1080 E f"'g,'h5 < 3 ...F Il If I SL2) jI g 11tL(I) < I3f 1IflIH0I 1g11H.1 I, g 9 3X3, 

where 

I2fIIHO 
= f 

(ff)2 
dx. 

The space H' = H'(I) is defined as usual [3], along with the other Sobolev spaces. 
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Let aC? denote the subspace of 3C3 consisting of functions vanishing at x 0 and 
x = 1. 

LEMMA 2.2. Iff C EC', then 
2 

If l < - f) < 
1 
If l|O12 

This lemma will be quite useful later. It should be noted that, while (f', f') is 
obviously positive semidefinite on 3C3, it vanishes for 

n 

f(x) = E si(x) C 3C0. 
i=O 

Fortunately, the form that will arise is - (f", f). In fact, we can see by an argument 
analogous to that of Lemma 2.1 that 

( 1" gI =(I g' 
1I 

" 
i"~ 

/ C 
C3, 

720 EIfi gi lh, f EZ 

and 

(2.5) If, 12 < I If|H 1 EE 3c3. 

The following lemma is useful in interpreting the error bound that will be derived. 
LEMMA 2.3. For f E H1, 

I 20If| 1 + Iff2 > |1f11f2 
(The constant can be of the form (1 + ch)-1.) 

Proof. The relation f(x) = f( ;, l) + ftx l f'(r) dr implies that 

I If I I2(I 
< 4112 + 2hi f|o (Iij), 

and 

I 1< 4(I If I |Ho1 +If 12). 
It should be noted that If I and IIfIIL2 are not equivalent with constants inde- 

pendent of the xi's on eC3 for arbitrary node spacing. This is easily seen by taking 
a very short interval adjacent to a much longer one. However, it is clear from homo- 
geneity (in h) and a simple calculation that 

(2.6) Ifl < (28/27)1/2 1 If I L2, f E 3C3. 

3. Approximation Theory. We shall bound the error in collocation by first 
bounding the difference between U and the Hermite cubic interpolant of the 
true solution u. In order to estimate the amount by which the interpolant fails to 
satisfy the collocation equations (1.6), we shall need a representation of the interpola- 
tion error. 

For sufficiently smooth functions u on [0, 1], define the following interpolants 
of U: 

T3(u)(x)- u(O) V(x) + u'(O)S(x) + u(1) V(x - 1) + u'(1)S(x- 1), 

T4(u)(x) = T3(u)(x) + u(4) (')B(x), 

T5(u)(x) = T4(u)(x) + u (5) (21)Q(x), 
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where 

B(x) = 4X2(1 - x)2 Q(X) = 1x2(1 - X)2(X- 
4! 5!2 

Using Taylor's theorem with integral remainder and the fact that Ti reproduces 
polynomials of degree less than i + 1, we obtain by standard techniques [1, pp. 69- 
70], [4, pp. 70-71]. 

LEMMA 3.1. Suppose that, for I = 3, 4, or 5, u C H1+'(I). Then 

(3.1) (u - T, (u))(x) = f K1(x, t)u 
U + 1) (t) dt, 

where, for each fixed t, 

K1(x, t) = g(1)(x)- T-(g('))(x) 

and 

g(1)(x) =I 0(x-t), O < t < x, 

x < t <1. 

For sufficiently smooth functions u defined on [0, h], define 

TZ,h(u)(x) = T1(w)(x/h), 0 < x < h, 1 = 3, 4, 5, 

where w(x) = u(hx). Also let 

h(ft g) = - E fgQ- (1 + ( 1)i/ /3)), hIfI = h(f f) 

Taking h = 1 and e = u - T3u, we obtain the following relations from Lemma 3.1: 

1le(k) I < C uI(4 I I(1) k = 0, 1, 

(3.2) 1 le" I Ct tUtt I L(I), 

|1(e', 1)| _ C1 ju |5 1 L2(1) 

11(e", 1)1 < C1 1u 6)1 |L2 (I). 

In deriving these relations, we used the facts that 

1(B', 1) = 1(Q", 1) = B"(1/2 4 1/2-/3) = 0. 

Using the relations (3.2) and homogeneity, we obtain the following: 
LEMMA 3.2. Suppose u e H6(0, h). Let e = u - T3, hu. Then, with a constant C 

independent of h, 

hie | Ch I ||uI H4(oh), 1 = 0, 1, 

(3.3) hie I ? ChIt ut IIH5(0.h) 
I h(,, ) I. _ Ch.9/21 IU I 
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4. A Weighted Galerkin Formulation. In this section, we shall show that the 
solution of (1.6) can be viewed as the solution of the following Galerkin-type scheme: 

(4.1) (c(U)Ut - U_- b(U, U_J), Z) = 0, Z EE J3 

In the process of showing this, we establish the existence of the solution of the equiv- 
alent systems (1.6) and (4.1) locally in time; the global existence in time then follows 
from the a priori estimates of the next section. 

The form (4.1) is useful for analysis but its time-discrete analogues should not 
be used in computations, since (1.6) gives schemes that are both more efficient and 
easier to implement. 

Let { Zi } be a basis for 5C?, and write U(x, t) = E ti(t)Zi(x). The relations 
given by (1.6) can now be written as 

(4.2) 53j3 + 1 = (R, 

where 3 = (t31, , 13n) and 5: = 5(3) = (fi), ?3 = (g i), R = (ri). If we let { ( I = 

1, , 2n} = {ij I i = 1, ,n;j = 1, 2}, then we can express f i, g i, and ri as 

f ii = c( E dzZAI (')ZAIDi, 

gii = -z4i(Q') 
ri = b( 1ZQ(%), E Z ') 

In a similar fashion, we can express (4.1) as 

(4.3) (33 + atj = 8, 

where 

e= e(j3) (cij), a = (ai ), = (Si), 

Cij = (C( tlZ1)Zi, Zi, 

aii= -(Z7,Z), 

Si= Kb( IzI, E2f3Zf), Zij 

If we can show that the matrix e = e(,3) is nonsingular for any ,3, it will follow 
that (4.3) has at most one solution and that (4.3) is solvable locally in time. It follows 
easily that if C(o3) is nonsingular, then i(d) is nonsingular, since any solution r of 
5Yr = 0 would also be a solution of er = 0. Thus, if C(0) is always nonsingular, 
(4.2) is also locally solvable in time. Since any solution of (4.2) is clearly a solution 
of (4.3), we see that they are equivalent. 

LEMMA 4.1. For any ,B, e(,3) is nonsingular. 
Proof Suppose that r, I E R2", r # 0, are such that C(0)Tr = 0. If U(x) = 

Ei fiZi(x) and W(x) -Ei ,rZ,(x), we see that 

(c( U) W, W) = 0; 
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hence, W(f) = 0 for k = 1, * * *, 2n since c > 0 for any arguments. Since W is a 
cubic on [x0, xl] and vanishes at x0, t , t1,2, either W 2 0 on [x0, xlJ or W(x,)W'(x1) 
> 0. Now, if W -0 in any [xi, xi+,J, then W -0 on I, since in each adjacent interval 
W would have a double root at the endpoint (W E C'([O, 1])) and two roots at the 
collocation points. Thus, since r j? 0, we see that W(x1)W'(x1) > 0. On [xl, xj, 
the quadratic W' has roots in (xl, 42,1) and (42,1, 42 2). Hence W(x2)W'(x2) > 0. 

Proceeding inductively, we can see that W(x,)W'(x,) > 0, which is a contradiction 
since W(xn) = 0. Thus, the lemma is proved. 

5. Convergence Analysis. Let U be the solution of (1.6) where we have assumed 
without loss of generality that a(x, t, u) = 1 and g(t) = g(t) = 0; i.e., 

(5.1) aCU dt aX2 U- b(U, d-X UN = ?' Z E- a3' 

Now, assume that u E C3(I X [0, T]) and let W: [0, T -? X3 be determined at each 
time t as the JC3-interpolant of u. We shall not look at v = u - U directly, but instead 
we shall estimate v = W - U and then apply known approximation theoretical 
results to tv = u - W. Let 

R = a rl/Ox2. 

Then, it is a straightforward calculation to see that 

(c(U)vt -vX, z) = ([c(U) - c(W)] Wt - c(W)nt - [c(u) -c(W)]ut + R, z) 

+ ([b(u, u.) - b(W, u.)] + [b(W, u) -b(W, W.)], z) 

(5.2) + ([b(W, W) -b(U, W.)] + [b(U, W) -b(U, U.)], z) 

= (-c* Wtv - (W)nt - C**Utfv, Z) 

+ (b:*q + b**v + btv., z) 

+ (R, z) + (b( W, u) - b( W, W_, z), 

where we have assumed b and c to be differentiable (or at least Lipschitz continuous) 
with respect to u and u.. If these derivatives are bounded, then the choice z = t 
leads to the inequality 

- IpvI - vt < K[jvu2 + Iv 12 + tnt2 + ItI2] 

+ ! jvt 2 + (R, Vt) + (b(W, u.) - b(W, W.), vt). 3 

Add the inequality 

1 
Id 2 m 32 

to obtain 

m i 2 +I dI 12 _ (V. I. <12 + 1712 + 1 12] 
(5.3) (R,t + - (W K)- b(W, W), Vt)[I 

+ (R, vt) + (b(W, u.) - b(W, W,), vt). 
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Lemma 2.1 implies that 

-("s Vt) = ! dt [(dx) VX) + 1080 X= v-xxihj 

I d 
2 -dt(x,) 

Integrate over the time interval (0, t). Then, 
t m f vt 12 dr - '( IV() 112(t) 

2 vl d (x v)(t) + 2 

1 
2t 

F It 
Kv2(0 (12+ IV_12)d+I(II+n, 2 (5.4) _ K JIv (0) + d(2 + 12 + qtI2 dr 

0J 0 

-(v z v)(0) + f (R, vt) dr + f (b(W, u_) - b(W, Wi), vt) dr. 

Integrate by parts in time to get 

rt 
f (R, vt) dr = (R, v) I - f (Rt, v) dr. 

Assume that 

sup |Iu(t)| HN(I) = IIUIIL'(O,T;H6(I)) < a) 

O<t<T 

(5.5) T 

1 lut(HllHe U) dt = IIUtIIL2(O,T;H6(I)) < 

Then 
n n n 

(R, v) = E (R, v)j = i (R, v- -j)j + E (R, -vj)j, i = h;(V, )i. 
j=1 i=1 = 

Recall that the collocation points were chosen so that 

I(R, Pjvi) I = I(t7xs. T;j)j I 

? UK Iu||H|N(j)h1 h;h I(v, 1)iI 

by Lemma 3.2. Thus 
n n 

I(R, v)I _ IRlI Iv - -vil + K E |UIIIHe(I,j) h 41'i| 
i=l i=1 

Since it is trivial (using the elementary version of the Poincare Lemma) that 

IV - Pi Ij < Khi I IVX| IL2(1 

and since 

IRli < K II |U IH (Ii) hi) 

it follows that 
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n~~~~~~~~~~~~~~~~~ 
I(R, v)I ? K X [IIuIIH5(I) IIVxIIL2(Ii) + IIUIIH|N(I) IvIi]h, 

j =1 

(5.6) _ E (I +vxlIL2(Ii) + + KE H|(Ii)hi 16 i= i__ 

<1 (- ( v) + |v|) + K i I|uI IN(IO)h . 

Note that it follows immediately from the above argument that 

(5.7) J (Rt, v) dr < J [-(vX v) + dv2]dr + K E Ji IIUtIIH (Ij) dT 

Also, 
t 

f (b(W, ux) - b(W, Wj), Vt) dT 

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
N (b( W, u) -b( W, W.), v)I t- {b( W, u) - b( W, W)}, v dr. 

Now, 
n 

(b(W, ux) - b(W, W.), v) = E (bus(W, Wx) Ix=ni.L nx + Ohihnx V)i, 
j=1 

where 1 4p1 is bounded independently of hi if the second derivatives of b are bounded. 
Since the bu, multiplier of % has been reduced to a constant on each Ik, we can 
employ the leading orthogonality (3.3) of %, to constants on each Ii as follows: 

I (bu. 1 Ix=ti q., v) i I _ I (buv I x= t L1 7x) -Vi)i I + l(bu. Ix=ti .1L Vx --V) I 

? K[hi IIUIIH5(Ii) lVIi + hi IIUIIH5(Ia) IIVXIIL2(Ij)b 

Also, by (3.3), 

I(o6hi%2 ); V h u IN4IH(Ii) IVIi, 

and 

(5.8) I(b(W, u.) - b(W, W.), v)I - f[-(vzz, v) + V 12] + K E hi IIUIH5(Ii) 16~~~~~~~~= 

Next, note that 

[b(W, ux) - b(W, W.)] 

=-{ab (W, a_) + aWab (W, a_) + aa ab (w, a) + ab (W, W.) xt a=uW 

It then follows from the argument above that, if b has bounded third derivatives, 

(. fat [b(W, u.) - b(W, W.)], v dr 

< - J [ (VXv) + V 12] dr + K E h7 f [IIuIIhi IH + IIu 5(Ii)I] dr. 
=16 oi=1 0 
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It follows from (5.3)-(5.9), (2.5), and the Gronwall lemma that 
T 

f Ivt I' dr + max [I Iv II'. + IV12] 

(5.10) _n 8 22 - K[II(0)112 j,+i(o h 8{I1IUII12i (O,THe(Ii) ( _ KL ol + |v(0)| +)) H i LUt | IL2 (O T;H6(IW))}} 
ji=1 

Lemma 2.3 and (2.6) imply that 
T 
J vt 2 dr + I||IL I(O, T;H1) 

(5.1 1)? 

? K[| Iv(0O)I I1 + 8 h{ I IUII 12(O ,;H(Ii)) + IIUtIIL2(OT;HO(I))} 

In particular, 

I IV 12(O | V LIMO T;L-) 
(5.12) _n 

(5.12)_? K[lIV(0)1iI1 + 1 1 h1 lUl 1(OT;2O(IO) + II|UtIIL2(OT;He(I:))}]. 

Also, it is well known [4] that 
,n 

(5.13) ||7|I IIL'(O,T;L-) = K 1 hi Il IL"(O,T;H5(Ii)). 
i =1 

Since u - U = = 77 + v, 

Iu - UL oI(O T;LI) 
(5.14) _n 

(5.14)_? K[ IV(O)I I1 + 2 h{| IIULO(O 1 T;(Ii)) + IIUtII|2(OT;He(Ii))}] 

If we choose, as is quite natural, to define U(x, 0) as the 3c3-interpolant of u(x, 0), 
then 

(5.15) |Iu - U IILO(o,T;Lo ) ? K[I|U|IL-(O,T;He) + IIUtIIL2(O,T;H6)]h 

where 

(5.16) h = max hi. 
i=1, ... ,n 

THEOREM. Let the coefficients in the differential equation have bounded third 
derivatives and assume that (1.4) holds. Let u be the solution of (1. 1)-(1.3) and assume 
that 

U L (0, T; H6) and ut C L2(0, T; H6). 

Let U(x, 0) be the JC3-interpolant of f(x) = u(x, 0). Then, there exists a unique solution 
U of the collocation equations (1.6), and U converges to u with an error that can be 
estimated by (5.15). 

The order of convergence of U to u is optimal, given the approximating space 
C3,; however, the smoothness hypotheses in the above theorem are stronger than 

would be required from approximation theory alone, since boundedness in H4 
suffices for interpolation to give 0(h4) in L2 and H5 is more than enough for L. 
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Thus, we have not obtained as strong a theorem for the collocation procedure as 
for the corresponding Galerkin procedure. 
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