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Mesh Refinement 

By Gerald Browning, Heinz-Otto Kreiss and Joseph Oliger 

Abstract. We study mesh refinement techniques for first-order hyperbolic equations. 
A refinement method for use with the leap-frog scheme is defined and its stability estab- 
lished. The remainder of the paper is devoted to a discussion of the effects of nonuniform 
grids and the circumstances under which they may be used. 

I. Introduction. Often, the solutions of partial differential equations are much 
smoother in some parts of the region in which a solution is sought than they are in 
others. Furthermore, there is often good a priori knowledge of this behavior, e.g., 
boundary layer phenomena. Suppose we want to solve these problems using difference 
methods. It is well known that the complexity of the solution requires a certain net 
spacing to obtain given accuracy. It is attractive for economical reasons to consider 
using different mesh intervals in different parts of the region in this situation (see, 
e.g., [5]). 

In this paper, we consider using refinement techniques for time dependent prob- 
lems whose behavior is essentially hyperbolic. M. Ciment [1] has established stability 
for several refinement methods used with dissipative difference schemes. We begin in 
Section II by establishing stability for a refinement method used with the nondissipa- 
tive leap-frog scheme and include a computational example of this method. 

We then discuss certain problems connected with the use of this technique. It 
has been stated that the use of nonuniform grid intervals invariably causes reflections. 
We have seen that this need not be a problem. However, there is another phenomenon 
which can cause trouble and is, in a sense which is made precise later, intrinsic in the 
technique and unavoidable. Any wave which is poorly represented in a coarser grid 
[4] will change phase speed when passing through an interface into a finer grid. If 
this wave later passes from the fine grid back into the coarse grid, a serious interaction 
can result with that part of the wave which has remained in the coarse net. We begin 
this discussion in Section III by first considering the related problem of using difference 
methods for a first-order hyperbolic equation in a quarter space with homogeneous 
initial data and inhomogeneous boundary data. This discussion establishes a quantita- 
tive estimate of the change in signal speed of waves passing through the interface of 
two grids. We include computational results which illustrate this phenomenon. A 
two-dimensional computation illustrates the effect of serious interactions of waves 
which have become out of phase due to the use of a mesh refinement. 

II. Stability of a Refinement Procedure. We now examine a refinement pro- 
cedure for hyperbolic equations which is similar to a procedure used by E. Isaacson 
[3] to handle discontinuous coefficients of parabolic equations. Consider the Cauchy 
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problem for the equation 

(2.1) w = aw,, -o <x< co,t> O, 

with initial values 

(2.2) w(x, 0) = f(x). 

We approximate (2.1) using the leap-frog scheme with a refinement at x 0. Let 
hi > h2 > 0 denote the different mesh intervals and define gridpoints by 

x= -(v - 1/2)hl, yv- (v - I/2)h2, for v = 0, 1, 2, 

x 2 xI YO ? Y XO Y2 Y3 

Let k > 0 denote the time step and 

u'(t) = u(x", t), v'(t) = v(y", t), 

t = O, k, 2k, * , the gridfunctions. Approximate (2.1) by 

(2.3) u'(t + k) = u(t - k) - aX,(u,+1(t) -u_l(t)) 

and 

(2.4) v'(t + k) = v(t -k) + aX2(v,+l(t) -V,l(t)) 

for v = 1, 2, ., where X1 = k/hl, X2 = k/h2. 

The solution is uniquely determined if we give initial values for t = 0, k and impose 
the continuity conditions 

(2.5) UO + 
U1 

= Vo + Vi, 

(uo - ul)/hl = -(vo -vl)h2 

at the interface x = 0. 
We assume that (2.3) and (2.4) are stable for the related Cauchy problems, i.e., 

0 < aXl, aX2 _ 1. 

We can consider (2.3), (2.4), (2.5) as an initial-boundary value problem in the 
quarter-space x > 0, t > 0. Its stability then follows from the theory in [2]. Associated 
with (2.3), (2.4), (2.5) is the following resolvent problem: 

(2.6) z2u = , - aX1z(+1 U-l 

(2.7) zv, = v + aX2z(QX+1 X-1_), 

(2.8) d~~~o + Al 
A 
O + Al + 01, 

(2.8) 
do- dl p(o -v1) + g2, 

where p = h/h2 > 1. The method is stable by Theorem (5.1) of [2] if (2.6)-(2.8) have, 
for Izi > 1, a unique solution with 

(2.9) :E (IA'12 + I1A12) < 

and there is a constant K such that 
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(2.10) IvI | +|uO ? K(| + 9 21). 

Let Izl > 1; the general solutions of (2.6) and (2.7) satisfying (2.9) are 

(2.11) 111, = plKl, v = 0, 1, 2, 

v= p2K2, v = 0, 1, 2, ... 

where 

Ki (1) ((2Xa i (((2 i ) 1 ) + )1) 

iKil < 1, j = 1, 2, are the solutions of the characteristic equations 

K2 + (_ 1)+1(x;aY1 
Z 

K - 1 = 0, j = 1, 2. 
z 

Substitute (2.11) into (2.8) to obtain 

[P1 [1 + K1 1 K2 [P1] = g1i 

LP2J 11 - K1 p(l -K2)J P2J 92J 

It is obvious that the estimate (2.10) holds if 

det C(z) = (p + 1)(1 - K1K2) + (P - 1)(K1 - K2) # 0 

for lzl ? 1. Suppose det C = 0, then 

(2.12) K K2 - + 

Since IKil < 1 for IzI > 1, this last relation cannot hold for lzl > 1. Let z = etO and 
a = (X1a)-'; then 

K1 = -ia sin 0 + (1 - (a sin 0)2)1/2 

K2 = ip1la sin 0 - (1 -(ap-1 sin 0)2)1/2 

If I a sin 01 > 1, then IKi1 < 1 and (2.12) cannot hold. If I a sin 0l < 1, then 

- Im det C(z) = (p + l)a sin 0((1 - (ap-1 sin 0)2)1/2 + P-1(1 - (a sin 0)2)1/2) 

+ a sin 0(p- 1)(p1 + 1) 

# 0 for sin 0 0. 

If sin 0 = 0, we have K1 = 1, K2 = -1, so det C = 4p 7? 0. Thus, the approxima- 
tion is stable. 

Consider computing an approximate solution of the problem 

Ut = -UX + EUxx, 0 < x ? 1, t > 0, 

with initial data 

u(x, 0) = sin rx, 

and boundary conditions 

u(0, t) = u(1, t) = 0. 
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We use the scheme 

vQ(t + k) = v,(t - k) - 2kDov,(t) + 2EkD+D-v,(t - k), 

v'(O) = sinwrvh, 

vo(t) = VN(t) = 0, 

where Nh = 1, X = k/h, 

Dov,(t) = (v +1(t) -v,-,(t))/2h, 

D+v (t) = (v +l(t) -v(t))Ih, 

and 

D-v,(t) = (vM(t) -v,-l(t))/h. 

In Fig. 1, we show the result of this computation for e = 10-3 with h = 10-2 and 
k = 10-3 at time t = 0.52. We have also computed an approximation using the 
previously defined refinement procedure. We have a 5:1 refinement in the right half 
of the interval. The continuity equations (2.5) are centered about the point 0.495. 
The mesh interval in the coarser part of the net is h, = 10-2 and that in the finer 
portion hf = 0.2 X 102. For this computation, we have used k = 0-4 in both nets. 
The result at t = 0.52 is shown in Fig. 2. 
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The improved accuracy using the refinement is apparent. In practice, the refine- 
ment should be introduced much further to the right (nearer 1) to reduce the number 
of net points, and a larger time step used in the coarser net. This can be done by using 
the continuity conditions (2.5) at the times nk, where kc is the time interval in the 
coarser net, and then interpolating in the fine net for the first two net points at the 
intermediate times mkf. We have used procedures of this type with nearly indistin- 
guishable results. 

III. Wave Propagation. Consider the differential equation 

(3.1) ut = u 

for x ? O t > 0 with initial values 

(3.2) u(x, 0) = 0 

and boundary condition 

(3.3) u(0, t) = eiat. 

The solution of this problem is given by 

(3 *4) u(x, t) = ei a(t -x) X < t 

=0, x > t. 
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Thus, the signal speed is 1. 
Approximate this problem by 

(3.5) v,(t + k) = v(t -k) - 2kDo0v(t), v = 1, 2, ... 

(3.6) v (0) = v.(k) = 0, v = 1, 2, 

(3.7) vo(t) eiat, t = 0, k, 2k, 

This scheme is stable for X = k/h < 1 where k > 0 denotes a time increment, h > 0 
the mesh interval in the x-coordinate and 

V'(t) = V(Xv, t), x, = vh, t = 0, k, 2k, 

We want to determine the signal speed for the solution to these difference equations. 
For this reason, we introduce a new variable, w,(t), defined by 

(3.8) v, (t) = eiat-,xw (t) 

where 

sin ak/ 

oaa o, < ,I=1, 

= k- arcsin X, sinak >1. 

We substitute (3.8) into (3.5)-(3.7) and obtain 

(3 9) ek wv(t + k) = e iak wv(t - k) - khl(e hwv+i(t) - e wv_j(t)), 

wv(0) = wv(k) = 0, wO(t) = ea 

We can rewrite (3.9) as 

etFk(wv(t + k) - wv(t))k- = e-iak(wv(t - k) - wjt))k-1 

(3.10) - [e h(wv+i(t) - wj(t))h1 + e h(Wv(t) - wv_j(t))h ] 

- k-l[(eiak - e- iak) - X(e-h e- )jWV(t). 

If Isin(ak)/XI < 1, then a - a and we can choose 3 = i5, 6 real, such that 

(3.11) 2i sin a/k eiak - e-iak X(eh - e-1h) = 2i sin 5h. 

We can then consider (3.10) as an approximation to the differential equation 

(3.12) Yt cos -byx, y(x, 0) = 0, y(O, t) = 1 
cos ak 

and the solution of (3.5)-(3.7) is approximately 

(3.13) v(x, t) = e' (at-ax)y x < bt, 

= 0, x > bt. 

Thus, the signal speed of the solution of the difference approximation is approximately 

(3.14) b = cos 5h/cos a/k. 

The relation (3.11) can be written 
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(3.15) sin(ak)/X = sin dh. 

Let us assume for simplicity that we compute with very small time steps. Then 
(3.14) and (3.15) become 

b ~ cos Ah ( (1 ah)2)/2 = (1 - (2w/N)2)1/2, sin ah a ah, 

where N = 2-x/lah denotes the number of mesh points per wavelength in the x- 
direction. This shows that N has to be quite large for b to be near 1. For example: 

N 32 16 8 7 6 
(3 . 16) b 0.98 0.92 0.64 0.48 0 

Now assume that Isin(ak)/ XI > 1. Then, we have & = k-' arcsin X, sin &k = X and 
es5k _ e-i&k - (e-h _ ePh) = 0 for /h = ir/2. Then (3.10) approximates the 
differential equation Yt = 0 and the forced wave does not propagate into the interior 
of the region. 

If a wave is already well represented [4] in the coarse net, the previous analysis 
indicates that this wave should propagate through the interface of the coarse and 
fine nets without difficulty. Our computations confirm this. On the other hand, this 
analysis also indicates that there will be difficulty with the propagation of any wave 
which is not well represented in the coarse net through the interface of the nets. We 
have done several computations which confirm this. 

Consider the problem 

(3.17) ut = u., x < 1, t > 0, 

with initial values u(x, 0) = 0 and boundary values u(1, t) = sin 2ixwt. We approximate 
(3.17) by the difference equation 

(3.18) v,(t + k) = v,(t - k) + 2kDov,(t) + 2ekh2D+D-v(t -k), 

v,(0) = v,(k) = 0, vO(t) = sin 2irct. 

We have a mesh refinement to the right of 0.495 as in the previous computational 
example and h, = 10-2, hf = 0.2 X 10-2, k = i0-3. We use coi = 25/2, 33/2, 50/2 
for i = 1, 2, 3, respectively. In the fine net, we have Nf(w1) = 500/w, = 40, 30, 20 
mesh points per wavelength and therefore expect a good approximation there. How- 
ever, in the coarse net, we have only N,(co) = 1001co, = 8, 6, 4 mesh points per 
wavelength and the previous analysis indicates that the forced wave should only 
propagate with the speeds d(coi) = 0.64, 0, 0, respectively. Figs. 3, 4, and 5 are the 
results of these computations at t = 1.84. In Fig. 3, we have co = co= = 25/2 and 
e = 10-6, in Fig. 4, co = C2 = 33/2 and e = 0.5 X IO-5 and in Fig. 5, w =W3 = 50/2 
and E = i0-5. 

We now consider mesh refinement for the two-dimensional problem 

(3.19) Ut = -ux u,, (x, y) E [0, lI X [0, 1], t > 0 

with initial values u(x, y, 0) = sin(27r(6x + 3y)) and boundary conditions u(x, 0, t) = 

u(x, 1, t), u(0, y, t) = u(1, y, t). Define a grid function v,, (t) = v(vh, 4h, t) for positive 
increments h = Ax = Ay > 0, Nh = 1, and t = 0, k, 2k, ,k > 0. We approx- 
imate (3.19) by the leap-frog scheme 
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vy,y(t + k) = vM(t-k) - 2k(Do0, + Do,y)vy,y(t), 

(3.20) v , (0) = vV,M(k) = sin(2r(6ph + 3,.h)), 

vO,M(t) = VN,A(t), v',0(t) = Vv,N(t) 

where the additional subscripts are used to indicate the coordinate direction in which 
the previously defined operator acts. We use a 5:1 mesh refinement in the center of 
the region. We refine about the line segments 

11:x= a, a < y < 

12:x =A, a < y < 

a3 CY< X < 3, y = a, 

a4c < x < , y =3 

where a = 1/3 + 1/90 and A = 1/3 - 1/90. We use h= 1/45 in the coarse net and 
hf = 1/(5 X 45) in the fine net. The refinement procedure is carried out in the same 
manner as is described in Section II. Linear interpolation is used to provide the 
additional fine net values required. In the corners of the refined area where the Eqs. 
(2.5) in the x- and y-directions both define values for the points (h2 + h2)"/2 from the 
corners, we use their average value. This integration was carried out with k = 10' 
and the result at t = 0.75 is shown in Fig. 6. 



38 MESH REFINEMENT 

FIGURE 6 

The situation here is much worse, as is evidenced by the computation. The de- 
pendence of the approximate solution on the mesh intervals produces a phenomenon 
very much like the propagation of waves in materials of varying density. There is 
interference of the waves which have passed through the refined region with those 
which have not. It is obvious how one can construct examples with variable coefficients 
which double the amplitude at selected points. It is also obvious, since all difference 
methods have phase errors which are functions of the grid interval, that this phenom- 
enon is present with any difference method used with such a refinement. 
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