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A Note on the Stability of an Iterative Finite- 
Difference Method for Hyperbolic Systems 

By Moshe Goldberg 

Abstract. In this note, we find analytically the linear stability criteria for two finite- 
difference methods for hyperbolic systems in conservation-law form, presented recently 
by S. Abarbanel and G. Zwas and by S. Abarbanel and M. Goldberg. 

Introduction. Consider the first-order quasi-linear hyperbolic system of partial 
differential equations 

(1) aW/Ot + A aW/Ox = 0, - o < x < OD, t > 0. 

W = (W1, * , W..) is the vector of the unknowns and A = A(W1, * , W,,,) is a 

square matrix. Hyperbolicity implies that the eigenvalues of A are real, and we assume 
that the system is in a conservation-law form, i.e., A OW/Ox = aF/Ox where F = 
F(W1 * ?, W,Wn) is a vector. Hence, Eq. (1) takes the form 

(la) a W/Ot = -aF/Ox. 

The Lax-Wendroff finite-difference approximation [3] for (la) is 

2) W = W' - (X/2)[F +1 F>n1] 

+ (A /2)[A%112(F-+1 F?) A'112(Fi - F>-1)], 

where fn = f(xi, tn), An112 = 2(An + An,,) and X = At/lAx. Writing Eq. (2) in the form 

(2a) ~~~~Wn+- Wni + Q Wn (2a) Wi=W+ W, 

Abarbanel and Zwas [1] presented the following iterative scheme: 

(3) W 'n+l.+l = Wn + Q[OW>+" + (1 - 
O)WI] 

' < 0 < 1, 

where s = 0, 1, *',I- land W>"0? Wf. For 0 = 0 or I = 0 (no iterations), we 
go back to (2); for 0 $ 0 and I > 1, we get a first-order accurate scheme. Another 
version of (3) was given by Abarbanel and Goldberg [2]: 

(3a) Wn+1 ,+1 = Wn + 0Q Wn+1 s + (1 - 0)Q Wn, 0 real. 

Since usually Q is not a linear operator, (3) and (3a) in general do not coincide for 
0 FZ_ 1, and they were referred to, respectively, as the "internal" and the "external" 
schemes. 

Numerical experiments (see [2] for example) give evidence that the external scheme 
is much more dissipative when it comes to shock-containing problems and a first- 
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order accurate scheme is desired. However, a general observation of importance is 
that one iteration (1 = 2) suffices to smooth out the numerical noise and, as a matter 
of fact, increasing I causes in the beginning worsening of the phenomenon. In [1], 
linear stability analysis was done only for 2 < 0 < 1, and was carried out mostly 
numerically (except for specific values of 0, for which it was done analytically). In [2], 
the stability analysis was carried out for all real 0, but still in the same manner. Gen- 
erally, it was found that the smoothest results occur in a region 0 > 00 where 00 - 

0.166. For 0 < 0 < 00, numerical solutions were not free of nonlinear oscillations. 
In this note, we derive analytically the following linear stability conditions of (3) 
and (3a) for the first iteration, namely for I = 2: 

(4) Xp(A) ? 1// for 0 > 1/6, 

where p(A) is the spectral radius of A. In addition, we show that the schemes are 
unconditionally unstable for 0 < 0. 

Stability Analysis. We are now ready to derive stability conditions for the 
linearized versions of (3) and (3a) which are identical, since we take A to be locally 
constant, thus making Q linear. 

Of course, when the iterative schemes (3) and (3a) are applied to situations which 
include discontinuities, the linear stability cannot predict nonlinear instabilities. 
We just note that in all known schemes, such as Lax-Wendroff, etc., only linear 
stability is usually investigated. Nonlinear instabilities are combated in various ways, 
often through the introduction of artificial viscosity. However, the stabilizing effect 
of artificial viscosity, for example, is also investigated linearly. The iterative schemes 
which are analyzed here do away with the need to use a stabilizing term such as 
artificial viscosity. 

Denoting the final result Wn, l, 2 by Wnl + and the linearized version of Q by P, 

we get (see (3a)) 

(5) W+1 = Wn + (1 - 0)PWj + 0P(Wn + PWni) = (I + P + 0P2)Wn, 

where (see (2)) 

(5a) PWn = - (X/2)A(Wi+1 - W>1) + (X2/2)A2(Wj?1 - 2Wj + W>_). 

Taking the Fourier transform of (4) by setting Wn = Tn exp[ikxi], Eq. (4) takes the 
form 

(6) W+ =GWa 

where the amplification matrix G is given by 

(6a) G = I - iX sin a- A - X2A2(1 - cos a) 

+ 0[iXsin aA + X2A2(1 - cos a)]2, a = kAx. 

Hence, the corresponding eigenvalues of G, say g, are 

(7) g = 1 - iXa sin a _ X2a2(1 - cos a) + 0[iaX sin a + X2a2(1 - cos O)], 

where the a's are the eigenvalues of A. Following von Neumann, we would like to 
find the conditions under which 
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(8) 1g12 ? 1. 

Setting b = X2a2, w = sin2 a/2, we have from (6) 

(8a) 1gl2 = 1 - 4bw 
[c - bwo + 20(1 - c + 2b2c2 + bc - 2bw2) - 402bco(1 - co + bco)2]. 

Since b and co are nonnegative, our aim is to find the largest bmax such that, for all 
0 < b < bmax, the expression in the square brackets in (8a), which will be denoted 
by R(b, c), will satisfy the relation R(b, c) > 0 uniformly in co (O < co < 1). Namely, 
we are looking for the largest rectangle in the (b, c) plane with vertices (0, 0), (bmax, 0), 

(0, 1), (bmax, 1) in which R(b, c) ? 0. This will lead us to a stability condition of the 
form 

(9) X2a2 < bmax. 

Consider the following transformation of the (b, co) plane: 

(10) t = 1 -co + bo, 7 = 2bo. 

For fixed coo 5 0 and bo, the lines (b, c0) and (bo, co) in the (b, c) plane are transferred, 
respectively, to the lines (Q, 77) = (1 - coo + bcoo, 2coob) and (Q, 77) = (1 - 

w + bow, 2wbo) in the (Q, 77) plane, so that the singularity of this mapping is reflected 
through the fact that the image of the line (0, b) is the point (Q, 77) = (1, 0). Therefore, 
for our purpose, this transformation is still valid because lgl2 = 1 for co = 0. Now, 
we conclude that the image of the half-infinite strip { (b, c) I b _ 0, 0 < co < 1 } is 
the half-infinite strip I (, 77) 1 0 < 77 < 2S, r7 > 2S - 2 }, and each line b = bo parallel 
to the co-axis, is transferred to the line 77 = [2bo/(l - bo)] (1 - t) that passes through 
the point (1, 0) in the (Q, 77) plane (see Fig. 1). Under the above-mentioned transforma- 

bmaxb 2b m) 

26 \52- 

A(bma) 

FIGURE 1. A(bmax) for some bmax > 1. 

tion, R(b, co) takes the form 
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(11) L( Q, -) = 1 - + 20 + 20( - 1- 

and now we are looking for the largest triangle A = A(bmax) in the (Q, 77) plane with 
vertices (0, 0) (1, 0) and (bmax, 2bmax) in which L(Q, 7) > 0. 

Now take 0 > 1/6 and we shall prove (4). L(Q, 77) is linear in '7; hence, for every 
fixed 0 < t0 < Max 11, bma.. }, MinA L(Q,, 77) is achieved in one of the two intersection 
points of the line t = t0 with the boundary of A, which consists of the lines 77 = 2t, 
77 = 0 and 77 = [2bmax/(l - bmax)] (1 - t). The possible intersection points are there- 
fore, respectively, (0, 20), (Qo, 0) and Q0, 2bmax(l - to)/(l - bmax)). For 0 < to < 
bmax, one of these points is (0, 2t0) and 

(12) L(Q0, 2t0) = (1 - 20O~)(2 0- o + 1). 

The quadratic term in (12) is positive for all 0 > 1/8 and the linear term is nonnegative 
iff to < 1/20. So, L(Q0, 20) ? 0 for 0 < to ? bmnax, iff to - 1/20 and we can take at 
most bmax = 1/20. For 0 _ t0 < 1, one of the intersecting points is (0, 0) and 

(12a) L(Q0, 0) = 1 - t + 20& > 0. 

Finally, the last point mentioned above plays a role when (a) bmax < 1 and bmax < 

40 < 1 or (b) bmax> 1 and 1 < < bmax. In these cases, setting bmax = 1/20, we have 

(12b) L(Q0, 2bmax(1 - to)/(l - bmax)) 

= (1 - 20)-'(1 - 20)[20 2 - (1 + 20)t + (1 + 20)]. 

The quadratic term of Eq. (12b) is nonnegative for 0 > 1/6; the linear term 
(1 - 200)/(1 - 20) is nonnegative iff 40 ? 1/20 in case (a) and t0 ? 1/20 in case (b), 
which agrees in both cases with our choice bmax = 1/20. This proves (4). 

For 0 < 0 < 1/6, it can be shown that the stability criterion is (9) with 1 < bmax = 
bmax(0) < 3, namely, that the bmax achieves the largest value at 0 = 1/6, bmax(1/6) = 3. 

For 0 = 0, we go back to the Lax-Wendroff scheme and bmax = 1. In the following 
table, we give some values of the bound bmax(0), 0 < 0 < 1/6. 

0 .01 .05 .1 .125 .15 
bmax(0) 1.02 1.12 1.38 1.72 2.37 

At last, we show that the schemes are unconditionally unstable for 0 < 0. For any 
A = A(bmaX), take a point (Q, 0) with t < 1, t close enough to 1. (Q, 0) EE A and by 
(12a) L(Q, 0) < 0, so, by continuity, L < 0 in a neighborhood of this point and, by 
(8a), we have that (8) is not satisfied in all A. 
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