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Improved Computation of Cubic Natural Splines 
with Equi-Spaced Knots 

By Malcolm A. MacLeod 

Abstract. An improved algorithm is given for the computation of the coefficients of the 
interpolating polynomials for cubic natural splines with equi-spaced knots. By solving the 
continuity equation recursively, a gain in computation efficiency is obtained and the 
requirement of previous techniques for exact computation is eliminated. 

1. Introduction. Considerable interest has developed over the last several years 
in the use of spline functions for interpolation, largely as a result of the discovery of 
their extremal properties [1]. Cubic splines have become popular because they combine 
a fair degree of approximation (continuity of the function and its first two derivatives 
at the knots) with relative ease of determination of the spline parameters (only a 
second-order difference equation need be solved). Two recent papers have shown 
that the parameters may be even more simply determined for the case of natural 
splines defined at equi-spaced knots ([2], [3]). Unfortunately, the techniques given 
in both these papers suffer from the defect that they require exact computation. 
To retain any accuracy requires multiple precision computation once the number of 
data points exceeds the limiting value nL = (n8/log 4) - 2, where n8 is the number 
of significant decimal digits carried by the computer employed. In the present paper, 
an improved algorithm is presented which does not require exact computation and 
which also displays an improved efficiency in determining the spline parameters. 

2. Definitions. The function S(x) C C2 defined on the n knots x, by S(xi) = Yi 
is a cubic natural spline if it is represented as a cubic polynomial in each interval 
xi-< x < xi+1 (i = l(l)n - 1) and if the second derivatives vanish at the endpoints: 

S"(X1) = S"(X.) = 0 

(we follow the notation of Hoskins [3] with slight modification). The function S(x) 
is then defined within each interval [xi, xi+,] by the expression 

(2.1) S(x) (Yi - mi)( xi+lh x) + (Y.+1 - mi+i)(X - Xh ) 

+ m (x+1 h ) + m+(X - ) 

where h is the uniform knot spacing and mi =(h2/6)S"(x,). Once the mi are deter- 
mined, the spline is defined uniquely in terms of h and the local values (x,, xi+1, Yi, 
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Yi+1, ml, ml+,), a point of some practical importance. The mi reveal themselves as 
those solutions of the so-called continuity equation 

(2.2) mi+1 + 4m, + mi- = 6 Yj (i = 2(1)n - 1) 

which satisfy the boundary conditions 

(2.3) m = M = 0. 

3. Solution of the Continuity Equation. The continuity equation (2.2) is a sim- 
ple second-order, linear, inhomogeneous difference equation with constant coeffi- 
cients and may be solved by the standard technique of variation of parameters [4]. 
However, doing so results in a solution involving a summation of terms whose 
magnitudes grow exponentially with n. Though the solutions presented in [2], [3] 
were not derived in this manner, they retain the exponential character and suffer 
from the same accuracy loss due to truncation as n -? nL. This problem is known to 
arise in the use of implicit techniques for solving partial difference equations [5], and 
its solution by a recursive technique is both stable and accurate. To this end, define 

(3.1) mi = eimi,+ + fi 

and substitute in the continuity equation (2.2). The identification of the (ei, fi) param- 
eters is immediate on comparing with (3.1), and results in the expressions 

(3.2) e= -(4 + ei-1)-1, 

(3.3) f = -e (62Yi -_ f-). 

Substituting the first of the boundary conditions (2.3) into (3.1) and requiring that 
the (e,, f1) be independent of the mi establishes that 

(3.4) ei = f1 = 0, 

whence the (e,, fi) may be evaluated by an ascending recursion from i = 2 to n. The 
second of the boundary conditions (2.3) may then be used with (3.1) to evaluate 
m, in a descending recursion from i = n to 1, which begins mj1 = f, This technique 
is known to be stable [5]. Although the fi are characteristic of the set Yi and must be 
recalculated when a new set is introduced, the e, may be calculated once for all, and 
the first seven are listed in the accompanying table. A comparison of this table with 
that of Hoskins [3] is revealing. The entries in his table vary as 4i- 1 and begin to lose 

TABLE 

I e, 

1 - 0.2500 0000 
2 -0.2666 6667 
3 -0.2678 5714 
4 -0.2679 4258 
5 -0.2679 4872 
6 -0.2679 4916 
7 -0.2679 4919 
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significance when i surpasses the value nL defined in Section 1; while the entries in 
the e, table here remain of order unity throughout. (Note that as i - , 
ei -) - (2 - /3), one of the two characteristic roots of the difference equation 
(2.2); e, is the ith approximant to the continued fraction of form (3.2) for the quantity 
- (2 - V/3).) 

Thus, the m, are determined and the expression (2.1) may be used to interpolate 
Y(x), its derivatives and integrals. 

4. Computational Efficiency. We consider briefly the relative efficiencies of 
the current algorithm and that of Hoskins [3], as realized on a digital computer. 
Although an accurate estimate of program efficiency requires a count of all the opera- 
tions, both algorithms have roughly the same balance of adds and multiplies, so we 
have enumerated only the multiplications to compare the relative efficiencies. Apart 
from the calculation of the ei (which may be input as constants), the realization of 
the scheme of Section 3 above requires (n - 1) multiplications to calculate both 
f, and mi, for a total of 2(n - 1) operations. The scheme of Hoskins requires (n - 2) 
operations to evaluate each of his formulas (H3.13), (H2.2), and (n - 1) operations 
to recover his M, from the calculated quantities (a,_3(h2/6)M2) as shown in his Section 
4, for a total of 3n - 5 operations. Thus, the current algorithm is about 50% faster 
than Hoskins' algorithm with no limitation in calculation time or accuracy as n 
becomes large. In evaluating Hoskins' scheme, we assumed that his table a, is built 
into the program (as the ei above) and that the factor of 4 required in evaluating the 
continuity equation (H2.2) is obtainable by a simple binary shift. If the latter is not 
the case, an additional (n - 1) operations may have to be introduced, making the 
present scheme roughly twice as fast as his. 

5. Conclusions. The algorithm presented here is a simple, computationally 
stable and accurate technique of improved efficiency for generating the parameters 
for cubic natural splines defined on equi-spaced knots. 
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