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Algorithms for Triangular Decomposition of Block 
Hankel and Toeplitz Matrices with Application to 

Factoring Positive Matrix Polynomials 

By J. Rissanen 

Abstract. Algorithms are given for calculating the block triangular factors A, A, B = A-1 
and A = -' and the block diagonal factor D in the factorizations R = ADA and BRB = D 
of block Hankel and Toeplitz matrices R. The algorithms require O(p3n2) operations when 
R is an n X n-matrix of p X p-blocks. 

As an application, an iterative method is described for factoring p X p-matrix valued 
positive polynomials R = E7=-m Rix', R_ = R', asA(x)A'(x-1), where A(x) is outer. 

1. Introduction. Let R = { R, i }, i, j = 0, 1, ***, n, be a matrix with the entries 
R,i as p X p-matrices of real valued elements. Such a matrix is called a (block) 
Hankel matrix if R,i = Ri,i, and a (block) Toeplitz matrix if R,i = R__, 

When all the block (m + 1) X (m + 1)-sections {R, i}, i, j = 0, 1, * i , m, m _< n, 
of either a Hankel matrix R or a Toeplitz matrix R are invertible, we shall construct 
the two factorizations, 

(1.1) R = ADA, 

(1.2) BRB= D, 

where A is a lower triangular matrix with p X p-identity matrices I on the diagonal, 
A is an upper triangular matrix with matrices I on the diagonal, D is an invertible 
block diagonal matrix, and B and P are inverses of A and A, respectively. The algo- 
rithms for finding the two triangular decompositions require O(p3n2) arithmetic 
operations when R is either a Hankel matrix or a Toeplitz matrix. 

Special cases of our algorithms have been derived earlier for different purposes. 
For p = 1 and R a positive definite Toeplitz matrix, Levinson [1] has derived such 
an algorithm for solving predictor problems, which, in effect, also finds the factors 
(1.2). A generalization of the same algorithm for p > 1 was derived (slightly im- 
precisely) in [2]. For p = 1 and R, a Hankel matrix, an algorithm for finding the 
factors in (1.1) was derived in [3] by use of the so-called moments and the Lanczos 
algorithm. 

The algorithm for finding the factorization (1.1) for R, a Toeplitz matrix, is be- 
lieved to be completely new; not even special cases of it seem to have been found 
before. In the particular case where R is symmetric and positive definite, this algo- 
rithm also finds the related Cholesky factorization, R = AA' [6]. 
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The algorithm for the Cholesky factors has an important application in a numerical 
solution of the classical spectral factorization problem. This problem, with applica- 
tions in prediction theory, representation or identification of random processes, and 
a number of other areas as well, is to factor a p X p-matrix polynomial R(x) = 

Ei-m , R, = R', positive for each lxl = 1, as follows: 

(1.3) R(x) = (x) A'(x 1) 

where the factor A(x) has the form I Z Aix' and is "outer" [4]. In the present con- 
text, A(x) being outer merely means that it has the indicated form and is invertible 
for Ixl < 1. Our algorithm requires an order of magnitude fewer arithmetic operations 
than the earlier ones in [5] and [7]. 

2. Hankel Matrices. We begin with the factorizations (1.1)-(1.2) when R is a 
(blockwise) (n + 1) X (n + 1)-matrix { R+ i} with all the block m X m-sections 
m < n, nonsingular. Consider the following portion of the matrix equation BR = 

DA =AP: 

I Ro R1 ... Rk 

Blo I R1 R2 . . . Rk+ 

Bk 1 ,o0. 
. . 

Rk-1 Rk . . . R2k-1 

BkO . .. Bk,k-1 I Rk Rk+1 .' . R2k 

(2.1) 
ABk+?1, . . . Bk+l,k I Rk + Rk+2 ... R2k+1 

POO p01 . POk 

O ... 0 Pkk 

Observe the evident but important fact that these subfactorizations, one for each 
k k < n form a nested sequence such that a subfactorization for any k', k' < k, 
is also a subfactorization of the one corresponding to k. 

Denoting the ith block-row of R as the array (Ri, R1, *-) we find that the 
(k + I)th block-row of B satisfies the equation and, conversely, is determined by it: 

(2 .2) Bk+l ,o(Ro, ... , Rk) + * 
. . 

+ Bk+1 ,,k(Rk . . . , R20) 

+ (Rk?1, * * , R2k+l) = 0. 

By picking the block columns 1 to k - 1 from R, we also have 

(2.3) Bk,o(Rl, . . . , Rk-1) + * * * + Bk,k-1(Rk, R2k-2) 

+ (Rk?l + * * * R2k-1) = 0. 

With the notations, 

(2.4) Eo = 
Bk+1,o, 

E, = Bk+l,i - Bk,_1, = 1, i-1k , 
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we deduce from (2.2) and (2.3), by subtraction, the two equations: 

(2.5) EO(RO, *., Rk-2) + *. + Ek(Rk, Rk, 2) = 0, k _ 2, 

and 

(2.6) Bk+1,o(Rk-1, Rk) + + Bk+l,k(R2k-1, R2k) + (R2k, R2k+1) = 0, k ? 1. 
Regard Eqs. (2.5) as p homogeneous equations in the p-rows of the block-row 
(Eo, * , Ej). As the sections {Ri+ }, i + j < 2k, are nonsingular, we conclude 
by comparing (2.1) and (2.5) that every row of (Eo, ** , Ek) must lie in the linear 
manifold spanned by the 2p linearly independent rows in the two block-rows 
(Bk_l ,o . *. , I, 0) and (Bk, 0 , I) of B. Hence, two matrices Ck and G,C exist such 
that 

(Eo, , Ek) = Ck(Bk,o, * I) + Gk-1(Bk-1o, . I, 0). 

The coefficient matrices Ck and Gk-l are determined by (2.6) in the following way: 
First, (2.4) and (2.6) imply 

EO(Rk-1 , Rk) + * * * + Ek(R2k-1 R2k) + (Pkk, Pk,k+l) = 0. 

Then, with the preceding equality, we derive the equality 

Ck(O, Pkk) + Gk-l(Pk-l,k-1, Pk-1,k) + (Pkk, Pk,k+l) = 0 

which leads to 

(2.7) Gk-l = -DkD-l, k _ 1, 

Ck = -(Gk-lPk-l,k + Pk,k+?)D7 , k _ 0, 

where Dk = Pkk. Define Gi = 0, if i is negative, and Pij = 0 and Bij = 0, if i or j 
are negative. Then, we get the first recursion: 

(2.8) Bk+l,i = Bk,i-l + CkBki + Gk_lBkl j_ k > O, i = 0, *-* , k + 1, 

Boo = I, 

which implies Bi. = I for i > 0; we put B, j = Pji = 0 for j > i. Rather than calculate 
Pk, k+j and Dk from (2.1) as sums, it is better to obtain them as by-products from a 
recursion for the elements P. as follows. 

Equations (2.1) with (2.8) lead to 

Pik = L BiiRk+i 
t =O 

(2.9) = Pj-l,k+l + Ci-lPi-l,k + Gj-2Pj-2,k, k > 0,] = 1, k.. , 

Pok = Rk, k > O, 

Dk = Pkk. 

From P, the matrix A can be recovered by 

(2.10) A = D lP. 

Equations (2.7), (2.9), and (2.10) generalize those in [3]. Equations (2.7)-(2.10) 
give both B and A in 0(2n2(p3 + p2)) operations. 
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By transposing Eqs. (1.1) and (1.2) we have 

(2.11) R' = ' D'A', B'R'B' = D'. 

Therefore, in order to get the factors P' and A', we just replace Ri by Ri in all the 
preceding equations. 

3. Toeplitz Matrices. Consider again the following portion of the matrix equa- 
tion BR = DA = P P, where all the block k X k-sections of the Toeplitz matrix R are 
nonsingular: 

I Ro R 1 * Rk 

Blo I R-1 Ro R1 Rk1 

Bko . . . Bk,k-1 I R-k Ro 

(3.1) Bk+ ,o Bk+l,k 1 R_1k-1 R-1 

POO P01 POk 

P1 1 Pik 

O ... 0 Pkk 

o O *. 0 

We can then deduce the two equations, which, conversely, determine the block-rows 
of B: 

Bk+l ,o(Ro, *. , Rk) + Bk+l,l (R_1, Ro0 ., Rk-1) 

(3.2) 
+ + (R-k_-1, RR1) =O, 

Bko(Ro .. ., Rk_l) + Bkl(R_l, Ro, ... Rk-2) 

+ + (R-k, *.,R-1)= 0. 

With the notations (2.4), we further deduce from (3.2) (by solving the second equation 
for (R_ k, * * * , R-1) and substituting the result in the first: 

(3.3) Eo(R1, *., 
Rk) + E1(RO, *., Rk-1) + 

... 
+ Ek(R-k+, l , Ro) = 0, 

Bk+l,oRo + Bk+l,1R_1 + ... + R-k-1 = 0 

Our plan is to express the first block-row (R1, * * *, Rk) in the form Y1(RO, * * *, Rk-1) 

+ ... + Yk(R-k+ 1, , Ro) where the Yi's do not involve the Bk+li's which we 
are looking for; for, once this is done, we can deduce from (3.3) an equation of the 
form 

(3.4) X1(RO, *., Rki1) + * + Xk(R-k+, *1 , Ro) = 0, 

which has only the solution Xi = 0 for i = 1, * * *, n. This is true since the blockwise 
k X k-submatrix of R with the indicated rows is nonsingular by assumption. 
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A look at the second equation in (3.2) suggests how the stated goal is achieved: 
define R* = {R *i with R,'. = Ri_j; i.e., replace in (3.1) Ri by R,. R* is seen to be 
equivalent to R, so that the factorization (1.2), B*R*B* = D*, exists. Then, as in 
(3.2), 

(3.5) Bk*o(RO, *, 
R-k+l) 

+ B*(R1, .Rl 
, R-k+2) + + (Rk, , R1) -0, 

where the Bk*'s play the role of the Yi's as planned. By solving (3.5) for (Rk, * , R,) 
and substituting the result in (3.3), we get 

(E1 - EoBk*k-1)(Ro, , Rk-1) + + (Ek - EoB*o)(R-k+l, Ro) = 0, 

which, since (3.4) has only the trivial solution, holds if and only if 

(3.6) Ei - EoBk*,k-i = 0, i = 1, ,k. 

The second equation in (3.3) determines Eo as follows: First, (3.3) with (2.4) implies 
k 

EoRo + . + EkR-k + E BkZR-l-j = 0. 

Then, with (3.6), we get 

EO =Ck =-FkD*1, k _ O, 
k 

(3.7) Fk = E Bk,R-i-l, k _ 0, 
=0 

k 

D*= Bk*Ri-k k O. 
t =o0 

By defining Bij = B*. = 0 for i or j negative or i < j, and Bi = B,'i = I for i _ 0, 
we deduce from (2.4) and (3.6): 

(3.8) Bk+l,i = Bk,i-1 + CkBk,,-i, i = 0, ' , k, k ? 0. 

Similarly, we obtain 

(3.9) B* 1,j = B*j-1 + CkBk,k-i, i = 0, ** , k, k > 0, 

where 

C* = -Fk D,l, k > 0, 
k 

(3.10) Fk* = E B*Ri+1, k _ 0, 
i =o 

Dk = >3 BkiRk-i 
't =0 

Further, Dk and D* satisfy by (3.7) and (3.9) the recursions 

(3.11) Dk+l = Dk + CkFk*, k > 0, 

Do = Ro, 

(3 . 12) D* 1 = D* + C*Fk, k _ 0, 

D* = Ro. 
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Equations (3.8)-(3.12) describe an algorithm for finding the factor B in (1.2). Again, 
B' can be obtained from the same formulas by replacing Ri by R' i. Hence, in particu- 
lar, if R is a symmetric Toeplitz matrix and Ri = R' , then B' = B. But even another 
simplification results: as was shown by J. P. Burg (unpublished), 

(3.13) Fk* = Fk' (if R_i = Rf). 

To see this, observe that with (3.2) and (3.5) we have 

Ro R1 ... Rk+l 0 

Rf Ro ... Rk Bk0 

(3.14) Fk* = (I, Bkk-,, B*, 0) = Fk. 

Rf ~ ... R0 I 

We point out that it is possible to derive a recurrence equation also for Fk and F*k, 

as we shall show shortly. However, these recurrence relations save calculations only 
when both factorizations (1.1) and (1.2) are determined. 

We shall now turn to the problem of finding the factors in (1.1). The situation 
turns out to be different from the case with Hankel matrices in that the algorithms 
for determining the factorizations (1.1) and (1.2), respectively, are independent from 
each other. Beginning with (3.1), we have 

(3.15) Pt,k+1 = E BljRk+l-i, 1 ? i < k + 1, 

POk = Rk, k _ 0. 

An application of (3.8) to this expression leads to 

Pi,k+l = Ci-lRk+l + Rk+l-i 

i-l i-l 

+ > iE Bil,jlRk+lj + Ci_ E B* l,ljRk+lj, k > 0. 

By adding Rk+l-i to the first sum and writing 
i 

(3.16) Qi= B*Rk-i++l, i = 0, * , k, k > 0, 
j=O 

for the second sum joined with Rk+l (with i - 1 replaced by i), we obtain 

(3.17) Pi+l,k+l = Pik + CiQik, k > 0, i = 0, k.. 
, 

POk = Rk , k _ k 0. 

An application of (3.9) to (3.16) gives in turn the recursion for the Q, kS: 

(3.18) Ql+l,k = Qik + C*IP,k, k > 1, i = O,* , k -1 

QOk = Rk+1, k ? 0. 

Now observe from (3.16) and (3.15): 
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(3.19) 
Qkk = F*, k > 

0, 
Pkk = Dk , k >_ 0. 

In order to also get Fk recursively, replace, in (3.15)-(3.16), Ri by R_i and Bij by 
B*. Then, 

(3.20) P1+1,k+l = Pk + C sQtk k _ 0, i = 0, k, 

P= R_k, k > 0, 

and 

(3.21) Q+l,k = Qik + CiPik, k _ 1, i = 0, , k - 1, 

Q = R_k-1, k ? 0. 

Further, 

(3 .22) Q* = Fk, k _ 0, 

P* = D*, k 0. 

Finally, we now can express Ci and C* as follows: 

(3.23) Ck = -QkkPkk, k > 0, 

k = -QkkPkk, k > 0. 

With 

(3.24) D=Dp, 

Eqs. (3.17)-(3.23) describe an algorithm for the factor A in (1.1). By replacing Ri 
by RI , the same algorithm also finds the factor A'. In particular, when R is a sym- 
metric Toeplitz matrix, A' = A, and (3.14) gives 

(3.25) Qkk = Q k, (if R-i = Rt). 

These recurrence relations require 0(4n2(p3 + p2)) arithmetic operations to deter- 
mine the factorization (1.1), and only 0(5n2(p3 + p2)) to find both (1.1) and (1.2) 
in case p > 1. In case p = 1, they require only O(2n2) for (1.1) and O(3n2) for both 
(1.1) and (1.2). 

In case R is a symmetric positive definite matrix, the factorization 

(3.26) R = A ' 

is called a Cholesky factorization [6]. Such a factorization is obtained from (1.1) by 
first factoring D as 

(3.27) D = GG', 

where G may be taken to be lower triangular with positive elements on the diagonal, 
and by then putting 

(3.28) A= AG. 

Therefore, with this addition, our algorithm calculates even the Cholesky factoriza- 
tions of symmetric positive definite Teoplitz matrices. 
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As was shown in [5] for p = 1 and in [7] for p > 1, the Cholesky factorization 
has a close connection with the classical spectral factorization problem: Let R = { Ri i }, 
i, j = 0, 1, * , Rij = R._i and Ri = 0 for i > m, be the infinite symmetric positive 
definite block Toeplitz matrix obtained from the ceofficients of a p X p-matrix poly- 
nomial R(x) = Zm R,x, Ri = R' i, which is positive definite for lxl = 1. Then, 
as proved in [7], the rows of the Cholesky factor A of R converge: 

(n, n-m, , A nn) o()m * , as n -* . 

The limits At define the outer factor A(x) = i Atx' of the spectral factorization 

(1.3) of R(x). 
In this way, the algorithm (3.17)-(3.23) with (3.27)-(3.28), where now Pik = 0 

for k -i > m and Qi k = 0 for k - i _ m, provides a new method for calculating 
the spectral factors with any desired accuracy. These formulas require O(p3m) opera- 
tions for each block-row of A as compared with 0(p3m2) with the earlier algorithms 
in [5] and [7] which basically are Gauss-type elimination schemes. Finally, in this 
case, our algorithm (just as that in [5] and [7]) is also numerically stable as can be 
shown by standard stability arguments. 
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