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A Probabilistic Approach to a Differential-Difference 
Equation Arising in Analytic Number Theory 

By Jean-Marie-FranSois Chamayou 

Abstract. The differential-difference equation 
tv'(t) + v(t -1) =0, t > 1, 

v(t)= 0, t < 0, 
v(t) = constant, 0 < t < 1, 

can be solved by the Monte-Carlo method, for the initial condition v(t) = e-, 0 < t < 1, 
where the v(t) represent the probability density of a random variable: 

n i 

t = lim E II xi, 
n-co i=1 j=1 

where the xi are independent and uniformly distributed on (0, 1). 

I. Introduction. The function ,6(x, y) is equal to the number of integers less 
than or equal to x and free of prime factors greater than y. Chowla and Vijayarag- 
havan, Ramaswami, Buchstab and de Bruijn have shown that [1]: 

lim t( s )v(t), 
v- Y 

where v(t) is a function satisfying 

tv'(t) + v(t- 1)= 0, t > 1, 

v(t) 0, t < 0, 

v(t)= 1, 0 < t < 1. 

Many authors have studied the limits and asymptotic behaviour of this equation 
[2]; Norton gives an exhaustive bibliography [3]. Highly accurate numerical results 
were obtained by Dickman, Bellman, Van de Lune ([4], [5], [6]). 

The differential-difference equation solution by the Monte-Carlo method does 
not claim to be as accurate as these previous calculations but only shows a probabilistic 
aspect of this equation. 

II. Stochastic Model. Let un be the random variable: u. = xl + x1x2 + + 
x1x2 ... xn, where xi are independent random variables uniformly distributed on 
(0, 1). 

Received January 4, 1972. 
AMS (MOS) subject classifications (1970). Primary 65C05, 10-04, 60K99; Secondary 34J10, 

1OA25. 
Key words and phrases. Differential-difference equation, Monte-Carlo method, stochastic 

processes, elementary prime number theory, explicit machine computations. 

Copyright 0 1973, American Mathematical Society 

197 



198 JEAN-MARIE-FRAN?OIS CHAMAYOU 

It may be deduced from the distribution of a product of xi variables that if n ,-> cx, 

un, converges in probability to a limit. 
LEMMA. Assume that v(t) is a function continuous on 0 < t < o0 satisfying the 

following equation: 

tv'(t) + v(t - 1) = O, t > 1, 

(1) v(t)= O, t < O, 

v(t) = C, 0 < t < 1. 

This function is identical to f(t) the probability density of a random variable: 
n i 

t= lim E H Xi, 
n--+ i=1 i=1 

where xi are independent random variables uniformly distributed on (0, 1) if the constant 
C equals e-', -y being the Euler constant. 

Proof.* Introduce 
i i 

ta= i: HIx, and tb X= fJ IX; 
1=1 =1 it=2 i=2 

ta and tb have the same probability distribution and ta = x1(I + tb), tb and xi are 
independent. 

Let F(t) be the distribution function of t,,: 

F(t) = (Pr[ta < t]; 

of course, if t < 0, then F(t) = 0. 
If t > 0, we have 

F(t) = O5r[ta < t] = (Pr[xl(tb + 1) < t] 

= E (Pr[tb + 1 < t/x]OPr[x < xi ? x + dx] 

= E F(-- 1)(Pr[x < xi < x + dx] f FQ-- I) dx. 

Put (t/x)-1 = s, then 
co F(s) 

F(t) = tJ (S+ )2 ds. 

If O< t< 1,then 

F(t) = 
tJ (s + - = C t, 

where C is a constant. Hence, f(t) = F'(t) = C for 0 < t < 1. 
If t > 1, by differentiating once, we get 

f(t)-= (F(t) - F(t - 1))/t > 0; 

by differentiating again, we find tf'(t) = -f(t - 1), t > 1. 

* I am indebted to J. J. A. M. Brands for the correction of my initial proof. 
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TABLE I 

'r (un M 1) Monte-Carlo value 

Explicit value (i0 r 

2 0.69315 0.69416 

3 0.61428 0.61622 

4 0.58498 0.58350 

5 0.57246 0.57356 

6 0.56674 0.57016 

7 0.56404 0.56303 

8 0.56273 0.56290 

9 0.56209 0.56381 

10 0.56177 0.56030 

co 0.56146 

Let h(s) be the Laplace transform of f(t) [7]: 

h(s) = (Co/s) exp {-E1 (s)}, 

where 

E (s) e= e zdZ 
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TABLE II 

v(t) t Monte-Carlo value (20 000 runs) 
Explicit value At = 0. 1 

Rough value Smooth value 
using REINSCH's 

(1G) program 

0 0 -0.1 0.96801 
0.1-0.2 0.99206 

1 0.2-0.3 1.03391 
0.3-0.4 0.96890 
0.4-0.5 1.01788 
0.5-0.6 1.01432 
0.6-0.7 1.02233 
0.7-0.8 0.99206 
0.8-0.9 1.01343 

1.0.9-1.0 0.95733 

1.1 0.9046898202 1.0-1.1 0.95911 0.9624 
1.2 0.8176784432 1.1-1.2 0.91547 0.8874 
1.2 0.7376357355 1.2-1.3 0.81484 0.8132 
1.4 0.6635277634 1.3-1.4 0.69016 0.7403 
1.5 0.5945348919 1.4-1.5 0.58419 0.6693 
1.6 0.5299963708 1.5-1.6 0.57974 0.6006 
1.7 0.4693717489 1.6-1.7 0.50849 0.5346 
1.8 0.4122133351 1.7-1.8 0.43992 0.4719 
1.9 0.3581461138 1.8-1.9 0.37492 0.4128 

1.9-2.0 0.31169 0.3578 

2.0 0.3068528194 2.0-2.1 0.29031 0.3070 
2.1 0.2604057802 2.1-2.2 0.23510 0.2608 
2.2 0.2203571379 2.2-2.3 0.17810 0.2193 
2.3 0.1857994616 2.3-2.4 0.17098 0.1826 
2.4 0.1559912639 2.4-2.5 0.16208 0.1506 
2.5 0.1303195618 2.5-2.6 0.11132 0.1231 
2.6 0.1082724430 2.6-2.7 0.09172 0.0999 
2.7 0.08941856572 2.7-2.8 0.07748 0.0808 
2.8 0.07339158076 2.8-2.9 0.05699 0.0653 
2.9 0.05987811599 2.9-3.0 0.05076 0.0528 
3.0 0.04860838829 3.0-3.1 0.05165 0.0425 
3.1 0.03932296954 3.1-3.2 0.04186 0.0333 
3.2 0.03170344451 3.2-3.3 0.02583 0.0250 
3.3 0.02546472387 3.3-3.4 0.01514 0.0186 
3.4 0.02037177906 3.4-3.5 0.01603 0.0145 
3.5 0.01622959324 3.5-3.6 0.00980 0.0125 
3.6 0.01287543418 3.6-3.7 0.01069 0.0121 
3.7 0.01017283782 3.7-3.8 0.01514 0.0120 
3.8 0.008006872188 3.8-3.9 0.00801 0.0092 
3.9 0.006280373062 3.9-4.0 0.00534 0.0053 
4.0 0.004910925648 4.0-4.1 0.00178 0.0018 

Assuming that f(t) is a probability h(O) f f(t) dt = 1, the constant CO equals 
e& , where -y is the Euler constant. 

Since f(t) = C as t = 0, we obtain the boundary condition: lim80. sh(s) = C = e- . 
From f(t) = C as t = 1, inverting Laplace transform, it may be deduced again 

that f(l) = e-', so that 

f(t)= 0, t < 0, 

f(t) e-7 O_0 t < 1, 



A DIFFERENTIAL-DIFFERENCE EQUATION 201 

TABLE II 

t v(t) explicit value (*) At = 0.1 Monte-Carlo value (3.105 runs) 
t 

4.1 0.38285863 io-2 4.1-4.2 0.39 i0o2 

4.2 0.29754751 10-2 4.2-4.3 0.35 io2 

4.3 0.23050507 io-2 4.3-4.4 0.27 io-2 

4.4 0.17799423 io-2 4.4-4.5 0J165 1i-2 

4.5 0.13701182 io-2 4.5-4.6 0.135 io-2 

4.6 0.10514453 io2 4.6-4.7 0.13 io-2 

4.7 0.80455901 10-3 4.7-4.8 0.095 io2 

4.8 0.61395778 0-3 4.8-4.9 0.065 io2 

4.9 0.46728046 10-3 4.9-5.0 0.085 io-2 

5.0 0.35472534 10-3 5.0-5.1 0.08 1o-2 

(A) 5.1 0.268580 10_3 

5.2 0.202822 10 

5.3 0.152768 10 

5.4 0.114775 10_4 

5.5 0.860192 10 

5.6 0.643153 10- 

5.7 0.479771 10-4 

5.8 0.357089 10 

5.9 0.265188 10o 

6.0 0.196503 10 

(*)Galculated by 4th order TAYLOR's expansion 

(A)Calculated by 5th order TAYLOR's expansion 

DICKMAN result Monte-Carlo value 

& vM(t )-- dt = 0.62433 - 06238 
(1 + t)2 

III. Numerical Calculations. For t < 4, the solution of Eq. (1) is obtained 
by explicit expression (see Appendix); for t > 4, it is impossible to express the solution 
by means of known functions. This explicit expression can thus be used for the well- 
known equation of the statistic theory of damage [8]. 

tu'(t) = (t- ) t > 1, 

u(t)= 0, t < 0, 

u(t)= 1, 0 < t_ 1. 

For t _ 4, the function v(t) can be calculated with an accuracy depending solely 
on the polylogarithms which are used in its expression [9]. The random variable u" is 
very easy to simulate by means of the pseudo-random numbers of Lehmer's method. 
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It can be seen in Section II that the un distributions achieve rapid convergence as 
n increases. 

For the calculations, n is chosen so that we cannot discriminate between the 
distributions of un and u,, because the statistical fluctuations of the pseudo-random 
numbers are greater than the discrepancy between them. 

IV. Results. Table I gives an illustration of Section II; notice that we get the 
Euler constant simulated by - LogljPr[un < 1]1, n -> c. 

Table II represents the calculation of the function v(t) explicitly and by simula- 
tion. Results are smoothed by the spline method [10]. Polylogarithms can be cal- 
culated by means of Chebyshev's polynomial expansion [11], [12]; Kolbig gives an 
excellent algorithm for the dilogarithm's calculation [13]. 

V. Conclusion. The main purpose of this paper is to test the ability of the 
Monte-Carlo method to resolve differential-difference equations, and, using a classical 
example, to justify further studies in the field of the statistical theory of damage and 
neutron transport problems [14] which involve the same mathematical data. 
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Appendix. 
v(t) explicit behaviour, 
v(t) = 1-Log t, 1 < t 2, 

v(t) = 1 - Log t + [2 Log2 t + L2(1/t) + L2(-1)], 2 < t < 3, 

v(t) = 1 - Log t + [2 Log2 t + L2(1/t) + L2(-1)J 

{4 [ 3(4) - 1)2)] -L 3(Log3(t- 1)-Log3 2) 

1 t2 Lg1\ t 
+ 2 (Log2Q 1) Log t Log 2 Log 3) + L2(t - 1) Log 1 

2 t ~~~~~~~~~~~t- 

- L 1 Log (3) L2 (- - Log(t - 2) + LA(-1) Log t 

+ {Log-2- Log t- 
2 

+ I2 t 1{ 

V1 
2 t_ [ 2l t I -2 ) 

~~~~~~, 

V2 

(+ +4 I ) [VP++ 1 (2p+ (t - 1 )P+)1 + *..} 
< 

3_ t ? 4. 
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By means of Newton's method, the explicit expression permits easy calculation of 
the roots tk 

V(t k = 4, 5, , 203. 

For example, the roots 

t4= 2.1245966, t5 = 2.2571089 

are used by Davenport and Erdos [15]. 

Centre de Physique Atomique 
Universite Paul Sabatier 
Toulouse, France 

1. N. G. DE BRuIJN,"On the number of positive integers ?x and free of prime factors 
>y," Nederl. Akad. Wetensch. Proc. Ser. A, v. 54 = Indag. Mathl., v. 13, 1951, pp. 50-60. 
MR 13, 724. 

2. N. G. DE BRUIJN, "The asymptotic behaviour of a function occurring in the theory of 
primes," J. Indian Math. Soc., v. 15, 1951, pp. 25-32. MR 13, 326. 

3. K. K. NORTON, "Numbers with small prime factors and least Kth power non residue," 
Mem. Amer. Math. Soc., No. 106, 1971. 

4. K. DICKMAN, "On the frequency of numbers containing prime factors of a certain rela- 
tive magnitude," Ark. Mat. Astr. Fys., v. 22, A, 1930, pp. 1-14. 

5. R. BELLMAN & B. KOTKIN, "On the numerical solution of a differential-difference equa- 
tion arising in analytic number theory," Math. Comp., v. 16, 1962, pp. 473-475. MR 26 
#5756. 

6. J. VAN DE LUNE & E. WATTEL, "On the numerical solution of a differential-difference 
equation arising in analytic number theory," Math. Comp., v. 23, 1969, pp. 417-421. MR 40 
?1050. 

7. M. P. VAN OUWERKERK-DIJKERS & J. Nuis, "On the asymptotic behaviour of the solu- 
tion of a differential-difference equation arising in number theory," Math. Centrum Amsterdam 
Afd. Toegepaste Wisk. Rep. TN, v. 50, 1968, 9 pp. MR 41 #605. 

8. L. I. PAL & G. NEMETH, "A statistical theory of lattice damage in solids irradiated by 
high-energy particles," Nuovo Cimento (10), v. 12, 1959, pp. 293-309. MR 21 #7630. 

9. L. LEWIN, Dilogarithms and Associated Functions, MacDonald, LONDON, 1958. MR 
21 #4264. 

10. J. H. AHLBERG, E. N. NILSON & J. L. WALSH, The Theory of Splines and Their Appli- 
cations, Academic Press, New York, 1967. MR 39 #684. 

11. Y. L. LUKE, The Special Functions and Their Approximations. Vol. 2, Math. in Sci. 
and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 #2909. 

12. E. W. NG, C. J. DEVINE & R. F. TOOPER, "Chebyshev polynomial expansion of Bose- 
Einstein functions of orders 1 to 10," Math. Comp., v. 23, 1969, pp. 639-643. MR 40 #1002a. 

13. K. S. KLBIG, "Algorithm 327: Dilogarithm," Comm. Assoc. Comput. Mach., v. 11, 
1968, pp. 270-271. 

14. V. BOFFI & R. SCOZZAFAVA, "Sull' equazione funzionale lineare f'(x) =-A(x)f(x - 1)," 
Rend. Mat. e Appl. (5), v. 25, 1966, pp. 402-410. MR 36 #1786. 

15. H. DAVENPORT & P. ERD6S, "The distribution of quadratic and higher residues," 
Publ. Math. Debrecen, v. 2, 1951-52, pp. 252-265. 


