
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 

The numbers in brackets are assigned according to the indexing system printed 
in Volume 22, Number 101, January 1968, page 212. 

1 [2.05] .-ARTHUR SARD & SOL WEINTRAUB, A Book of Splines, John Wiley & Sons, 
New York, 1971, x + 817 pp., 24 cm. Price $22.50. 

This book consists of three descriptive and expository chapters totalling 93 pages, 
an appendix of 12 pages describing a Fortran program for spline approximation, 
a bibliography of 13 pages inclusive through March 1, 1970, and three elaborate 
tables of numerical data comprising 693 pages. 

The point of view taken throughout is that a spline t which approximates an 
unknown function x is based on linear scalar observations Fox, * , Fmx of x and 
the knowledge of the existence of f, (DLx)2 over some interval I. The splines com- 
putable from the tables are based on the particular observations F,x = x(c + ih), 
i = 0, ... , m, where c and h are real numbers with h > 0, m = n(1)20, and n = 
2(1)5, 8. Chapters 1 and 2 are devoted to instruction on the use of the tables. They 
are self-contained and written independently of each other, though Chapter 2 is 
more complete. Thus, Chapter 1, through examples, instructs the reader on how to 
construct the basis of cardinal spline functions if m > n (or, alternatively, the Lagrange 
interpolation basis functions if m = n - 1) and discusses approximate differentiation 
and integration by the use of these exact operations on the natural spline interpolant. 
Chapter 2, however, includes in addition a discussion of the method of calculation 
of error in natural spline interpolation. The reader is shown here how to compute 
sharp upper bounds for x(t) - t(t)j, t E I. More complete use of the tables is re- 
quired here. 

Chapter 3 draws the entire book together by means of a self-contained exposition 
of the theory of splines. Eight distinct characterizations of (, four of them involving 
optimality, are presented here. In the interests of clarity and completeness, we shall 
present these now. 

Let I be a compact interval of the real line and let X denote the space of functions 
x on I whose (n - 1)th derivative D'-1x is absolutely continuous on I and whose 
nth derivative D'x is square-integrable on I. Here n _ 1. Let X* denote the set of 
functionals 'I of the form 

n-1 

Ix = E j D'X(s) da,,(s) + j D x( )I(s) ds, x E X, 
V=0II 

where a,, * * * , an-, are functions of bounded variation on I and iV is square-integrable. 
X* is precisely the space of continuous linear functionals on X when the latter is 
normed by 

n-1 

Iix1I2 = E IjDx(a)12 + (DnX)2 (a C I). 
w=0 ~~~I; 

Now let F*, ., Fm, m > n - 1, be fixed functionals in X* which are linearly in- 
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pendent and set q = 2n - 1. We define the key functions 

fi(t) = Fi,j(jt - sl), t E R, i = 0, , m. 

If IO C I is the smallest closed interval which contains the support of F, * , Fm 

let a C IO and define matrices P, 4J and A as follows. (Row indices are denoted by i 
and column indices by v.) 

P = F[(s - a)"], i = 0, , m, a} = 0, n - 1; 

- = F,(y oi =0*** m, VJ = , * ,m; 

_P -1_ 

Here 0 is an n X n matrix of zeros and * denotes transpose. The matrices dI and A 
are symmetric and A is invertible if and only if P is of full rank n. We assume A to 
be invertible (valid for the point functionals of the tables) and we write B = A-1 as 

B FBi1 B12] = B* 

LB2,1 B2,2- 

where the partitioning is consistent with that of A. We introduce the notationally 
convenient column matrices 

F= (Fi), i= O, Mi* ,m 

f =f i), i = O, *i, ,m, 

=Fx =(Fix), i =0, ,m,x C X, 

71=((u-a)'), i= 0, M,* u mu R, 

of functionals, functions, scalars, and functions, respectively. Finally, we define the 
cardinal spline functions 3,, i = 0, * * *, m, by 

( = (0i) = [B2 I B2,1 2 

and the spline projector HI on X by 

t = Hx = d*@. 

The linear space M of splines is defined to be the range of the linear projector HT and 
is spanned by (0, ... , (,n. This, then, is the definition of spline as presented by the 
authors. The remaining seven characterizing properties of t and/or M follow. 

I. Characterization of M Via MA. Define on X the Hilbert space inner product 

(X, Y) = X FixFiy + Dnx Dny. 
i=O I 

Let N= {x C X: F,x = 0, i = 0, *, m}. Then M = N' and N = M'. 
II. Geometric Property of the Spline Approximation. Let G E X*, d > 0 and 

c Rm`' be prescribed; let 

r = x CE X: Fx =} and f(Dnx)2 _ d2. 



REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 207 

Let { 0 } = IF. Then the set GF is the closed interval with midpoint Gto and length 
equal to twice the square root of J[d2 - 2(- l)yq!w*B2 2W]. J is given explicitly by 

(-1)nGtG,[Gt - sI|] - *By 
J 2q! q = 2n- 1, 

and 

EGG] ly = [70 

III. Interpolating Property Qf the Splines. For each x C X, there is one and 
only one t E M such that Ft = Fx. Furthermore, t = HIx. 

IV. Minimal Deviation Among Interpolants. For each x E X, the integral 
J" (Dny)2 is minimal among all y E X such that Fy = Fx if and only if y = Hx. 

V. Minimal Quotient. For any G C X*, define the set aC of admissible approxima- 
tions of G by 

JC- {H e X*: Hx = Gx whenever D X = O}. 

Set R = G - H for H E ae. For each such H there is a continuous linear func- 
tional Q on L2(I) (called the quotient of R and D') such that R = QDn. Define Ho = 
GIl. Then Ho C 3C and IIQII is minimal among H E xe if and only if H = Ho, in 
which case 

min IIQII = J = sup [IGA|2 j (DnO2] 
O0tEN- 

Here N is defined in I and J agrees with the constant of II. 
VI. Minimal Deviation in M. For each x E X, the integral fh (Dnx- Dny)2 

is minimal among y E M if and only if D ny = D where = HIx, i.e., if and only 
if y - t is polynomial of degree n - 1. 

VII. Analytic Description of M. The splines are precisely those functions t 

on R which are such that 
(i) t is a linear combination of the key functions fo, f m plus a polynomial 

of degree n - 1, and, 
(ii) Dnt(u) = 0 for all u E Io. 
The authors give credit to various authors for their contributions to the char- 

acterizations I-VII. 
Properties I, II, and III are due to Golomb and Weinberger (in On Numerical 

Approximation, R. E. Langer, Editor, University of Wisconsin Press, Madison, 
1959, pp. 117-190), in even greater generality. Property IV, in the case of natural 
cubic splines, was known to Schoenberg (Quart. Appl. Math., v. 4, 1946, pp. 45-99) 
though Holladay (MTAC, v. 11, 1957, pp. 233-243) appears to have supplied the 
first proof. Properties IV and VI, in even greater generality, are implicit in Golomb 
and Weinberger. Walsh, Ahlberg and Nilson (J. Math. Mech., v. 11, 1962, pp. 225- 
234) explicitly treated a special case of IV and VI. The first explicit treatment, in 
the generality considered here, appears to be due to DeBoor and Lynch (J. Math. 
Mech., v. 15, 1966, pp. 953-969). 

Property V is due to Sard (Amer. J. Math., v. 71, 1949, pp. 80-91, and Linear 
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Approximation, Amer. Math. Soc., Providence, R.I., 1963) although the precise 
calculation of J appears to be due to Secrest (Math. Comp., v. 19, 1965, pp. 79-83) in 
the case of quadrature. Finally, Schoenberg, in a number of interesting papers between 
1964 and 1968, discussed the equivalence of III, IV, V, VI, and VII in a number of 
important special cases. 

We shall now return to the discussion of the numerical tables. The first table 
allows one to obtain the representations of the cardinal spline functions 3,(u) in 
terms of 1, u, , u, Jul", u - 1l1, , Iu - ml' (alternatively, 1, u, * u- 

... , (u - m)4) when the uniformly spaced knots are chosen to be 0, 1, * , m. 

The table also produces the representation of f3,(t) in terms of powers and absolutes 
or pluses when the knots are symmetrically placed about zero at unit spacing. The 
coefficients in these representations are given accurately to 13S and are based on 
30S values obtained on a CDC 6600 computer. The coefficients were computed 
in three independent ways, viz., by the direct inversion of the matrix A, by the use 
of the duals of the functionals F, [Golomb-Weinberger, loc. cit.] and by certain 
recursion formulas due to Greville [privately communicated by Schoenberg]. The 
authors report that the first of these three methods was the most efficient, despite 
the fact that A is not a particularly well-conditioned matrix. The authors speculate 
that the use of the absolute-value functions, rather than the plus functions, in ob- 
taining A provides the symmetry which makes the inversion of A more effective 
than it otherwise would be. Indeed, A is symmetric about both diagonals if the knots 
are symmetrically placed. 

Now, it is a simple matter, achieved by an elementary affine transformation, to 
pass to the cardinal spline functions with uniformly spaced knots in general position. 
In any event, Table 1, with only special exceptions, provides only the representation 
of the desired spline. If the table user wishes to avoid the calculations necessary for 
evaluation, differentiation, and integration, he may employ the Fortran program 
provided. The necessary input information for the punched data cards is presented 
very clearly. The numerical data are taken from Table 1. Sample output data are 
shown for four illustrative problems. 

Table 2 gives the entries of B to 6S for the particular functionals Fix = x(i -p), 
i = 0, * *, m = 2p, where p is half-integral or integral. Table 3 provides the co- 
efficients required to form the Lagrange interpolant when m = n - 1 and n = 2(1)10. 
It should be noted that the range of n is different here from that in Tables 1 and 2. 

The reviewer was impressed with the clarity and accuracy of the exposition, 
both in the instructional Chapters 1 and 2 and in the theoretical Chapter 3. In the 
careful and impartial meting out of credits in Chapter 3, the authors have performed 
a considerable service. In particular, the fundamental role of the contribution of 
Golomb and Weinberger is made clear, a fact not sufficiently recognized in the past. 

Altogether, this authoritative book should provide a valuable service to both the 
users of old mathematics and the makers of new mathematics. 
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